Abstract

We propose a laser speckle based scheme that allows the analysis of local scattering properties of light diffusely reflected from turbid media. This turbid medium can be a soft material such as a colloidal or polymeric material but can also be biological tissue. The method provides a 2D map of the scattering properties of a complex, multiple scattering medium by recording a single image. We demonstrate that the measured speckle contrast can be directly related to the local transport mean free path l* or the reduced scattering coefficient μt = 1/l* of the medium. In comparison to some other approaches, the method does not require scanning (of a laser beam, detector or the sample itself) in order to generate a spatial map. It can conveniently be applied in a reflection geometry and provides a single characteristic value at any given position with an intrinsic resolution typically on the order of 5–50 μm. The actual resolution is however limited by the transport mean free path itself and can thus range from microns to millimeters.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Paruta-Tuarez, H. Fersadou, V. Sadder, P. Marchal, L. Choplin, C. Baravian, and C. Castel, “Highly concentrated emulsions: 1. average drop size determination by analysis of incoherent polarized steady light transport,” J. Colloid Interface Sci. 346(1), 136–142 (2010).
    [CrossRef] [PubMed]
  2. C. Baravian, F. Caton, J. Dillet, and J. Mougel, “Steady light transport under flow: characterization of evolving dense random media,” Phys. Rev. E 71, 066603 (2005).
    [CrossRef]
  3. H. M. Wyss, S. Romer, F. Scheffold, P. Schurtenberger, and L. J. Gauckler, “Diffusing-wave spectroscopy of concentrated alumina suspensions during gelation,” J. Colloid Interface Sci.  240, 89–97 (2001).
    [CrossRef]
  4. P. Snabre, L. Brunel, and G. Meunier, “Multiple light scattering methods for dispersion characterization and control of particulate processes,” in Particle Sizing and Characterization, ed. T. Provder and J. Texter, (American Chemical Society, Washington DC, 2004).
    [CrossRef]
  5. Formulaction SA (Bordeaux, France) web: http://www.formulaction.com/ , LSInstruments AG (Fribourg, Switzerland) web: http://www.lsinstruments.ch .
  6. A. Yodh and B. Chance, “Spectroscopy and imaging with diffuse light,” Phys. Today 48(3), 34–40 (1995).
    [CrossRef]
  7. F. Bevilacqua, D. Piguet, P. Marquet, J. Gross, B. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950.
    [PubMed]
  8. R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett.  28, 1701–1703 (2003).
    [CrossRef] [PubMed]
  9. D. A. Weitz and D. J. Pine, “Diffusing wave spectrscopy,” in Dynamic Light Scattering, ed. W. Brown, (Oxford University Press, 1992).
  10. P. D. Kaplan, A. D. Dinsmore, and A. G. Yodh, “Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures,” Phys. Rev. E 50, 4827–4835 (1994).
    [CrossRef]
  11. C. Aegerter and G. Maret, “Coherent backscattering and anderson localization of light,” Prog. Opt. 52, 1–62 (2009).
    [CrossRef]
  12. D. Cuccia, F. Bevilacqua, A. J. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
    [CrossRef] [PubMed]
  13. A. Joshi, W. Bangerth, and E. M. Sevick-Muraca, “Non-contact fluorescence optical tomography with scanning patterned illumination,” Opt. Express 14, 6516–6534 (2006).
    [CrossRef] [PubMed]
  14. J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).
  15. D. Magatti, A. Gatti, and F. Ferri, “Three dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
    [CrossRef]
  16. S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express 18, 14519–14534 (2010).
    [CrossRef] [PubMed]
  17. M. Erpelding, A. Amon, and J. E. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid,” Phys. Rev. E 78, 046104 (2008).
    [CrossRef]
  18. P. Zakharov and F. Scheffold, “Monitoring spatially heterogeneous dynamics in a drying colloidal thin film,” Soft Mater. 8, 102–113 (2010).
    [CrossRef]
  19. L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002), [ http://www.lsinstruments.ch/scattering_calculator/ ].
    [CrossRef]
  20. J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
    [CrossRef] [PubMed]
  21. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31 (23), 3465 (2006).
    [CrossRef] [PubMed]
  22. N. Curry, P. Bondareff, M. Leclercy, N. F. van Hulst, R. Sapienza, S. Gigan, and S. Gresillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36(17), 3332–3334 (2011).
    [CrossRef] [PubMed]
  23. O. L. Muskens and A. Lagendijk, “Broadband enhanced backscattering spectroscopy of strongly scattering media,” Opt. Express 16(2), 1222 (2008).
    [CrossRef] [PubMed]
  24. J. C. Ragain and W. M. Johnston, “Accuracy of Kubelka-Munk reflectance theory applied to human dentin and enamel,” J. Dent. Res. 80, 449 (2001).
    [CrossRef] [PubMed]
  25. B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck. “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664 (2004).
    [CrossRef] [PubMed]

2011 (2)

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

N. Curry, P. Bondareff, M. Leclercy, N. F. van Hulst, R. Sapienza, S. Gigan, and S. Gresillon, “Direct determination of diffusion properties of random media from speckle contrast,” Opt. Lett. 36(17), 3332–3334 (2011).
[CrossRef] [PubMed]

2010 (3)

S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express 18, 14519–14534 (2010).
[CrossRef] [PubMed]

P. Zakharov and F. Scheffold, “Monitoring spatially heterogeneous dynamics in a drying colloidal thin film,” Soft Mater. 8, 102–113 (2010).
[CrossRef]

E. Paruta-Tuarez, H. Fersadou, V. Sadder, P. Marchal, L. Choplin, C. Baravian, and C. Castel, “Highly concentrated emulsions: 1. average drop size determination by analysis of incoherent polarized steady light transport,” J. Colloid Interface Sci. 346(1), 136–142 (2010).
[CrossRef] [PubMed]

2009 (3)

C. Aegerter and G. Maret, “Coherent backscattering and anderson localization of light,” Prog. Opt. 52, 1–62 (2009).
[CrossRef]

D. Cuccia, F. Bevilacqua, A. J. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

D. Magatti, A. Gatti, and F. Ferri, “Three dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
[CrossRef]

2008 (2)

O. L. Muskens and A. Lagendijk, “Broadband enhanced backscattering spectroscopy of strongly scattering media,” Opt. Express 16(2), 1222 (2008).
[CrossRef] [PubMed]

M. Erpelding, A. Amon, and J. E. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid,” Phys. Rev. E 78, 046104 (2008).
[CrossRef]

2006 (2)

2005 (1)

C. Baravian, F. Caton, J. Dillet, and J. Mougel, “Steady light transport under flow: characterization of evolving dense random media,” Phys. Rev. E 71, 066603 (2005).
[CrossRef]

2004 (1)

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck. “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664 (2004).
[CrossRef] [PubMed]

2003 (1)

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett.  28, 1701–1703 (2003).
[CrossRef] [PubMed]

2002 (1)

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002), [ http://www.lsinstruments.ch/scattering_calculator/ ].
[CrossRef]

2001 (2)

J. C. Ragain and W. M. Johnston, “Accuracy of Kubelka-Munk reflectance theory applied to human dentin and enamel,” J. Dent. Res. 80, 449 (2001).
[CrossRef] [PubMed]

H. M. Wyss, S. Romer, F. Scheffold, P. Schurtenberger, and L. J. Gauckler, “Diffusing-wave spectroscopy of concentrated alumina suspensions during gelation,” J. Colloid Interface Sci.  240, 89–97 (2001).
[CrossRef]

1995 (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffuse light,” Phys. Today 48(3), 34–40 (1995).
[CrossRef]

1994 (1)

P. D. Kaplan, A. D. Dinsmore, and A. G. Yodh, “Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures,” Phys. Rev. E 50, 4827–4835 (1994).
[CrossRef]

Aegerter, C.

C. Aegerter and G. Maret, “Coherent backscattering and anderson localization of light,” Prog. Opt. 52, 1–62 (2009).
[CrossRef]

Amon, A.

M. Erpelding, A. Amon, and J. E. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid,” Phys. Rev. E 78, 046104 (2008).
[CrossRef]

Ayers, F.

D. Cuccia, F. Bevilacqua, A. J. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

Bangerth, W.

Baravian, C.

E. Paruta-Tuarez, H. Fersadou, V. Sadder, P. Marchal, L. Choplin, C. Baravian, and C. Castel, “Highly concentrated emulsions: 1. average drop size determination by analysis of incoherent polarized steady light transport,” J. Colloid Interface Sci. 346(1), 136–142 (2010).
[CrossRef] [PubMed]

C. Baravian, F. Caton, J. Dillet, and J. Mougel, “Steady light transport under flow: characterization of evolving dense random media,” Phys. Rev. E 71, 066603 (2005).
[CrossRef]

Belhaj-Saif, A.

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

Bevilacqua, F.

D. Cuccia, F. Bevilacqua, A. J. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. Gross, B. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950.
[PubMed]

Bondareff, P.

Brunel, L.

P. Snabre, L. Brunel, and G. Meunier, “Multiple light scattering methods for dispersion characterization and control of particulate processes,” in Particle Sizing and Characterization, ed. T. Provder and J. Texter, (American Chemical Society, Washington DC, 2004).
[CrossRef]

Buck, A.

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31 (23), 3465 (2006).
[CrossRef] [PubMed]

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck. “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664 (2004).
[CrossRef] [PubMed]

Burger, C.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck. “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664 (2004).
[CrossRef] [PubMed]

Castel, C.

E. Paruta-Tuarez, H. Fersadou, V. Sadder, P. Marchal, L. Choplin, C. Baravian, and C. Castel, “Highly concentrated emulsions: 1. average drop size determination by analysis of incoherent polarized steady light transport,” J. Colloid Interface Sci. 346(1), 136–142 (2010).
[CrossRef] [PubMed]

Caton, F.

C. Baravian, F. Caton, J. Dillet, and J. Mougel, “Steady light transport under flow: characterization of evolving dense random media,” Phys. Rev. E 71, 066603 (2005).
[CrossRef]

Cerbino, R.

Chance, B.

A. Yodh and B. Chance, “Spectroscopy and imaging with diffuse light,” Phys. Today 48(3), 34–40 (1995).
[CrossRef]

Choplin, L.

E. Paruta-Tuarez, H. Fersadou, V. Sadder, P. Marchal, L. Choplin, C. Baravian, and C. Castel, “Highly concentrated emulsions: 1. average drop size determination by analysis of incoherent polarized steady light transport,” J. Colloid Interface Sci. 346(1), 136–142 (2010).
[CrossRef] [PubMed]

Crassous, J. E.

M. Erpelding, A. Amon, and J. E. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid,” Phys. Rev. E 78, 046104 (2008).
[CrossRef]

Cuccia, D.

D. Cuccia, F. Bevilacqua, A. J. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

Curry, N.

Depeursinge, C.

Dillet, J.

C. Baravian, F. Caton, J. Dillet, and J. Mougel, “Steady light transport under flow: characterization of evolving dense random media,” Phys. Rev. E 71, 066603 (2005).
[CrossRef]

Dinsmore, A. D.

P. D. Kaplan, A. D. Dinsmore, and A. G. Yodh, “Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures,” Phys. Rev. E 50, 4827–4835 (1994).
[CrossRef]

Durkin, A. J.

D. Cuccia, F. Bevilacqua, A. J. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

Erpelding, M.

M. Erpelding, A. Amon, and J. E. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid,” Phys. Rev. E 78, 046104 (2008).
[CrossRef]

Ferri, F.

D. Magatti, A. Gatti, and F. Ferri, “Three dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
[CrossRef]

Fersadou, H.

E. Paruta-Tuarez, H. Fersadou, V. Sadder, P. Marchal, L. Choplin, C. Baravian, and C. Castel, “Highly concentrated emulsions: 1. average drop size determination by analysis of incoherent polarized steady light transport,” J. Colloid Interface Sci. 346(1), 136–142 (2010).
[CrossRef] [PubMed]

Gatti, A.

D. Magatti, A. Gatti, and F. Ferri, “Three dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
[CrossRef]

Gauckler, L. J.

H. M. Wyss, S. Romer, F. Scheffold, P. Schurtenberger, and L. J. Gauckler, “Diffusing-wave spectroscopy of concentrated alumina suspensions during gelation,” J. Colloid Interface Sci.  240, 89–97 (2001).
[CrossRef]

Gigan, S.

Gindrat, A. D.

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).

Gresillon, S.

Gross, J.

Hamadjida, A.

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

Hoogewoud, H. M.

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

Johnston, W. M.

J. C. Ragain and W. M. Johnston, “Accuracy of Kubelka-Munk reflectance theory applied to human dentin and enamel,” J. Dent. Res. 80, 449 (2001).
[CrossRef] [PubMed]

Joshi, A.

Kaplan, P. D.

P. D. Kaplan, A. D. Dinsmore, and A. G. Yodh, “Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures,” Phys. Rev. E 50, 4827–4835 (1994).
[CrossRef]

Lagendijk, A.

Leclercy, M.

Magatti, D.

D. Magatti, A. Gatti, and F. Ferri, “Three dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
[CrossRef]

Marchal, P.

E. Paruta-Tuarez, H. Fersadou, V. Sadder, P. Marchal, L. Choplin, C. Baravian, and C. Castel, “Highly concentrated emulsions: 1. average drop size determination by analysis of incoherent polarized steady light transport,” J. Colloid Interface Sci. 346(1), 136–142 (2010).
[CrossRef] [PubMed]

Maret, G.

C. Aegerter and G. Maret, “Coherent backscattering and anderson localization of light,” Prog. Opt. 52, 1–62 (2009).
[CrossRef]

Marquet, P.

Meunier, G.

P. Snabre, L. Brunel, and G. Meunier, “Multiple light scattering methods for dispersion characterization and control of particulate processes,” in Particle Sizing and Characterization, ed. T. Provder and J. Texter, (American Chemical Society, Washington DC, 2004).
[CrossRef]

Mougel, J.

C. Baravian, F. Caton, J. Dillet, and J. Mougel, “Steady light transport under flow: characterization of evolving dense random media,” Phys. Rev. E 71, 066603 (2005).
[CrossRef]

Muskens, O. L.

Ntziachristos, V.

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett.  28, 1701–1703 (2003).
[CrossRef] [PubMed]

Paruta-Tuarez, E.

E. Paruta-Tuarez, H. Fersadou, V. Sadder, P. Marchal, L. Choplin, C. Baravian, and C. Castel, “Highly concentrated emulsions: 1. average drop size determination by analysis of incoherent polarized steady light transport,” J. Colloid Interface Sci. 346(1), 136–142 (2010).
[CrossRef] [PubMed]

Peuser, J.

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express 18, 14519–14534 (2010).
[CrossRef] [PubMed]

Piguet, D.

Pine, D. J.

D. A. Weitz and D. J. Pine, “Diffusing wave spectrscopy,” in Dynamic Light Scattering, ed. W. Brown, (Oxford University Press, 1992).

Ragain, J. C.

J. C. Ragain and W. M. Johnston, “Accuracy of Kubelka-Munk reflectance theory applied to human dentin and enamel,” J. Dent. Res. 80, 449 (2001).
[CrossRef] [PubMed]

Ripoll, J.

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett.  28, 1701–1703 (2003).
[CrossRef] [PubMed]

Rojas-Ochoa, L. F.

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002), [ http://www.lsinstruments.ch/scattering_calculator/ ].
[CrossRef]

Romer, S.

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002), [ http://www.lsinstruments.ch/scattering_calculator/ ].
[CrossRef]

H. M. Wyss, S. Romer, F. Scheffold, P. Schurtenberger, and L. J. Gauckler, “Diffusing-wave spectroscopy of concentrated alumina suspensions during gelation,” J. Colloid Interface Sci.  240, 89–97 (2001).
[CrossRef]

Rouiller, E. M.

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

Sadder, V.

E. Paruta-Tuarez, H. Fersadou, V. Sadder, P. Marchal, L. Choplin, C. Baravian, and C. Castel, “Highly concentrated emulsions: 1. average drop size determination by analysis of incoherent polarized steady light transport,” J. Colloid Interface Sci. 346(1), 136–142 (2010).
[CrossRef] [PubMed]

Sapienza, R.

Scheffold, F.

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express 18, 14519–14534 (2010).
[CrossRef] [PubMed]

P. Zakharov and F. Scheffold, “Monitoring spatially heterogeneous dynamics in a drying colloidal thin film,” Soft Mater. 8, 102–113 (2010).
[CrossRef]

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31 (23), 3465 (2006).
[CrossRef] [PubMed]

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck. “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664 (2004).
[CrossRef] [PubMed]

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002), [ http://www.lsinstruments.ch/scattering_calculator/ ].
[CrossRef]

H. M. Wyss, S. Romer, F. Scheffold, P. Schurtenberger, and L. J. Gauckler, “Diffusing-wave spectroscopy of concentrated alumina suspensions during gelation,” J. Colloid Interface Sci.  240, 89–97 (2001).
[CrossRef]

Schmidlin, E.

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

Schulz, R. B.

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett.  28, 1701–1703 (2003).
[CrossRef] [PubMed]

Schurtenberger, P.

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002), [ http://www.lsinstruments.ch/scattering_calculator/ ].
[CrossRef]

H. M. Wyss, S. Romer, F. Scheffold, P. Schurtenberger, and L. J. Gauckler, “Diffusing-wave spectroscopy of concentrated alumina suspensions during gelation,” J. Colloid Interface Sci.  240, 89–97 (2001).
[CrossRef]

Sevick-Muraca, E. M.

Skipetrov, S. E.

Snabre, P.

P. Snabre, L. Brunel, and G. Meunier, “Multiple light scattering methods for dispersion characterization and control of particulate processes,” in Particle Sizing and Characterization, ed. T. Provder and J. Texter, (American Chemical Society, Washington DC, 2004).
[CrossRef]

Tromberg, B.

D. Cuccia, F. Bevilacqua, A. J. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

F. Bevilacqua, D. Piguet, P. Marquet, J. Gross, B. Tromberg, and C. Depeursinge, “In vivo local determination of tissue optical properties: applications to human brain,” Appl. Opt. 38(22), 4939–4950.
[PubMed]

van Hulst, N. F.

Völker, A.

Völker, A. C.

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

von Schulthess, G. K.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck. “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664 (2004).
[CrossRef] [PubMed]

Weber, B.

Weitz, D. A.

D. A. Weitz and D. J. Pine, “Diffusing wave spectrscopy,” in Dynamic Light Scattering, ed. W. Brown, (Oxford University Press, 1992).

Wyss, H. M.

H. M. Wyss, S. Romer, F. Scheffold, P. Schurtenberger, and L. J. Gauckler, “Diffusing-wave spectroscopy of concentrated alumina suspensions during gelation,” J. Colloid Interface Sci.  240, 89–97 (2001).
[CrossRef]

Wyss, M. T.

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck. “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664 (2004).
[CrossRef] [PubMed]

Yodh, A.

A. Yodh and B. Chance, “Spectroscopy and imaging with diffuse light,” Phys. Today 48(3), 34–40 (1995).
[CrossRef]

Yodh, A. G.

P. D. Kaplan, A. D. Dinsmore, and A. G. Yodh, “Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures,” Phys. Rev. E 50, 4827–4835 (1994).
[CrossRef]

Zakharov, P.

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

S. E. Skipetrov, J. Peuser, R. Cerbino, P. Zakharov, B. Weber, and F. Scheffold, “Noise in laser speckle correlation and imaging techniques,” Opt. Express 18, 14519–14534 (2010).
[CrossRef] [PubMed]

P. Zakharov and F. Scheffold, “Monitoring spatially heterogeneous dynamics in a drying colloidal thin film,” Soft Mater. 8, 102–113 (2010).
[CrossRef]

P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31 (23), 3465 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Eur. J. Neurosci. (1)

B. Weber, C. Burger, M. T. Wyss, G. K. von Schulthess, F. Scheffold, and A. Buck. “Optical imaging of the spatiotemporal dynamics of cerebral blood flow and oxidative metabolism in the rat barrel cortex,” Eur. J. Neurosci. 20(10), 2664 (2004).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

D. Cuccia, F. Bevilacqua, A. J. Durkin, F. Ayers, and B. Tromberg, “Quantitation and mapping of tissue optical properties using modulated imaging,” J. Biomed. Opt. 14(2), 024012 (2009).
[CrossRef] [PubMed]

J. Peuser, A. Belhaj-Saif, A. Hamadjida, E. Schmidlin, A. D. Gindrat, A. C. Völker, P. Zakharov, H. M. Hoogewoud, E. M. Rouiller, and F. Scheffold, “Follow-up of cortical activity and structure after lesion with laser speckle imaging and magnetic resonance imaging in nonhuman primates,” J. Biomed. Opt. 16, 096011 (2011).
[CrossRef] [PubMed]

J. Colloid Interface Sci (1)

H. M. Wyss, S. Romer, F. Scheffold, P. Schurtenberger, and L. J. Gauckler, “Diffusing-wave spectroscopy of concentrated alumina suspensions during gelation,” J. Colloid Interface Sci.  240, 89–97 (2001).
[CrossRef]

J. Colloid Interface Sci. (1)

E. Paruta-Tuarez, H. Fersadou, V. Sadder, P. Marchal, L. Choplin, C. Baravian, and C. Castel, “Highly concentrated emulsions: 1. average drop size determination by analysis of incoherent polarized steady light transport,” J. Colloid Interface Sci. 346(1), 136–142 (2010).
[CrossRef] [PubMed]

J. Dent. Res. (1)

J. C. Ragain and W. M. Johnston, “Accuracy of Kubelka-Munk reflectance theory applied to human dentin and enamel,” J. Dent. Res. 80, 449 (2001).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett (1)

R. B. Schulz, J. Ripoll, and V. Ntziachristos, “Noncontact optical tomography of turbid media,” Opt. Lett.  28, 1701–1703 (2003).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. A (1)

D. Magatti, A. Gatti, and F. Ferri, “Three dimensional coherence of light speckles: experiment,” Phys. Rev. A 79, 053831 (2009).
[CrossRef]

Phys. Rev. E (4)

M. Erpelding, A. Amon, and J. E. Crassous, “Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid,” Phys. Rev. E 78, 046104 (2008).
[CrossRef]

L. F. Rojas-Ochoa, S. Romer, F. Scheffold, and P. Schurtenberger, “Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions,” Phys. Rev. E 65, 051403 (2002), [ http://www.lsinstruments.ch/scattering_calculator/ ].
[CrossRef]

P. D. Kaplan, A. D. Dinsmore, and A. G. Yodh, “Diffuse-transmission spectroscopy: A structural probe of opaque colloidal mixtures,” Phys. Rev. E 50, 4827–4835 (1994).
[CrossRef]

C. Baravian, F. Caton, J. Dillet, and J. Mougel, “Steady light transport under flow: characterization of evolving dense random media,” Phys. Rev. E 71, 066603 (2005).
[CrossRef]

Phys. Today (1)

A. Yodh and B. Chance, “Spectroscopy and imaging with diffuse light,” Phys. Today 48(3), 34–40 (1995).
[CrossRef]

Prog. Opt. (1)

C. Aegerter and G. Maret, “Coherent backscattering and anderson localization of light,” Prog. Opt. 52, 1–62 (2009).
[CrossRef]

Soft Mater. (1)

P. Zakharov and F. Scheffold, “Monitoring spatially heterogeneous dynamics in a drying colloidal thin film,” Soft Mater. 8, 102–113 (2010).
[CrossRef]

Other (4)

J. W. Goodman, Speckle Phenomena in Optics (Roberts & Company, 2007).

D. A. Weitz and D. J. Pine, “Diffusing wave spectrscopy,” in Dynamic Light Scattering, ed. W. Brown, (Oxford University Press, 1992).

P. Snabre, L. Brunel, and G. Meunier, “Multiple light scattering methods for dispersion characterization and control of particulate processes,” in Particle Sizing and Characterization, ed. T. Provder and J. Texter, (American Chemical Society, Washington DC, 2004).
[CrossRef]

Formulaction SA (Bordeaux, France) web: http://www.formulaction.com/ , LSInstruments AG (Fribourg, Switzerland) web: http://www.lsinstruments.ch .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup displaying beam path and all components. A single-mode diode-pumped solid-state laser operating at 532 nm is deflected onto a ground-glass optical diffuser mounted onto a rotating motor. The coherence length of the laser beam being sufficiently large (lcohl*) is critical for the proposed technique. The light scattered from the diffuser is collimated by a lens and directed by a semi-transparent beamsplitter onto the sample. A digital camera images the sample surface through an objective. A crossed polarizer is mounted in front of the camera to attenuate specular reflections.

Fig. 2
Fig. 2

(a) Direct image of speckle beam taken by placing camera at the sample position for the smallest speckle size considered. (b) Normalized intensity correlation function g2r) obtained by the inverse Fourier transform of the speckle power spectrum. The speckle size is varied from 2b = 36 μm to 126 μm.

Fig. 3
Fig. 3

Recorded image speckle with motor at rest for a sample with l* = 245 μm (a) and l* = 50 μm (b). The size of the incident beam-speckle is 2b = 3.4 pixel (32 μm). A random pattern (defined by the incident beam speckle) superimposed on the fine image speckle is apparent in (b) but not (a).

Fig. 4
Fig. 4

(a)–(c) Recorded speckle images of gelatin with polystyrene beads with motor spinning at 50Hz (exposure time 30 ms) with characteristic parameters b/l*= 0.065, 0.32, 1.3, respectively. (d)–(f) Processed maps of local image speckle contrast with average contrast increasing from 1.9%, 3.9% to 12.4 %, respectively.

Fig. 5
Fig. 5

Speckle contrast K of image speckle as a function of b/l* (symbols). Data for three different speckle beam settings (b) is shown. The transport mean free path is l* = 245, 147, 74, 50 μm for the polystyrene in gelatin samples and l* ≃ 11μm for white paper. Motor spinning at 50Hz and camera acquisition set to τexp = 30 ms exposure. Solid line (inset) : An empirical tanh-fit provides a quantitative link between the measured contrast and sample scattering properties (K = 0.285 · tanh [0.38 · b/l*] + 0.01). For b/l* < 1 the speckle contrast scales linearly (dotted lines). For b/l* ≫ 1 the speckle contrast for plane-wave illumination, K = 0.295, is recovered (dashed-dotted horizontal line).

Fig. 6
Fig. 6

High resolution greyscale coded map of speckle contrast K for white paper (left) covered with a correction tape (right) that is scratched once with a knife. Motor spinning at 50 Hz, 230 ms exposure, beam speckle size b = 16μm, 5×5 -pixels used for local contrast analysis [20]. Sample also shows a slight intensity contrast - not shown - due to the finite reflectivity of the correction tape. The local l* can be extracted from the speckle contrast image via the empirical tanh fit, Fig. 5.

Fig. 7
Fig. 7

Speckle contrast of beam-speckle imaged for varying combinations of camera exposure time (τexp)and ground-glass diffuser rotation frequency (f). Images are shown for three data points, demonstrating the averaging effect at larger exposure-time/rotation-frequency combinations.

Metrics