Abstract

We previously proposed a filter that could detect cosmetic foundations with high discrimination accuracy [Opt. Express 19, 6020 (2011)]. This study extends the filter’s functionality to the quantification of the amount of foundation and applies the filter for the assessment of spatial distributions of foundation under realistic facial conditions. Human faces that are applied with quantitatively controlled amounts of cosmetic foundations were measured using the filter. A calibration curve between pixel values of the image and the amount of foundation was created. The optical filter was applied to visualize spatial foundation distributions under realistic facial conditions, which clearly indicated areas on the face where foundation remained even after cleansing. Results confirm that the proposed filter could visualize and nondestructively inspect the foundation distributions.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Nishino, M. Nakamura, M. Matsumoto, O. Tanno, and S. Nakauchi, “Optical filter for highlighting spectral features Part I: design and development of the filter for discrimination of human skin with and without an application of cosmetic foundation,” Opt. Express 19(7), 6020–6030 (2011).
    [CrossRef]
  2. E. Angelopoulou, The reflectance spectrum of human skin, (Technical Report MS-CIS-99–29, GRASP Laboratory, Department of Computer and Information Science, University of Pennsylvania, USA, 1999).
  3. N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” J. Imag. Sci. Tech. 45(5), 444–450 (2001).
  4. I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
    [CrossRef] [PubMed]
  5. G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, “Non-invasive measurements of skin pigmentation in situ,” Pigment Cell Res. 17(6), 619–626 (2004).
    [CrossRef] [PubMed]
  6. M. Moncrieff, S. Cotton, E. Claridge, and P. Hall, “Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions,” Br. J. Dermatol. 146(3), 448–457 (2002).
    [CrossRef] [PubMed]
  7. J. K. Wagner, C. Jovel, H. L. Norton, E. J. Parra, and M. D. Shriver, “Comparing quantitative measures of erythema, pigmentation and skin response using reflectometry,” Pigment Cell Res. 15(5), 379–384 (2002).
    [CrossRef] [PubMed]
  8. G. N. Stamatas, M. Southall, and N. Kollias, “In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared,” J. Invest. Dermatol. 126(8), 1753–1760 (2006).
    [CrossRef] [PubMed]
  9. G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” J. Biomed. Opt. 12(5), 051603 (2007).
    [CrossRef] [PubMed]
  10. M. Doi, R. Ohtsuki, and S. Tominaga, “Spectral estimation of made-up skin color under various conditions,” Proc. SPIE (San Jose, California, USA), pp. 606204 (2006).
  11. S. J. Preece and E. Claridge, “Spectral filter optimization for the recovery of parameters which describe human skin,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 913–922 (2004).
    [CrossRef] [PubMed]
  12. G. Ardeshir, “Image Registration by approximation method,” Image Vis. Comput. 6(4), 255–261 (1988).
    [CrossRef]
  13. P. Kubelka, “New contributions to the optics of intensely light-scattering materials. Part I,” J. Opt. Soc. Am. 38(5), 448–457 (1948).
    [CrossRef] [PubMed]

2011 (1)

2007 (1)

G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” J. Biomed. Opt. 12(5), 051603 (2007).
[CrossRef] [PubMed]

2006 (1)

G. N. Stamatas, M. Southall, and N. Kollias, “In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared,” J. Invest. Dermatol. 126(8), 1753–1760 (2006).
[CrossRef] [PubMed]

2004 (2)

S. J. Preece and E. Claridge, “Spectral filter optimization for the recovery of parameters which describe human skin,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 913–922 (2004).
[CrossRef] [PubMed]

G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, “Non-invasive measurements of skin pigmentation in situ,” Pigment Cell Res. 17(6), 619–626 (2004).
[CrossRef] [PubMed]

2002 (3)

M. Moncrieff, S. Cotton, E. Claridge, and P. Hall, “Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions,” Br. J. Dermatol. 146(3), 448–457 (2002).
[CrossRef] [PubMed]

J. K. Wagner, C. Jovel, H. L. Norton, E. J. Parra, and M. D. Shriver, “Comparing quantitative measures of erythema, pigmentation and skin response using reflectometry,” Pigment Cell Res. 15(5), 379–384 (2002).
[CrossRef] [PubMed]

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[CrossRef] [PubMed]

2001 (1)

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” J. Imag. Sci. Tech. 45(5), 444–450 (2001).

1988 (1)

G. Ardeshir, “Image Registration by approximation method,” Image Vis. Comput. 6(4), 255–261 (1988).
[CrossRef]

1948 (1)

Ardeshir, G.

G. Ardeshir, “Image Registration by approximation method,” Image Vis. Comput. 6(4), 255–261 (1988).
[CrossRef]

Beer, J. Z.

G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, “Non-invasive measurements of skin pigmentation in situ,” Pigment Cell Res. 17(6), 619–626 (2004).
[CrossRef] [PubMed]

Claridge, E.

S. J. Preece and E. Claridge, “Spectral filter optimization for the recovery of parameters which describe human skin,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 913–922 (2004).
[CrossRef] [PubMed]

M. Moncrieff, S. Cotton, E. Claridge, and P. Hall, “Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions,” Br. J. Dermatol. 146(3), 448–457 (2002).
[CrossRef] [PubMed]

Cotton, S.

M. Moncrieff, S. Cotton, E. Claridge, and P. Hall, “Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions,” Br. J. Dermatol. 146(3), 448–457 (2002).
[CrossRef] [PubMed]

Hall, P.

M. Moncrieff, S. Cotton, E. Claridge, and P. Hall, “Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions,” Br. J. Dermatol. 146(3), 448–457 (2002).
[CrossRef] [PubMed]

Haneishi, H.

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” J. Imag. Sci. Tech. 45(5), 444–450 (2001).

Jovel, C.

J. K. Wagner, C. Jovel, H. L. Norton, E. J. Parra, and M. D. Shriver, “Comparing quantitative measures of erythema, pigmentation and skin response using reflectometry,” Pigment Cell Res. 15(5), 379–384 (2002).
[CrossRef] [PubMed]

Kawabuchi, M.

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” J. Imag. Sci. Tech. 45(5), 444–450 (2001).

Kollias, N.

G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” J. Biomed. Opt. 12(5), 051603 (2007).
[CrossRef] [PubMed]

G. N. Stamatas, M. Southall, and N. Kollias, “In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared,” J. Invest. Dermatol. 126(8), 1753–1760 (2006).
[CrossRef] [PubMed]

G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, “Non-invasive measurements of skin pigmentation in situ,” Pigment Cell Res. 17(6), 619–626 (2004).
[CrossRef] [PubMed]

Kubelka, P.

Matcher, S. J.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[CrossRef] [PubMed]

Matsumoto, M.

Meglinski, I. V.

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[CrossRef] [PubMed]

Miyake, Y.

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” J. Imag. Sci. Tech. 45(5), 444–450 (2001).

Moncrieff, M.

M. Moncrieff, S. Cotton, E. Claridge, and P. Hall, “Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions,” Br. J. Dermatol. 146(3), 448–457 (2002).
[CrossRef] [PubMed]

Nakamura, M.

Nakauchi, S.

Nishino, K.

Norton, H. L.

J. K. Wagner, C. Jovel, H. L. Norton, E. J. Parra, and M. D. Shriver, “Comparing quantitative measures of erythema, pigmentation and skin response using reflectometry,” Pigment Cell Res. 15(5), 379–384 (2002).
[CrossRef] [PubMed]

Parra, E. J.

J. K. Wagner, C. Jovel, H. L. Norton, E. J. Parra, and M. D. Shriver, “Comparing quantitative measures of erythema, pigmentation and skin response using reflectometry,” Pigment Cell Res. 15(5), 379–384 (2002).
[CrossRef] [PubMed]

Preece, S. J.

S. J. Preece and E. Claridge, “Spectral filter optimization for the recovery of parameters which describe human skin,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 913–922 (2004).
[CrossRef] [PubMed]

Shriver, M. D.

J. K. Wagner, C. Jovel, H. L. Norton, E. J. Parra, and M. D. Shriver, “Comparing quantitative measures of erythema, pigmentation and skin response using reflectometry,” Pigment Cell Res. 15(5), 379–384 (2002).
[CrossRef] [PubMed]

Southall, M.

G. N. Stamatas, M. Southall, and N. Kollias, “In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared,” J. Invest. Dermatol. 126(8), 1753–1760 (2006).
[CrossRef] [PubMed]

Stamatas, G. N.

G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” J. Biomed. Opt. 12(5), 051603 (2007).
[CrossRef] [PubMed]

G. N. Stamatas, M. Southall, and N. Kollias, “In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared,” J. Invest. Dermatol. 126(8), 1753–1760 (2006).
[CrossRef] [PubMed]

G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, “Non-invasive measurements of skin pigmentation in situ,” Pigment Cell Res. 17(6), 619–626 (2004).
[CrossRef] [PubMed]

Tanno, O.

Tsumura, N.

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” J. Imag. Sci. Tech. 45(5), 444–450 (2001).

Wagner, J. K.

J. K. Wagner, C. Jovel, H. L. Norton, E. J. Parra, and M. D. Shriver, “Comparing quantitative measures of erythema, pigmentation and skin response using reflectometry,” Pigment Cell Res. 15(5), 379–384 (2002).
[CrossRef] [PubMed]

Zmudzka, B. Z.

G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, “Non-invasive measurements of skin pigmentation in situ,” Pigment Cell Res. 17(6), 619–626 (2004).
[CrossRef] [PubMed]

Br. J. Dermatol. (1)

M. Moncrieff, S. Cotton, E. Claridge, and P. Hall, “Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions,” Br. J. Dermatol. 146(3), 448–457 (2002).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

S. J. Preece and E. Claridge, “Spectral filter optimization for the recovery of parameters which describe human skin,” IEEE Trans. Pattern Anal. Mach. Intell. 26(7), 913–922 (2004).
[CrossRef] [PubMed]

Image Vis. Comput. (1)

G. Ardeshir, “Image Registration by approximation method,” Image Vis. Comput. 6(4), 255–261 (1988).
[CrossRef]

J. Biomed. Opt. (1)

G. N. Stamatas and N. Kollias, “In vivo documentation of cutaneous inflammation using spectral imaging,” J. Biomed. Opt. 12(5), 051603 (2007).
[CrossRef] [PubMed]

J. Imag. Sci. Tech. (1)

N. Tsumura, M. Kawabuchi, H. Haneishi, and Y. Miyake, “Mapping pigmentation in human skin by multi-visible-spectral imaging by inverse optical scattering technique,” J. Imag. Sci. Tech. 45(5), 444–450 (2001).

J. Invest. Dermatol. (1)

G. N. Stamatas, M. Southall, and N. Kollias, “In vivo monitoring of cutaneous edema using spectral imaging in the visible and near infrared,” J. Invest. Dermatol. 126(8), 1753–1760 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Opt. Express (1)

Physiol. Meas. (1)

I. V. Meglinski and S. J. Matcher, “Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions,” Physiol. Meas. 23(4), 741–753 (2002).
[CrossRef] [PubMed]

Pigment Cell Res. (2)

G. N. Stamatas, B. Z. Zmudzka, N. Kollias, and J. Z. Beer, “Non-invasive measurements of skin pigmentation in situ,” Pigment Cell Res. 17(6), 619–626 (2004).
[CrossRef] [PubMed]

J. K. Wagner, C. Jovel, H. L. Norton, E. J. Parra, and M. D. Shriver, “Comparing quantitative measures of erythema, pigmentation and skin response using reflectometry,” Pigment Cell Res. 15(5), 379–384 (2002).
[CrossRef] [PubMed]

Other (2)

E. Angelopoulou, The reflectance spectrum of human skin, (Technical Report MS-CIS-99–29, GRASP Laboratory, Department of Computer and Information Science, University of Pennsylvania, USA, 1999).

M. Doi, R. Ohtsuki, and S. Tominaga, “Spectral estimation of made-up skin color under various conditions,” Proc. SPIE (San Jose, California, USA), pp. 606204 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics