Abstract

We present bioinspired artificial compound eye surface structures that consist of antireflective subwavelength structures (SWSs) on hexagonally patterned microstructures (MSs), for the purpose of efficient light escaping inside light-emitting materials/devices. Theoretical understanding and geometrical optimization of SWSs on MSs are described together with rigorous coupled-wave analysis. As a proof of this concept, AlGaInP red light-emitting diodes (LEDs) with SWS/MSs were fabricated, and a light output power enhancement of 72.47% was achieved as compared to that of conventional LEDs. The artificial compound eye structures are not limited to LEDs, and the fabrication process is compatible with most semiconductor device manufacturing processes; hence, this concept opens up new possibilities for improving the optical performance of various optoelectronic device applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Ghiradella, “Structure and development of iridescent butterfly scales: lattices and laminae,” J. Morphol. 202(1), 69–88 (1989).
    [CrossRef]
  2. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colours: Now you see it – now you don’t,” Nature 410(6824), 36 (2001).
    [CrossRef] [PubMed]
  3. W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997).
    [CrossRef]
  4. P. B. Clapham and M. C. Hutley, ““Reduction of lens reflection by the “moth eye” principle,” Nature 244(5414), 281–282 (1973).
    [CrossRef]
  5. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
    [CrossRef] [PubMed]
  6. L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
    [CrossRef] [PubMed]
  7. X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
    [CrossRef]
  8. K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
    [CrossRef] [PubMed]
  9. H. Gao, Z. Liu, J. Zhang, G. Zhang, and G. Xie, “Precise replication of antireflective nanostructures from biotemplates,” Appl. Phys. Lett. 90(12), 123115 (2007).
    [CrossRef]
  10. R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Replication of fly eyes by the conformal-evaporated-film-by-rotation technique,” Nanotechnology 19(35), 355704 (2008).
    [CrossRef] [PubMed]
  11. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
    [CrossRef]
  12. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
    [CrossRef] [PubMed]
  13. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
    [CrossRef] [PubMed]
  14. P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
    [CrossRef]
  15. J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
    [CrossRef]
  16. M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
    [CrossRef]
  17. Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
    [CrossRef] [PubMed]
  18. Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
    [CrossRef]
  19. J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
    [CrossRef]
  20. D.-S. Liu, T.-W. Lin, B.-W. Huang, F.-S. Juang, P.-H. Lei, and C.-Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett. 94(14), 143502 (2009).
    [CrossRef]
  21. C.-E. Lee, Y.-C. Lee, H.-C. Kuo, T.-C. Lu, and S.-C. Wang, “High-brightness InGaN-GaN flip-chip light-emitting diodes with triple-light scattering layers,” IEEE Photon. Technol. Lett. 20(8), 659–661 (2008).
    [CrossRef]
  22. P.-W. Huang and Y. S. Wu, “Output power of AlGaInP light emitting diode improved by double roughening AlGaInP surfaces,” Electrochem. Solid-State Lett. 13(5), H163–H165 (2010).
    [CrossRef]
  23. Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008).
    [CrossRef] [PubMed]
  24. S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
    [CrossRef]
  25. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  26. M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983).
    [CrossRef]
  27. A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep. 452(2-3), 33–88 (2007).
    [CrossRef]
  28. A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Polarization-dependent tunneling of light in gradient optics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016603 (2007).
    [CrossRef] [PubMed]
  29. W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett. 88(18), 181113 (2006).
    [CrossRef]
  30. Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
    [CrossRef]
  31. D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
    [CrossRef]

2010 (5)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
[CrossRef]

P.-W. Huang and Y. S. Wu, “Output power of AlGaInP light emitting diode improved by double roughening AlGaInP surfaces,” Electrochem. Solid-State Lett. 13(5), H163–H165 (2010).
[CrossRef]

2009 (4)

D.-S. Liu, T.-W. Lin, B.-W. Huang, F.-S. Juang, P.-H. Lei, and C.-Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett. 94(14), 143502 (2009).
[CrossRef]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[CrossRef]

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

2008 (4)

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Replication of fly eyes by the conformal-evaporated-film-by-rotation technique,” Nanotechnology 19(35), 355704 (2008).
[CrossRef] [PubMed]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

C.-E. Lee, Y.-C. Lee, H.-C. Kuo, T.-C. Lu, and S.-C. Wang, “High-brightness InGaN-GaN flip-chip light-emitting diodes with triple-light scattering layers,” IEEE Photon. Technol. Lett. 20(8), 659–661 (2008).
[CrossRef]

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008).
[CrossRef] [PubMed]

2007 (6)

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep. 452(2-3), 33–88 (2007).
[CrossRef]

A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Polarization-dependent tunneling of light in gradient optics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016603 (2007).
[CrossRef] [PubMed]

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
[CrossRef]

H. Gao, Z. Liu, J. Zhang, G. Zhang, and G. Xie, “Precise replication of antireflective nanostructures from biotemplates,” Appl. Phys. Lett. 90(12), 123115 (2007).
[CrossRef]

2006 (3)

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett. 88(18), 181113 (2006).
[CrossRef]

2005 (1)

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

2002 (1)

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

2001 (1)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colours: Now you see it – now you don’t,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

1997 (1)

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997).
[CrossRef]

1989 (1)

H. Ghiradella, “Structure and development of iridescent butterfly scales: lattices and laminae,” J. Morphol. 202(1), 69–88 (1989).
[CrossRef]

1983 (2)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[CrossRef]

M. G. Moharam and T. K. Gaylord, “Three-dimensional vector coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 73(9), 1105–1112 (1983).
[CrossRef]

1981 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, ““Reduction of lens reflection by the “moth eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Arif, R. A.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[CrossRef]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Aspnes, D. E.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[CrossRef]

Barthlott, W.

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997).
[CrossRef]

Chang, C. H.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chang, Y. C.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Chhajed, S.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Chiu, C. H.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Cho, J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Choi, E. S.

Clapham, P. B.

P. B. Clapham and M. C. Hutley, ““Reduction of lens reflection by the “moth eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Crawford, M.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Cui, Y.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Ee, Y.-K.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[CrossRef]

Fan, H. T.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Fan, S.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Fischer, A. J.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Gao, H.

H. Gao, Z. Liu, J. Zhang, G. Zhang, and G. Xie, “Precise replication of antireflective nanostructures from biotemplates,” Appl. Phys. Lett. 90(12), 123115 (2007).
[CrossRef]

Gao, X.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
[CrossRef]

Garnett, E.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Gaylord, T. K.

Ghiradella, H.

H. Ghiradella, “Structure and development of iridescent butterfly scales: lattices and laminae,” J. Morphol. 202(1), 69–88 (1989).
[CrossRef]

Gilchrist, J. F.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[CrossRef]

Hane, K.

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

Horng, R. H.

W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett. 88(18), 181113 (2006).
[CrossRef]

Hsu, C. M.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hsu, S. H.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hu, C.-Z.

D.-S. Liu, T.-W. Lin, B.-W. Huang, F.-S. Juang, P.-H. Lei, and C.-Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett. 94(14), 143502 (2009).
[CrossRef]

Huang, B.-W.

D.-S. Liu, T.-W. Lin, B.-W. Huang, F.-S. Juang, P.-H. Lei, and C.-Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett. 94(14), 143502 (2009).
[CrossRef]

Huang, P.-W.

P.-W. Huang and Y. S. Wu, “Output power of AlGaInP light emitting diode improved by double roughening AlGaInP surfaces,” Electrochem. Solid-State Lett. 13(5), H163–H165 (2010).
[CrossRef]

Huang, S. H.

W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett. 88(18), 181113 (2006).
[CrossRef]

Huang, S. Y.

W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett. 88(18), 181113 (2006).
[CrossRef]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, ““Reduction of lens reflection by the “moth eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Ishimori, M.

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

Jang, S. J.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Jeong, K. H.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Jiang, L.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
[CrossRef]

Juang, F.-S.

D.-S. Liu, T.-W. Lin, B.-W. Huang, F.-S. Juang, P.-H. Lei, and C.-Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett. 94(14), 143502 (2009).
[CrossRef]

Kanamori, Y.

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

Kato, T.

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008).
[CrossRef] [PubMed]

Kim, H.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Kim, J.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Kim, J. K.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Kojima, Y.

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008).
[CrossRef] [PubMed]

Kumnorkaew, P.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[CrossRef]

Kuo, H. C.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Kuo, H.-C.

C.-E. Lee, Y.-C. Lee, H.-C. Kuo, T.-C. Lu, and S.-C. Wang, “High-brightness InGaN-GaN flip-chip light-emitting diodes with triple-light scattering layers,” IEEE Photon. Technol. Lett. 20(8), 659–661 (2008).
[CrossRef]

Kuzmiak, V.

A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep. 452(2-3), 33–88 (2007).
[CrossRef]

A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Polarization-dependent tunneling of light in gradient optics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016603 (2007).
[CrossRef] [PubMed]

Lakhtakia, A.

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Replication of fly eyes by the conformal-evaporated-film-by-rotation technique,” Nanotechnology 19(35), 355704 (2008).
[CrossRef] [PubMed]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colours: Now you see it – now you don’t,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

Lee, C.-E.

C.-E. Lee, Y.-C. Lee, H.-C. Kuo, T.-C. Lu, and S.-C. Wang, “High-brightness InGaN-GaN flip-chip light-emitting diodes with triple-light scattering layers,” IEEE Photon. Technol. Lett. 20(8), 659–661 (2008).
[CrossRef]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Lee, L. P.

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

Lee, Y. T.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Lee, Y.-C.

C.-E. Lee, Y.-C. Lee, H.-C. Kuo, T.-C. Lu, and S.-C. Wang, “High-brightness InGaN-GaN flip-chip light-emitting diodes with triple-light scattering layers,” IEEE Photon. Technol. Lett. 20(8), 659–661 (2008).
[CrossRef]

Lei, P.-H.

D.-S. Liu, T.-W. Lin, B.-W. Huang, F.-S. Juang, P.-H. Lei, and C.-Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett. 94(14), 143502 (2009).
[CrossRef]

Li, F.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
[CrossRef]

Li, Y.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
[CrossRef]

Lin, T.-W.

D.-S. Liu, T.-W. Lin, B.-W. Huang, F.-S. Juang, P.-H. Lei, and C.-Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett. 94(14), 143502 (2009).
[CrossRef]

Liu, D.-S.

D.-S. Liu, T.-W. Lin, B.-W. Huang, F.-S. Juang, P.-H. Lei, and C.-Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett. 94(14), 143502 (2009).
[CrossRef]

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Liu, Z.

H. Gao, Z. Liu, J. Zhang, G. Zhang, and G. Xie, “Precise replication of antireflective nanostructures from biotemplates,” Appl. Phys. Lett. 90(12), 123115 (2007).
[CrossRef]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Lu, T.-C.

C.-E. Lee, Y.-C. Lee, H.-C. Kuo, T.-C. Lu, and S.-C. Wang, “High-brightness InGaN-GaN flip-chip light-emitting diodes with triple-light scattering layers,” IEEE Photon. Technol. Lett. 20(8), 659–661 (2008).
[CrossRef]

Martín-Palma, R. J.

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Replication of fly eyes by the conformal-evaporated-film-by-rotation technique,” Nanotechnology 19(35), 355704 (2008).
[CrossRef] [PubMed]

Moharam, M. G.

Neinhuis, C.

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997).
[CrossRef]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Pantano, C. G.

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Replication of fly eyes by the conformal-evaporated-film-by-rotation technique,” Nanotechnology 19(35), 355704 (2008).
[CrossRef] [PubMed]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Petite, G.

A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Polarization-dependent tunneling of light in gradient optics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016603 (2007).
[CrossRef] [PubMed]

A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep. 452(2-3), 33–88 (2007).
[CrossRef]

Sambles, J. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colours: Now you see it – now you don’t,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

Sasaki, M.

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

Schubert, E. F.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Schubert, M. F.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Shvartsburg, A. B.

A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Polarization-dependent tunneling of light in gradient optics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016603 (2007).
[CrossRef] [PubMed]

A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep. 452(2-3), 33–88 (2007).
[CrossRef]

Sone, C.

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Song, Y. M.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[CrossRef]

Szema, R.

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

Tansu, N.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[CrossRef]

Tong, H.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[CrossRef]

Vukusic, P.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colours: Now you see it – now you don’t,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

Wang, C.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
[CrossRef]

Wang, S.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Wang, S.-C.

C.-E. Lee, Y.-C. Lee, H.-C. Kuo, T.-C. Lu, and S.-C. Wang, “High-brightness InGaN-GaN flip-chip light-emitting diodes with triple-light scattering layers,” IEEE Photon. Technol. Lett. 20(8), 659–661 (2008).
[CrossRef]

Wang, W. K.

W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett. 88(18), 181113 (2006).
[CrossRef]

Wang, Z.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
[CrossRef]

Wen, K. S.

W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett. 88(18), 181113 (2006).
[CrossRef]

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colours: Now you see it – now you don’t,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

Wu, Y. S.

P.-W. Huang and Y. S. Wu, “Output power of AlGaInP light emitting diode improved by double roughening AlGaInP surfaces,” Electrochem. Solid-State Lett. 13(5), H163–H165 (2010).
[CrossRef]

Wuu, D. S.

W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett. 88(18), 181113 (2006).
[CrossRef]

Xie, G.

H. Gao, Z. Liu, J. Zhang, G. Zhang, and G. Xie, “Precise replication of antireflective nanostructures from biotemplates,” Appl. Phys. Lett. 90(12), 123115 (2007).
[CrossRef]

Xu, L.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
[CrossRef]

Yan, X.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
[CrossRef]

Yang, B.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
[CrossRef]

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
[CrossRef]

Yang, C. S.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yang, P.

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

Yao, X.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
[CrossRef]

Yu, H.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
[CrossRef]

Yu, J. C.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, J. S.

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Y. M. Song, E. S. Choi, J. S. Yu, and Y. T. Lee, “Light-extraction enhancement of red AlGaInP light-emitting diodes with antireflective subwavelength structures,” Opt. Express 17(23), 20991–20997 (2009).
[CrossRef] [PubMed]

Yu, P. C.

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

Yu, X. Z.

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

Yu, Z.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Zhang, G.

H. Gao, Z. Liu, J. Zhang, G. Zhang, and G. Xie, “Precise replication of antireflective nanostructures from biotemplates,” Appl. Phys. Lett. 90(12), 123115 (2007).
[CrossRef]

Zhang, J.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
[CrossRef]

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
[CrossRef]

H. Gao, Z. Liu, J. Zhang, G. Zhang, and G. Xie, “Precise replication of antireflective nanostructures from biotemplates,” Appl. Phys. Lett. 90(12), 123115 (2007).
[CrossRef]

Zhang, K.

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
[CrossRef]

Zhao, H.

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[CrossRef]

Zhu, J.

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Zhu, S.

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
[CrossRef]

Adv. Mater. (3)

X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, and L. Jiang, “The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography,” Adv. Mater. 19(17), 2213–2217 (2007).
[CrossRef]

P. C. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, “Efficiency enhancement of GaAs photovoltaics employing antireflective indium tin oxide nanocolumns,” Adv. Mater. 21(16), 1618–1621 (2009).
[CrossRef]

J. K. Kim, S. Chhajed, M. F. Schubert, E. F. Schubert, A. J. Fischer, M. Crawford, J. Cho, H. Kim, and C. Sone, “Light-extraction enhancement of GaInN light-emitting diodes by graded-refractive-index indium tin oxide anti-reflection contact,” Adv. Mater. 20(4), 801–804 (2008).
[CrossRef]

Appl. Phys. Lett. (5)

D.-S. Liu, T.-W. Lin, B.-W. Huang, F.-S. Juang, P.-H. Lei, and C.-Z. Hu, “Light-extraction enhancement in GaN-based light-emitting diodes using grade-refractive-index amorphous titanium oxide films with porous structures,” Appl. Phys. Lett. 94(14), 143502 (2009).
[CrossRef]

S. Wang, X. Z. Yu, and H. T. Fan, “Simple lithographic approach for subwavelength structure antireflection,” Appl. Phys. Lett. 91(6), 061105 (2007).
[CrossRef]

W. K. Wang, S. Y. Huang, S. H. Huang, K. S. Wen, D. S. Wuu, and R. H. Horng, “Fabrication and efficiency improvement of micropillar InGaN/Cu light-emitting diodes with vertical electrodes,” Appl. Phys. Lett. 88(18), 181113 (2006).
[CrossRef]

Y. Li, F. Li, J. Zhang, C. Wang, S. Zhu, H. Yu, Z. Wang, and B. Yang, “Improved light extraction efficiency of white organic light-emitting devices by biomimetic antireflective surfaces,” Appl. Phys. Lett. 96(15), 153305 (2010).
[CrossRef]

H. Gao, Z. Liu, J. Zhang, G. Zhang, and G. Xie, “Precise replication of antireflective nanostructures from biotemplates,” Appl. Phys. Lett. 90(12), 123115 (2007).
[CrossRef]

Electrochem. Solid-State Lett. (1)

P.-W. Huang and Y. S. Wu, “Output power of AlGaInP light emitting diode improved by double roughening AlGaInP surfaces,” Electrochem. Solid-State Lett. 13(5), H163–H165 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y.-K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, “Optimization of light extraction efficiency of III-Nitride LEDs with self-assembled colloidal-based microlenses,” IEEE J. Sel. Top. Quantum Electron. 15(4), 1218–1225 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C.-E. Lee, Y.-C. Lee, H.-C. Kuo, T.-C. Lu, and S.-C. Wang, “High-brightness InGaN-GaN flip-chip light-emitting diodes with triple-light scattering layers,” IEEE Photon. Technol. Lett. 20(8), 659–661 (2008).
[CrossRef]

J. Morphol. (1)

H. Ghiradella, “Structure and development of iridescent butterfly scales: lattices and laminae,” J. Morphol. 202(1), 69–88 (1989).
[CrossRef]

J. Opt. Soc. Am. (2)

Jpn. J. Appl. Phys. (1)

M. Ishimori, Y. Kanamori, M. Sasaki, and K. Hane, “Subwavelength antireflection gratings for light emitting diodes and photodiodes fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. 41(Part 1, No. 6B), 4346–4349 (2002).
[CrossRef]

Nano Lett. (2)

E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10(3), 1082–1087 (2010).
[CrossRef] [PubMed]

J. Zhu, C. M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome solar cells with efficient light management and self-cleaning,” Nano Lett. 10(6), 1979–1984 (2010).
[CrossRef]

Nanotechnology (2)

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Replication of fly eyes by the conformal-evaporated-film-by-rotation technique,” Nanotechnology 19(35), 355704 (2008).
[CrossRef] [PubMed]

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol. 2(12), 770–774 (2007).
[CrossRef]

Nature (2)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Structural colours: Now you see it – now you don’t,” Nature 410(6824), 36 (2001).
[CrossRef] [PubMed]

P. B. Clapham and M. C. Hutley, ““Reduction of lens reflection by the “moth eye” principle,” Nature 244(5414), 281–282 (1973).
[CrossRef]

Opt. Express (1)

Phys. Rep. (1)

A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Optics of subwavelength gradient nanofilms,” Phys. Rep. 452(2-3), 33–88 (2007).
[CrossRef]

Phys. Rev. B (1)

D. E. Aspnes and A. A. Studna, “Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV,” Phys. Rev. B 27(2), 985–1009 (1983).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

A. B. Shvartsburg, V. Kuzmiak, and G. Petite, “Polarization-dependent tunneling of light in gradient optics,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(1), 016603 (2007).
[CrossRef] [PubMed]

Planta (1)

W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces,” Planta 202(1), 1–8 (1997).
[CrossRef]

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[CrossRef] [PubMed]

Science (2)

L. P. Lee and R. Szema, “Inspirations from biological optics for advanced photonic systems,” Science 310(5751), 1148–1150 (2005).
[CrossRef] [PubMed]

K. H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312(5773), 557–561 (2006).
[CrossRef] [PubMed]

Small (1)

Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6(9), 984–987 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of four surface structures: (i) a flat surface, (ii) an MS, (iii) an SWS, and (iv) an SWS on an MS. The dashed and solid red arrows indicate the Fresnel internal reflection and total internal reflection, respectively. (b) Calculated internal reflectance of the GaP substrate with and without an SWS as a function of incident angle at a wavelength of 635 nm. (c) Electric field intensity distribution of the SWS on a GaP substrate at 635 nm for incident angles of 0° and 20°.

Fig. 2
Fig. 2

(a) Schematic illustration of the fabrication procedure for the SWS/MS architecture. (b) Tilted-angle view of SEM images for the fabricated samples with (i) an MS, (ii) an SWS, and (iii) an SWS/MS on a GaP substrate. (iv) A lower magnification image of (iii).

Fig. 3
Fig. 3

(a) Contour plot of the reflectance variation of SWSs on a GaP substrate as a function of SWS wavelength and period. The height of the SWS was set to 300 nm. (b) Electric field intensity distribution of SWSs on a GaP substrate with a period of 200 nm (A) and 300 nm (B) at 635 nm for normal incidence. (c) Contour plot of the reflectance variation of a GaP SWS as a function of the SWS wavelength and height. The period of the SWS was set to 200 nm. (d) Reflectance of a GaP SWS with a period of 200 nm as a function of the SWS height at a wavelength of 635 nm (red line) and 1000 nm (black line). Each arrow indicates the first reflectance dip position, i.e., hdip = 150 nm at a wavelength of 635 nm and hdip = 260 nm at a wavelength of 1000 nm.

Fig. 4
Fig. 4

(a) Measured total transmittance of backside illuminated light as a function of wavelength for a GaP substrate with four different surface structures (a flat surface, a MS, a SWS, and an SWS on an MS). To induce randomly diffused light, samples with a slightly roughened back-surface were used. (b) Transmittance enhancement ratio of each sample as measured against a reference sample with a flat surface. (c) Measured total reflectance of GaP substrates with four different surface structures at normal incidence in diffuse mode with an integrating sphere.

Fig. 5
Fig. 5

Schematic illustration of the fabrication procedure for SWS/MS-integrated AlGaInP LEDs.

Fig. 6
Fig. 6

(a) SEM images of the fabricated LEDs with SWS/MSs. (b) L-I-V curves of the fabricated LEDs with four different surface structures: flat surface, MS, SWS, and SWS/MS.

Metrics