Abstract

Spectral imaging, i.e. the acquisition of the spectrum emitted from each sample location, is a powerful tool for a wide variety of applications in science and technology. For biomedical applications, spectral imaging is important for accurate analysis of a biological specimen and for assisting clinical diagnosis, however it could be challenging mainly due to the typically low damage thresholds and strict time constraints. Here, we present a fiber-based technique termed spectrally encoded spectral imaging (SESI), in which a fully emitted spectrum is captured from each resolvable point of a specimen using an additional lateral scanning of the spectrally encoded line. The technique is demonstrated by capturing spectral data cubes of a color print and of a green leaf, and its potential advantage in signal-to-noise ratio is theoretically discussed. Using a miniaturized grating-lens configuration, SESI could be conducted endoscopically, allowing minimally invasive color and spectral imaging in remote locations of the body.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Gat, “Imaging spectroscopy using tunable filters: A review,” Proc. SPIE 4056, 50–64 (2000).
    [CrossRef]
  2. R. D. Shonat, E. S. Wachman, W. H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
    [CrossRef] [PubMed]
  3. Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, “Three-dimensional spectral imaging by hadamard transform spectroscopy in a programmable array microscope,” J. Microsc. 197(1), 5–14 (2000).
    [CrossRef] [PubMed]
  4. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
    [CrossRef] [PubMed]
  5. M. B. Sinclair, J. A. Timlin, D. M. Haaland, and M. Werner-Washburne, “Design, construction, characterization, and application of a hyperspectral microarray scanner,” Appl. Opt. 43(10), 2079–2088 (2004).
    [CrossRef] [PubMed]
  6. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
    [CrossRef]
  7. Z. Malik, M. Dishi, and Y. Garini, “Fourier transform multipixel spectroscopy and spectral imaging of protoporphyrin in single melanoma cells,” Photochem. Photobiol. 63(5), 608–614 (1996).
    [CrossRef] [PubMed]
  8. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
    [CrossRef] [PubMed]
  9. T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
    [CrossRef] [PubMed]
  10. I. Barshack, J. Kopolovic, Z. Malik, and C. Rothmann, “Spectral morphometric characterization of breast carcinoma cells,” Br. J. Cancer 79(9/10), 1613–1619 (1999).
    [CrossRef] [PubMed]
  11. D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001).
    [CrossRef] [PubMed]
  12. F. Jean, G. Bourg-Heckly, and B. Viellerobe, “Fibered confocal spectroscopy and multicolor imaging system for in vivo fluorescence analysis,” Opt. Express 15(7), 4008–4017 (2007).
    [CrossRef] [PubMed]
  13. H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
    [CrossRef] [PubMed]
  14. A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilites,” Cytometry A 69A(3), 142–146 (2006).
    [CrossRef]
  15. M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
    [CrossRef] [PubMed]
  16. C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
    [CrossRef]
  17. C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
    [CrossRef] [PubMed]
  18. E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
    [CrossRef] [PubMed]
  19. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
    [CrossRef]
  20. D. Kang, D. Yelin, B. E. Bouma, and G. J. Tearney, “Spectrally-encoded color imaging,” Opt. Express 17(17), 15239–15247 (2009).
    [CrossRef] [PubMed]
  21. A. Abramov, L. Minai, and D. Yelin, “Multiple-channel spectrally encoded imaging,” Opt. Express 18(14), 14745–14751 (2010).
    [CrossRef] [PubMed]
  22. M. Merman, A. Abramov, and D. Yelin, “Theoretical analysis of spectrally encoded endoscopy,” Opt. Express 17(26), 24045–24059 (2009).
    [CrossRef]
  23. D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
    [CrossRef] [PubMed]
  24. J. T. Motz, D. Yelin, B. J. Vakoc, B. E. Bouma, and G. J. Tearney, “Spectral- and frequency-encoded fluorescence imaging,” Opt. Lett. 30(20), 2760–2762 (2005).
    [CrossRef] [PubMed]
  25. M. Strupler, E. D. Montigny, D. Morneau, and C. Boudoux, “Rapid spectrally encoded fluorescence imaging using a wavelength-swept source,” Opt. Lett. 35(11), 1737–1739 (2010).
    [CrossRef] [PubMed]
  26. D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
    [CrossRef] [PubMed]

2010 (3)

2009 (2)

2008 (2)

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[CrossRef] [PubMed]

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (5)

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilites,” Cytometry A 69A(3), 142–146 (2006).
[CrossRef]

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
[CrossRef]

2005 (1)

2004 (2)

M. B. Sinclair, J. A. Timlin, D. M. Haaland, and M. Werner-Washburne, “Design, construction, characterization, and application of a hyperspectral microarray scanner,” Appl. Opt. 43(10), 2079–2088 (2004).
[CrossRef] [PubMed]

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

2003 (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

2001 (1)

D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001).
[CrossRef] [PubMed]

2000 (2)

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, “Three-dimensional spectral imaging by hadamard transform spectroscopy in a programmable array microscope,” J. Microsc. 197(1), 5–14 (2000).
[CrossRef] [PubMed]

N. Gat, “Imaging spectroscopy using tunable filters: A review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

1999 (1)

I. Barshack, J. Kopolovic, Z. Malik, and C. Rothmann, “Spectral morphometric characterization of breast carcinoma cells,” Br. J. Cancer 79(9/10), 1613–1619 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (1)

R. D. Shonat, E. S. Wachman, W. H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[CrossRef] [PubMed]

1996 (2)

Z. Malik, M. Dishi, and Y. Garini, “Fourier transform multipixel spectroscopy and spectral imaging of protoporphyrin in single melanoma cells,” Photochem. Photobiol. 63(5), 608–614 (1996).
[CrossRef] [PubMed]

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Abramov, A.

Arndt-Jovin, D. J.

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, “Three-dimensional spectral imaging by hadamard transform spectroscopy in a programmable array microscope,” J. Microsc. 197(1), 5–14 (2000).
[CrossRef] [PubMed]

Bar-Am, I.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Barshack, I.

I. Barshack, J. Kopolovic, Z. Malik, and C. Rothmann, “Spectral morphometric characterization of breast carcinoma cells,” Br. J. Cancer 79(9/10), 1613–1619 (1999).
[CrossRef] [PubMed]

Becker, D.

D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001).
[CrossRef] [PubMed]

Boudoux, C.

Bouma, B. E.

Bourg-Heckly, G.

Brown, C. M.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

Carroll, R. E.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[CrossRef] [PubMed]

Chen, K.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Chung, A.

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilites,” Cytometry A 69A(3), 142–146 (2006).
[CrossRef]

Chung, L. W. K.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Cui, Y. Y.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Cunningham, G.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Denovo, R. C.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Dishi, M.

Z. Malik, M. Dishi, and Y. Garini, “Fourier transform multipixel spectroscopy and spectral imaging of protoporphyrin in single melanoma cells,” Photochem. Photobiol. 63(5), 608–614 (1996).
[CrossRef] [PubMed]

Dominitz, J. A.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[CrossRef] [PubMed]

du Manoir, S.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Engelbrecht, C. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Farkas, D. L.

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilites,” Cytometry A 69A(3), 142–146 (2006).
[CrossRef]

D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001).
[CrossRef] [PubMed]

R. D. Shonat, E. S. Wachman, W. H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[CrossRef] [PubMed]

Ferguson-Smith, M. A.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Gao, X. H.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Garini, Y.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
[CrossRef]

Z. Malik, M. Dishi, and Y. Garini, “Fourier transform multipixel spectroscopy and spectral imaging of protoporphyrin in single melanoma cells,” Photochem. Photobiol. 63(5), 608–614 (1996).
[CrossRef] [PubMed]

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: A review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

Gmitro, A. F.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[CrossRef] [PubMed]

Haaland, D. M.

Hanley, Q. S.

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, “Three-dimensional spectral imaging by hadamard transform spectroscopy in a programmable array microscope,” J. Microsc. 197(1), 5–14 (2000).
[CrossRef] [PubMed]

Hasan, T.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

Helmchen, F.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Jean, F.

Johnston, R. S.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[CrossRef] [PubMed]

Jovin, T. M.

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, “Three-dimensional spectral imaging by hadamard transform spectroscopy in a programmable array microscope,” J. Microsc. 197(1), 5–14 (2000).
[CrossRef] [PubMed]

Kang, D.

Karasawa, S.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

Karlan, S.

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilites,” Cytometry A 69A(3), 142–146 (2006).
[CrossRef]

Kasili, P.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Kimmey, M. B.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[CrossRef] [PubMed]

Kopolovic, J.

I. Barshack, J. Kopolovic, Z. Malik, and C. Rothmann, “Spectral morphometric characterization of breast carcinoma cells,” Br. J. Cancer 79(9/10), 1613–1619 (1999).
[CrossRef] [PubMed]

Koretsky, A. P.

R. D. Shonat, E. S. Wachman, W. H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[CrossRef] [PubMed]

Ledbetter, D. H.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Lee, C. M.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[CrossRef] [PubMed]

Levenson, R. M.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Lindsley, E.

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilites,” Cytometry A 69A(3), 142–146 (2006).
[CrossRef]

Makhlouf, H.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[CrossRef] [PubMed]

Malik, Z.

I. Barshack, J. Kopolovic, Z. Malik, and C. Rothmann, “Spectral morphometric characterization of breast carcinoma cells,” Br. J. Cancer 79(9/10), 1613–1619 (1999).
[CrossRef] [PubMed]

Z. Malik, M. Dishi, and Y. Garini, “Fourier transform multipixel spectroscopy and spectral imaging of protoporphyrin in single melanoma cells,” Photochem. Photobiol. 63(5), 608–614 (1996).
[CrossRef] [PubMed]

Martin, M. E.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

McNamara, G.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
[CrossRef]

Melville, C. D.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[CrossRef] [PubMed]

Merman, M.

Minai, L.

Montigny, E. D.

Morneau, D.

Motz, J. T.

Nie, S. M.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Ning, Y.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Niu, W. H.

R. D. Shonat, E. S. Wachman, W. H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[CrossRef] [PubMed]

Overholt, B.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Panjehpour, M.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Pepperkok, R.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

Phan, M.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Reinhall, P. G.

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

Ried, T.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Rietdorf, J.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

Rizvi, I.

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

Rothmann, C.

I. Barshack, J. Kopolovic, Z. Malik, and C. Rothmann, “Spectral morphometric characterization of breast carcinoma cells,” Br. J. Cancer 79(9/10), 1613–1619 (1999).
[CrossRef] [PubMed]

Rouse, A. R.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[CrossRef] [PubMed]

Schoell, B.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Schröck, E.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Seibel, E. J.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[CrossRef] [PubMed]

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

Seitz, S. M.

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[CrossRef] [PubMed]

Shonat, R. D.

R. D. Shonat, E. S. Wachman, W. H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[CrossRef] [PubMed]

Sinclair, M. B.

Soenksen, D.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Soper, T. D.

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

Strupler, M.

Tanbakuchi, A. A.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[CrossRef] [PubMed]

Tearney, G. J.

Timlin, J. A.

Udovich, J. A.

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[CrossRef] [PubMed]

Vakoc, B. J.

Veldman, T.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Verveer, P. J.

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, “Three-dimensional spectral imaging by hadamard transform spectroscopy in a programmable array microscope,” J. Microsc. 197(1), 5–14 (2000).
[CrossRef] [PubMed]

Viellerobe, B.

Vo-Dinh, T.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Wabuyele, M. B.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Wachman, E. S.

R. D. Shonat, E. S. Wachman, W. H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[CrossRef] [PubMed]

Wachsmann-Hogiu, S.

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilites,” Cytometry A 69A(3), 142–146 (2006).
[CrossRef]

Webb, R. H.

Werner-Washburne, M.

White, W. M.

D. Yelin, W. M. White, J. T. Motz, S. H. Yun, B. E. Bouma, and G. J. Tearney, “Spectral-domain spectrally-encoded endoscopy,” Opt. Express 15(5), 2432–2444 (2007).
[CrossRef] [PubMed]

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

Wienberg, J.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Wilson, D.

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Yelin, D.

Young, I. T.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
[CrossRef]

Yun, S. H.

Zimmermann, T.

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

Ann. Biomed. Eng. (1)

M. E. Martin, M. B. Wabuyele, K. Chen, P. Kasili, M. Panjehpour, M. Phan, B. Overholt, G. Cunningham, D. Wilson, R. C. Denovo, and T. Vo-Dinh, “Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection,” Ann. Biomed. Eng. 34(6), 1061–1068 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biophys. J. (1)

R. D. Shonat, E. S. Wachman, W. H. Niu, A. P. Koretsky, and D. L. Farkas, “Near-simultaneous hemoglobin saturation and oxygen tension maps in mouse brain using an AOTF microscope,” Biophys. J. 73(3), 1223–1231 (1997).
[CrossRef] [PubMed]

Br. J. Cancer (1)

I. Barshack, J. Kopolovic, Z. Malik, and C. Rothmann, “Spectral morphometric characterization of breast carcinoma cells,” Br. J. Cancer 79(9/10), 1613–1619 (1999).
[CrossRef] [PubMed]

Cytometry A (2)

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: principles and applications,” Cytometry A 69A(8), 735–747 (2006).
[CrossRef]

A. Chung, S. Karlan, E. Lindsley, S. Wachsmann-Hogiu, and D. L. Farkas, “In vivo cytometry: A spectrum of possibilites,” Cytometry A 69A(3), 142–146 (2006).
[CrossRef]

FEBS Lett. (1)

T. Zimmermann, J. Rietdorf, and R. Pepperkok, “Spectral imaging and its applications in live cell microscopy,” FEBS Lett. 546(1), 87–92 (2003).
[CrossRef] [PubMed]

IEEE Trans. Biomed. Eng. (1)

E. J. Seibel, R. E. Carroll, J. A. Dominitz, R. S. Johnston, C. D. Melville, C. M. Lee, S. M. Seitz, and M. B. Kimmey, “Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus,” IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008).
[CrossRef] [PubMed]

J Biophotonics (1)

C. M. Lee, C. J. Engelbrecht, T. D. Soper, F. Helmchen, and E. J. Seibel, “Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wide-field, full-color imaging,” J Biophotonics 3(5-6), 385–407 (2010).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

H. Makhlouf, A. F. Gmitro, A. A. Tanbakuchi, J. A. Udovich, and A. R. Rouse, “Multispectral confocal microendoscope for in vivo and in situ imaging,” J. Biomed. Opt. 13(4), 044016 (2008).
[CrossRef] [PubMed]

J. Microsc. (1)

Q. S. Hanley, P. J. Verveer, D. J. Arndt-Jovin, and T. M. Jovin, “Three-dimensional spectral imaging by hadamard transform spectroscopy in a programmable array microscope,” J. Microsc. 197(1), 5–14 (2000).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[CrossRef] [PubMed]

Nature (1)

D. Yelin, I. Rizvi, W. M. White, J. T. Motz, T. Hasan, B. E. Bouma, and G. J. Tearney, “Three-dimensional miniature endoscopy,” Nature 443(7113), 765–765 (2006).
[CrossRef] [PubMed]

Opt. Eng. (1)

C. M. Brown, P. G. Reinhall, S. Karasawa, and E. J. Seibel, “Optomechanical design and fabrication of resonant microscanners for a scanning fiber endoscope,” Opt. Eng. 45(4), 043001 (2006).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Photochem. Photobiol. (1)

Z. Malik, M. Dishi, and Y. Garini, “Fourier transform multipixel spectroscopy and spectral imaging of protoporphyrin in single melanoma cells,” Photochem. Photobiol. 63(5), 608–614 (1996).
[CrossRef] [PubMed]

Pigment Cell Res. (1)

D. L. Farkas and D. Becker, “Applications of spectral imaging: detection and analysis of human melanoma and its precursors,” Pigment Cell Res. 14(1), 2–8 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

N. Gat, “Imaging spectroscopy using tunable filters: A review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

Science (1)

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic drawing of the spectrally encoded spectral imaging system. L1, L2, L3 – achromatic lenses, CL – cylindrical lens, G - transmission diffraction grating, GS – galvanometric scanner, SMF – single mode fiber.

Fig. 2
Fig. 2

Spectrally encoded color imaging through a single collection channel. (a) Three laterally translated color-coded frames added to produce a color image of a black-on-white printed resolution target. (b) A CIE-xy diagram with three color gamut triangles corresponding to different spatial lines in the resolution target, marked by the dashed, solid, and dotted arrows in (a). The color gamut of the standard sRGB color base is marked by a gray triangle. (c) A color image of the resolution target, assembled from thirty wavelength-encoded frames which were gradually translated in the wavelength (x) axis.

Fig. 3
Fig. 3

Spectrally encoded spectral imaging of a color pattern printed on a white paper. (a) The spectral color-coded raw data structure. (b) A cut through the raw data across the plane marked by a dashed white line in (a). (c) Spectral response of two selected points in the object, where each spectrum contained 24 discrete wavelengths. (d) A reconstructed color image of the sample. (e) A photograph of the sample captured with a digital camera.

Fig. 4
Fig. 4

(a) Color image of a green leaf obtained by projecting the SESI spectral data onto RGB values. (b) A photograph of the leaf in (a) captured by a digital camera. (c) A spectrum of the region encircled in (a) (solid line), compared with a spectral measurement of the same region using a commercial spectrometer (dashed line).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Δ λ max = 1.029 λ cos θ 0 D G ,
SNR SESI = Q e r I max s h ν T N 1 N + M D T N 1 N + M = Q e r I max s T h ν D 1 N ( N + M )  ,
SNR p p = Q e r ( I max s / h ν ) M T N 2 D T N 2 = Q e r I max s T h ν D 1 M N   .
SNR l l = Q e r ( I max s / h ν ) M T N D T N = Q e r I max s T h ν D 1 M N   .
SNR SESI : SNR l l : SNR p p = N 2 : N : 1  ,

Metrics