Abstract

In this work we demonstrate measurements with optical coherence tomography (OCT) of the scattering phase function in the backward direction and the scattering anisotropy parameter g. Measurements of the OCT attenuation coefficient and the backscattering amplitude are performed on calibrated polystyrene microspheres with a time-domain OCT system. From these measurements the phase function in the backward direction is determined. The measurements are described by the single scattering model and match Mie calculations very well. Measurements on Intralipid demonstrate the ability to determine the g of polydisperse samples and, for Intralipid, g = 0.35 ± 0.03 is measured, which is well in agreement with g from literature. These measurements are validated using the Intralipid particle size distribution determined from TEM measurements. Measurements of g and the scattering phase function in the backward direction can be used to monitor changes in backscattering, which can indicate morphological changes of the sample or act as contrast enhancement mechanism.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
    [CrossRef] [PubMed]
  2. F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
    [CrossRef] [PubMed]
  3. F. J. van der Meer, D. J. Faber, J. Perree, G. Pasterkamp, D. B. Sassoon, and T. G. van Leeuwen, "Quantitative optical coherence tomography of arterial wall components," Lasers in Medical Science 20, 45-51 (2005).
    [CrossRef] [PubMed]
  4. V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1(1), 176–185 (2010).
    [CrossRef]
  5. D. Levitz, L. Thrane, M. H. Frosz, P. E. Andersen, C. B. Andersen, S. Andersson-Engels, J. Valanciunaite, J. Swartling, and P. R. Hansen, “Determination of optical scattering properties of highly-scattering media in optical coherence tomography images,” Opt. Express 12(2), 249–259 (2004).
    [CrossRef] [PubMed]
  6. C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
    [CrossRef] [PubMed]
  7. Y. Wang and R. Wang, “Autocorrelation optical coherence tomography for mapping transverse particle-flow velocity,” Opt. Lett. 35(21), 3538–3540 (2010).
    [CrossRef] [PubMed]
  8. J. Kalkman, R. Sprik, and T. G. van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105(19), 198302 (2010).
    [CrossRef]
  9. J. Pyhtila, R. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11(25), 3473–3484 (2003).
    [CrossRef] [PubMed]
  10. A. E. Desjardins, B. J. Vakoc, G. J. Tearney, and B. E. Bouma, “Backscattering spectroscopic contrast with angle-resolved optical coherence tomography,” Opt. Lett. 32(21), 3158–3160 (2007).
    [CrossRef] [PubMed]
  11. J. Kalkman, A. V. Bykov, D. J. Faber, and T. G. van Leeuwen, “Multiple and dependent scattering effects in Doppler optical coherence tomography,” Opt. Express 18(4), 3883–3892 (2010).
    [CrossRef] [PubMed]
  12. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17(3), 484–490 (2000).
    [CrossRef]
  13. J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (11993).
    [CrossRef]
  14. D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009).
    [CrossRef] [PubMed]
  15. J. W. Goodman, Statistical optics (Wiley, New York, 1985).
  16. T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
    [CrossRef]
  17. C. Akcay, P. Parrein, and J. P. Rolland, “Estimation of Longitudinal Resolution in Optical Coherence Imaging,” Appl. Opt. 41(25), 5256–5262 (2002).
    [CrossRef] [PubMed]
  18. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, “Compact, low-cost Ti:Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 28(11), 905–907 (2003).
    [CrossRef] [PubMed]
  19. H. J. van Staveren, C. J. M. Moes, J. van Marie, S. A. Prahl, and M. J. C. van Gemert, “Light scattering in Intralipid-10% in the wavelength range of 400-1100 nm,” Appl. Opt. 30(31), 4507–4514 (1991).
    [CrossRef] [PubMed]
  20. C. Chen, J. Q. Lu, H. F. Ding, K. M. Jacobs, Y. Du, and X. H. Hu, “A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630 nm,” Opt. Express 14(16), 7420–7435 (2006).
    [CrossRef] [PubMed]
  21. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, “Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics,” Appl. Opt. 37(16), 3586–3593 (1998).
    [CrossRef]
  22. N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed.Opt. 16, 030503 (2011).
    [PubMed]
  23. R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
    [CrossRef] [PubMed]
  24. B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005).
    [CrossRef]

2010 (4)

2009 (1)

2008 (2)

R. Michels, F. Foschum, and A. Kienle, “Optical properties of fat emulsions,” Opt. Express 16(8), 5907–5925 (2008).
[CrossRef] [PubMed]

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

2005 (3)

B. Karamata, M. Laubscher, M. Leutenegger, S. Bourquin, T. Lasser, and P. Lambelet, “Multiple scattering in optical coherence tomography. I. Investigation and modeling,” J. Opt. Soc. Am. A 22(7), 1369–1379 (2005).
[CrossRef]

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, J. Perree, G. Pasterkamp, D. B. Sassoon, and T. G. van Leeuwen, "Quantitative optical coherence tomography of arterial wall components," Lasers in Medical Science 20, 45-51 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (3)

2002 (1)

2000 (1)

1998 (1)

1991 (1)

Aalders, M. C.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[CrossRef]

Aalders, M. C. G.

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
[CrossRef] [PubMed]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed.Opt. 16, 030503 (2011).
[PubMed]

Ahnelt, P. K.

Akcay, C.

Andersen, C. B.

Andersen, P. E.

Andersson-Engels, S.

Anger, E. M.

Baraznji Sassoon, D. M.

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[CrossRef] [PubMed]

Bonner, R. F.

Bosschaart, N.

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed.Opt. 16, 030503 (2011).
[PubMed]

Bouma, B. E.

Bourquin, S.

Bykov, A. V.

Carlier, S. G.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[CrossRef] [PubMed]

Chen, C.

Cowey, A.

Desjardins, A. E.

Ding, H. F.

Drexler, W.

Du, Y.

Eick, A. A.

Faber, D. J.

J. Kalkman, A. V. Bykov, D. J. Faber, and T. G. van Leeuwen, “Multiple and dependent scattering effects in Doppler optical coherence tomography,” Opt. Express 18(4), 3883–3892 (2010).
[CrossRef] [PubMed]

V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1(1), 176–185 (2010).
[CrossRef]

D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, J. Perree, G. Pasterkamp, D. B. Sassoon, and T. G. van Leeuwen, "Quantitative optical coherence tomography of arterial wall components," Lasers in Medical Science 20, 45-51 (2005).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[CrossRef] [PubMed]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[CrossRef]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed.Opt. 16, 030503 (2011).
[PubMed]

Foschum, F.

Freyer, J. P.

Frosz, M. H.

Graf, R.

Hansen, P. R.

Hermann, B.

Hielscher, A. H.

Hu, X. H.

Jacobs, K. M.

Johnson, T. M.

Jung, G.

Kalkman, J.

Karamata, B.

Kienle, A.

Knuttel, A.

Kodach, V. M.

Lambelet, P.

Lasser, T.

Laubscher, M.

Le, T.

Leutenegger, M.

Levitz, D.

Lu, J. Q.

Michels, R.

Moes, C. J. M.

Morgan, J. E.

Mourant, J. R.

Parrein, P.

Pasterkamp, G.

F. J. van der Meer, D. J. Faber, J. Perree, G. Pasterkamp, D. B. Sassoon, and T. G. van Leeuwen, "Quantitative optical coherence tomography of arterial wall components," Lasers in Medical Science 20, 45-51 (2005).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[CrossRef] [PubMed]

Perree, J.

F. J. van der Meer, D. J. Faber, J. Perree, G. Pasterkamp, D. B. Sassoon, and T. G. van Leeuwen, "Quantitative optical coherence tomography of arterial wall components," Lasers in Medical Science 20, 45-51 (2005).
[CrossRef] [PubMed]

Povazay, B.

Prahl, S. A.

Pyhtila, J.

Rolland, J. P.

Sassoon, D. B.

F. J. van der Meer, D. J. Faber, J. Perree, G. Pasterkamp, D. B. Sassoon, and T. G. van Leeuwen, "Quantitative optical coherence tomography of arterial wall components," Lasers in Medical Science 20, 45-51 (2005).
[CrossRef] [PubMed]

Sattmann, H.

Schmitt, J. M.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[CrossRef] [PubMed]

J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (11993).
[CrossRef]

Schubert, C.

Shen, D.

Sprik, R.

J. Kalkman, R. Sprik, and T. G. van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105(19), 198302 (2010).
[CrossRef]

Stingl, A.

Stur, M.

Swartling, J.

Tearney, G. J.

Tempea, G.

Thrane, L.

Unterhuber, A.

Vakoc, B. J.

Valanciunaite, J.

van der Meer, F. J.

F. J. van der Meer, D. J. Faber, J. Perree, G. Pasterkamp, D. B. Sassoon, and T. G. van Leeuwen, "Quantitative optical coherence tomography of arterial wall components," Lasers in Medical Science 20, 45-51 (2005).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[CrossRef] [PubMed]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
[CrossRef] [PubMed]

van Gemert, M. J. C.

van Leeuwen, T. G.

J. Kalkman, R. Sprik, and T. G. van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105(19), 198302 (2010).
[CrossRef]

J. Kalkman, A. V. Bykov, D. J. Faber, and T. G. van Leeuwen, “Multiple and dependent scattering effects in Doppler optical coherence tomography,” Opt. Express 18(4), 3883–3892 (2010).
[CrossRef] [PubMed]

V. M. Kodach, J. Kalkman, D. J. Faber, and T. G. van Leeuwen, “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1(1), 176–185 (2010).
[CrossRef]

D. J. Faber and T. G. van Leeuwen, “Are quantitative attenuation measurements of blood by optical coherence tomography feasible?” Opt. Lett. 34(9), 1435–1437 (2009).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, J. Perree, G. Pasterkamp, D. B. Sassoon, and T. G. van Leeuwen, "Quantitative optical coherence tomography of arterial wall components," Lasers in Medical Science 20, 45-51 (2005).
[CrossRef] [PubMed]

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[CrossRef] [PubMed]

D. J. Faber, F. J. van der Meer, M. C. G. Aalders, and T. G. van Leeuwen, “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).
[CrossRef] [PubMed]

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[CrossRef]

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed.Opt. 16, 030503 (2011).
[PubMed]

van Marie, J.

van Staveren, H. J.

Virmani, R.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[CrossRef] [PubMed]

Wang, R.

Wang, Y.

Wax, A.

Xu, C.

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[CrossRef] [PubMed]

Yakovlev, V.

Yura, H. T.

Appl. Opt. (4)

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

T. G. van Leeuwen, D. J. Faber, and M. C. Aalders, “Measurement of the axial point spread function in scattering media using single-mode fiber-based optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 9(2), 227–233 (2003).
[CrossRef]

IEEE Trans. Med. Imaging (1)

F. J. van der Meer, D. J. Faber, D. M. Baraznji Sassoon, M. C. Aalders, G. Pasterkamp, and T. G. van Leeuwen, “Localized measurement of optical attenuation coefficients of atherosclerotic plaque constituents by quantitative optical coherence tomography,” IEEE Trans. Med. Imaging 24(10), 1369–1376 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

C. Xu, J. M. Schmitt, S. G. Carlier, and R. Virmani, “Characterization of atherosclerosis plaques by measuring both backscattering and attenuation coefficients in optical coherence tomography,” J. Biomed. Opt. 13(3), 034003 (2008).
[CrossRef] [PubMed]

J. Biomed.Opt. (1)

N. Bosschaart, D. J. Faber, T. G. van Leeuwen, and M. C. G. Aalders, “Measurements of wavelength dependent scattering and backscattering coefficients by low-coherence spectroscopy,” J. Biomed.Opt. 16, 030503 (2011).
[PubMed]

J. Opt. Soc. Am. A (2)

Lasers in Medical Science (1)

F. J. van der Meer, D. J. Faber, J. Perree, G. Pasterkamp, D. B. Sassoon, and T. G. van Leeuwen, "Quantitative optical coherence tomography of arterial wall components," Lasers in Medical Science 20, 45-51 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

J. Kalkman, R. Sprik, and T. G. van Leeuwen, “Path-length-resolved diffusive particle dynamics in spectral-domain optical coherence tomography,” Phys. Rev. Lett. 105(19), 198302 (2010).
[CrossRef]

Other (1)

J. W. Goodman, Statistical optics (Wiley, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

OCT measurement of backscattered power from a suspension of 400 nm diameter polystyrene microspheres in water. The vertical scale on the left is converted to absolute units of square root of power using the power calibration and is indicated on the right. The attenuation coefficient is determined from the single exponential decay fit (solid red line); the amplitude of the OCT signal from the sample surface is determined by extending the exponential fit to zero depth (dashed red line). Zero depth is indicated (dashed blue line).

Fig. 2
Fig. 2

Results of Mie calculations and experimental measurements of: a) scattering cross-section of polystyrene microspheres (error bars are smaller than symbols); b) scattering phase function pNA of polystyrene microspheres (error bars are standard deviations); the dashed line indicates the measured value of pNA for Intralipid (standard deviation is given in the text); c) Mie calculations of g versus particle diameter at 1300 nm for polystyrene microspheres. Arrows show the average particle diameter and the g of Intralipid. Dotted lines indicate the limits of our method for particle diameter and scattering anisotropy (grey zone – region of applicability).

Fig. 3
Fig. 3

Particle size distribution of Intralipid measured by transmission electron microscopy. In total, 2019 cross-sections were measured. The mean diameter is 214 nm. Inset: TEM image of Intralipid (bar – 500 nm).

Tables (1)

Tables Icon

Table 1 Particle size distribution of Intralipid.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i det ( z ) = η Re { γ ( 2 z c ) } r m i r r o r h ( z ) δ ( z ) P r e f P s a m p l e
i det ( z = 0 ) 2 | m i r r o r = η 2 r m i r r o r 2 P r e f P s a m p l e
i det ( z ) = η Re { γ ( 2 z n m e d c ) } h ( z ) P r e f P s a m p l e μ b , N A exp ( 2 μ s z )
i det ( z = 0 ) 2 | s c a t = η 2 l c n m e d P r e f P s a m p l e μ b , N A Q
μ b , N A = i det ( z = 0 ) 2 | s c a t i det ( z = 0 ) 2 | m i r r o r n m e d r m i r r o r 2 l c Q
p N A π N A π p ( θ ) 2 π sin ( θ ) d θ = μ b , N A μ s = n m e d r m i r r o r 2 l c Q μ s i det ( z = 0 ) 2 | s c a t i det ( z = 0 ) 2 | m i r r o r
p N A = d p N A ( d ) μ s ( d ) d μ s ( d ) = d p N A ( d ) σ s c ( d ) f ( d ) d σ s c ( d ) f ( d )

Metrics