Abstract

The sub-wavelength THz emission point on a nonlinear electro-optical crystal, used in broadband THz near-field emission microscopy, is computationally modeled as a radiating aperture of Gaussian intensity profile. This paper comprehensively studies the Gaussian aperture model in the THz near-field regime and validates the findings with dual-axis knife-edge experiments. Based on realistic parameter values, the model allows for THz beam characterisation in the near-field region for potential microscopy applications. An application example is demonstrated by scanning over a cyclic-olefin copolymer sample containing grooves placed sub-wavelengths apart. The nature of THz microscopy in the near-field is highly complex and traditionally based on experiments. The proposed validated numerical model therefore aids in the quantitative understanding of the performance parameters. Whilst in this paper we demonstrate the model on broadband electro-optical THz near-field emission microscopy, the model may apply without a loss of generality to other types of THz near-field focused beam techniques.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004).
    [CrossRef]
  2. M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [CrossRef]
  3. T. Yuan, J. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45, 417–425 (2004).
    [CrossRef]
  4. W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
    [CrossRef]
  5. S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
    [CrossRef]
  6. O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
    [CrossRef]
  7. O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
    [CrossRef]
  8. S. Mair, B. Gompf, and M. Dressel, “Spatial and spectral behavior of the optical near field studied by a terahertz near-field spectrometer,” Appl. Phys. Lett. 84, 1219–1221 (2004).
    [CrossRef]
  9. Y. Kawano, and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
    [CrossRef]
  10. N. van der Valk, and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
    [CrossRef]
  11. K. Wang, A. Barkan, and D. Mittleman, “Sub-wavelength resolution using apertureless terahertz near-field microscopy,” CLEO, CMP5 (2003).
  12. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
    [CrossRef]
  13. T. Yuan, H. Park, J. Xu, H. Han, and X.-C. Zhang, “Field induced THz wave emission with nanometer resolution,” Proc. SPIE 5649, 1–8 (2005).
    [CrossRef]
  14. A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
    [CrossRef] [PubMed]
  15. R. Kersting, F. Buersgens, G. Acuna, and G. Cho, “Terahertz near-field microscopy,” Advances in Solid State Physics (Springer Berlin / Heidelberg, 2008).
    [CrossRef]
  16. H. G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16, 3430–3438 (2008).
    [CrossRef] [PubMed]
  17. M. W¨achter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
    [CrossRef]
  18. K. Wynne, and D. Jaroszynski, “Superluminal terahertz pulses,” Opt. Lett. 24, 25–27 (1999).
    [CrossRef]
  19. Q. Chen, Z. Jiang, G. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Express 25, 1122–1124 (2000).
  20. T. Yuan, S. P. Mickan, J. Xu, D. Abbott, and X.-C. Zhang “Towards an apertureless electro-optic T-ray microscope,” CLEO, 637 – 638 (2002).
  21. T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058–2060 (2003).
    [CrossRef] [PubMed]
  22. A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. Planken, “Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures,” Opt. Express 16, 7407–7417 (2008).
    [CrossRef] [PubMed]
  23. A. Bitzer, “andM.Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92, 231101 (2008).
    [CrossRef]
  24. R. Lecaque, S. Gresillon, and C. Boccara, “THz emission Microscopy with sub-wavelength broadband source,” Opt. Express 16, 4731–4738 (2008).
    [CrossRef] [PubMed]
  25. T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96, 211114 (2010).
    [CrossRef]
  26. H. Lin, C. Fumeaux, B. M. Fischer, and D. Abbott, “Modelling of sub-wavelength THz sources as gaussian apertures,” Opt. Express 18, 17672–17683 (2010).
    [CrossRef] [PubMed]
  27. J. Xu, and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067–1069 (1999).
    [CrossRef]
  28. G. Dakovski, B. Kubera, and J. Shan, “Localized terahertz generation via optical rectification in ZnTe,” J. Opt. Soc. Am. B 22, 1667–1670 (2005).
    [CrossRef]
  29. Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, USA, 2008).
  30. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 1991).
    [CrossRef]
  31. M. I. Bakunov, S. B. Bodrov, and A. V. Maslov, “Temporal Dynamics of Optical-to-Terahertz Conversion in Electro-Optic Crystal,” CLEO, JWA93 (2007).
  32. P. Bonnet, X. Ferrieres, B. L. Michielsen, P. Klotz, and J. L. Roumigui`eres, Finite-volume time domain method, in Time Domain Electromagnetics (S. M. Rao, Ed. San Diego, CA: Academic Press, 1999).
  33. D. Baumann, C. Fumeaux, C. Hafner, and E. P. Li, “A modular implementation of dispersive materials for timedomain simulations with application to gold nanospheres at optical frequencies,” Opt. Express 17, 15186–15200 (2009).
    [CrossRef] [PubMed]
  34. C. Fumeaux, D. Baumann, S. Atakaramians, and E. Li, “Considerations on paraxial Gaussian beam source conditions for time-domain full-wave simulations,” 25th Annual Review of Progress in Applied Computational Electromagnetics, 401 – 406 (2009).
  35. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  36. C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, “A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes,” IEEE Trans. Microw. Theory Tech. 52, 1067–1076 (2004).
    [CrossRef]
  37. C. Fumeaux, K. Sankaran, and R. Vahldieck, “Spherical perfectly matched absorber for finite-volume 3-D domain truncation,” IEEE Trans. Microw. Theory Tech. 55, 2773–2781 (2007).
    [CrossRef]
  38. B. M. Fischer, “Broadband THz Time-Domain Spectroscopy of Biomolecules,” Ph.D. Thesis, University of Freiburg (2005).
  39. H. Lin, B. M. Fischer, and D. Abbott, “Comparative simulation study of ZnTe heating effects in focused THz radiation generation,” 35th International Conference on Infrared, Millimeter, and TerahertzWaves, 63 – 64 (2010).

2010 (2)

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96, 211114 (2010).
[CrossRef]

H. Lin, C. Fumeaux, B. M. Fischer, and D. Abbott, “Modelling of sub-wavelength THz sources as gaussian apertures,” Opt. Express 18, 17672–17683 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (6)

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

H. G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16, 3430–3438 (2008).
[CrossRef] [PubMed]

Y. Kawano, and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

A. J. L. Adam, J. M. Brok, M. A. Seo, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. Nagel, and P. C. Planken, “Advanced terahertz electric near-field measurements at sub-wavelength diameter metallic apertures,” Opt. Express 16, 7407–7417 (2008).
[CrossRef] [PubMed]

A. Bitzer, “andM.Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92, 231101 (2008).
[CrossRef]

R. Lecaque, S. Gresillon, and C. Boccara, “THz emission Microscopy with sub-wavelength broadband source,” Opt. Express 16, 4731–4738 (2008).
[CrossRef] [PubMed]

2007 (3)

C. Fumeaux, K. Sankaran, and R. Vahldieck, “Spherical perfectly matched absorber for finite-volume 3-D domain truncation,” IEEE Trans. Microw. Theory Tech. 55, 2773–2781 (2007).
[CrossRef]

M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

2005 (2)

T. Yuan, H. Park, J. Xu, H. Han, and X.-C. Zhang, “Field induced THz wave emission with nanometer resolution,” Proc. SPIE 5649, 1–8 (2005).
[CrossRef]

G. Dakovski, B. Kubera, and J. Shan, “Localized terahertz generation via optical rectification in ZnTe,” J. Opt. Soc. Am. B 22, 1667–1670 (2005).
[CrossRef]

2004 (4)

C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, “A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes,” IEEE Trans. Microw. Theory Tech. 52, 1067–1076 (2004).
[CrossRef]

T. Yuan, J. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45, 417–425 (2004).
[CrossRef]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004).
[CrossRef]

S. Mair, B. Gompf, and M. Dressel, “Spatial and spectral behavior of the optical near field studied by a terahertz near-field spectrometer,” Appl. Phys. Lett. 84, 1219–1221 (2004).
[CrossRef]

2003 (2)

2002 (1)

N. van der Valk, and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[CrossRef]

2000 (3)

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Q. Chen, Z. Jiang, G. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Express 25, 1122–1124 (2000).

1999 (2)

1998 (1)

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Abbott, D.

H. Lin, C. Fumeaux, B. M. Fischer, and D. Abbott, “Modelling of sub-wavelength THz sources as gaussian apertures,” Opt. Express 18, 17672–17683 (2010).
[CrossRef] [PubMed]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Adam, A. J. L.

Ahn, K. J.

Aizpurua, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Atakaramians, S.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Balakrishnan, J.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Baumann, D.

D. Baumann, C. Fumeaux, C. Hafner, and E. P. Li, “A modular implementation of dispersive materials for timedomain simulations with application to gold nanospheres at optical frequencies,” Opt. Express 17, 15186–15200 (2009).
[CrossRef] [PubMed]

C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, “A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes,” IEEE Trans. Microw. Theory Tech. 52, 1067–1076 (2004).
[CrossRef]

Bitzer, A.

A. Bitzer, “andM.Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92, 231101 (2008).
[CrossRef]

Boccara, C.

Brehm, M.

Brener, I.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Brok, J. M.

Bruce, A.

O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Chen, H. T.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[CrossRef]

Chen, Q.

Q. Chen, Z. Jiang, G. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Express 25, 1122–1124 (2000).

Cho, G. C.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[CrossRef]

Dakovski, G.

Drachenko, O.

Dressel, M.

S. Mair, B. Gompf, and M. Dressel, “Spatial and spectral behavior of the optical near field studied by a terahertz near-field spectrometer,” Appl. Phys. Lett. 84, 1219–1221 (2004).
[CrossRef]

Federici, J.

O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Ferguson, B.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Fischer, B. M.

H. Lin, C. Fumeaux, B. M. Fischer, and D. Abbott, “Modelling of sub-wavelength THz sources as gaussian apertures,” Opt. Express 18, 17672–17683 (2010).
[CrossRef] [PubMed]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Fumeaux, C.

H. Lin, C. Fumeaux, B. M. Fischer, and D. Abbott, “Modelling of sub-wavelength THz sources as gaussian apertures,” Opt. Express 18, 17672–17683 (2010).
[CrossRef] [PubMed]

D. Baumann, C. Fumeaux, C. Hafner, and E. P. Li, “A modular implementation of dispersive materials for timedomain simulations with application to gold nanospheres at optical frequencies,” Opt. Express 17, 15186–15200 (2009).
[CrossRef] [PubMed]

C. Fumeaux, K. Sankaran, and R. Vahldieck, “Spherical perfectly matched absorber for finite-volume 3-D domain truncation,” IEEE Trans. Microw. Theory Tech. 55, 2773–2781 (2007).
[CrossRef]

C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, “A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes,” IEEE Trans. Microw. Theory Tech. 52, 1067–1076 (2004).
[CrossRef]

Gompf, B.

S. Mair, B. Gompf, and M. Dressel, “Spatial and spectral behavior of the optical near field studied by a terahertz near-field spectrometer,” Appl. Phys. Lett. 84, 1219–1221 (2004).
[CrossRef]

Gresillon, S.

Hafner, C.

Han, H.

T. Yuan, H. Park, J. Xu, H. Han, and X.-C. Zhang, “Field induced THz wave emission with nanometer resolution,” Proc. SPIE 5649, 1–8 (2005).
[CrossRef]

Harel, R.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Helm, M.

Hillenbrand, R.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Huber, A. J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Hunsche, S.

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Ishibashi, K.

Y. Kawano, and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

Jaroszynski, D.

Jiang, Z.

Q. Chen, Z. Jiang, G. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Express 25, 1122–1124 (2000).

Jones, I.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Kang, J. H.

Kawano, Y.

Y. Kawano, and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

Kawase, K.

Kawayama, I.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96, 211114 (2010).
[CrossRef]

Keilmann, F.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

H. G. von Ribbeck, M. Brehm, D. W. van der Weide, S. Winnerl, O. Drachenko, M. Helm, and F. Keilmann, “Spectroscopic THz near-field microscope,” Opt. Express 16, 3430–3438 (2008).
[CrossRef] [PubMed]

Kersting, R.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[CrossRef]

Kim, D. S.

Kiwa, T.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96, 211114 (2010).
[CrossRef]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058–2060 (2003).
[CrossRef] [PubMed]

Koch, M.

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Kondo, Y.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96, 211114 (2010).
[CrossRef]

Kubera, B.

Kurz, H.

M. W¨achter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[CrossRef]

Lecaque, R.

Leuchtmann, P.

C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, “A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes,” IEEE Trans. Microw. Theory Tech. 52, 1067–1076 (2004).
[CrossRef]

Li, E. P.

Lin, H.

H. Lin, C. Fumeaux, B. M. Fischer, and D. Abbott, “Modelling of sub-wavelength THz sources as gaussian apertures,” Opt. Express 18, 17672–17683 (2010).
[CrossRef] [PubMed]

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Mair, S.

S. Mair, B. Gompf, and M. Dressel, “Spatial and spectral behavior of the optical near field studied by a terahertz near-field spectrometer,” Appl. Phys. Lett. 84, 1219–1221 (2004).
[CrossRef]

Mickan, S. P.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Minami, Y.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96, 211114 (2010).
[CrossRef]

Mitrofanov, O.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Nagel, M.

Ng, B. W.-H.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Nuss, M.

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Park, H.

T. Yuan, H. Park, J. Xu, H. Han, and X.-C. Zhang, “Field induced THz wave emission with nanometer resolution,” Proc. SPIE 5649, 1–8 (2005).
[CrossRef]

Park, Q. H.

Pfeiffer, L.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Planken, P.

N. van der Valk, and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[CrossRef]

Planken, P. C.

Png, G. M.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Ruel, R.

O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Sankaran, K.

C. Fumeaux, K. Sankaran, and R. Vahldieck, “Spherical perfectly matched absorber for finite-volume 3-D domain truncation,” IEEE Trans. Microw. Theory Tech. 55, 2773–2781 (2007).
[CrossRef]

Seo, M. A.

Shan, J.

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004).
[CrossRef]

Tonouchi, M.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96, 211114 (2010).
[CrossRef]

M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

T. Kiwa, M. Tonouchi, M. Yamashita, and K. Kawase, “Laser terahertz-emission microscope for inspecting electrical faults in integrated circuits,” Opt. Lett. 28, 2058–2060 (2003).
[CrossRef] [PubMed]

Tsukada, K.

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96, 211114 (2010).
[CrossRef]

Ung, B. S. Y.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Vahldieck, R.

C. Fumeaux, K. Sankaran, and R. Vahldieck, “Spherical perfectly matched absorber for finite-volume 3-D domain truncation,” IEEE Trans. Microw. Theory Tech. 55, 2773–2781 (2007).
[CrossRef]

C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, “A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes,” IEEE Trans. Microw. Theory Tech. 52, 1067–1076 (2004).
[CrossRef]

van der Valk, N.

N. van der Valk, and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[CrossRef]

van der Weide, D. W.

von Ribbeck, H. G.

W¨achter, M.

M. W¨achter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[CrossRef]

Wanke, M.

O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

West, K.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

Winnerl, S.

Withayachumnankul, W.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Wittborn, J.

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Wynn, J.

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

Wynne, K.

Xu, G.

Q. Chen, Z. Jiang, G. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Express 25, 1122–1124 (2000).

Xu, J.

T. Yuan, H. Park, J. Xu, H. Han, and X.-C. Zhang, “Field induced THz wave emission with nanometer resolution,” Proc. SPIE 5649, 1–8 (2005).
[CrossRef]

T. Yuan, J. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45, 417–425 (2004).
[CrossRef]

J. Xu, and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067–1069 (1999).
[CrossRef]

Yamashita, M.

Yin, X.

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Yuan, T.

T. Yuan, H. Park, J. Xu, H. Han, and X.-C. Zhang, “Field induced THz wave emission with nanometer resolution,” Proc. SPIE 5649, 1–8 (2005).
[CrossRef]

T. Yuan, J. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45, 417–425 (2004).
[CrossRef]

Zhang, X.-C.

T. Yuan, H. Park, J. Xu, H. Han, and X.-C. Zhang, “Field induced THz wave emission with nanometer resolution,” Proc. SPIE 5649, 1–8 (2005).
[CrossRef]

T. Yuan, J. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45, 417–425 (2004).
[CrossRef]

Q. Chen, Z. Jiang, G. Xu, and X.-C. Zhang, “Near-field terahertz imaging with a dynamic aperture,” Opt. Express 25, 1122–1124 (2000).

J. Xu, and X.-C. Zhang, “Optical rectification in an area with a diameter comparable to or smaller than the center wavelength of terahertz radiation,” Opt. Lett. 27, 1067–1069 (1999).
[CrossRef]

Appl. Phys. Lett. (8)

O. Mitrofanov, I. Brener, R. Harel, J. Wynn, L. Pfeiffer, K. West, and J. Federici, “Terahertz near-field microscopy based on a collection mode detector,” Appl. Phys. Lett. 77, 3496–3498 (2000).
[CrossRef]

O. Mitrofanov, I. Brener, M. Wanke, R. Ruel, J. Wynn, A. Bruce, and J. Federici, “Near-field microscope probe for far infrared time domain measurements,” Appl. Phys. Lett. 77, 591–593 (2000).
[CrossRef]

S. Mair, B. Gompf, and M. Dressel, “Spatial and spectral behavior of the optical near field studied by a terahertz near-field spectrometer,” Appl. Phys. Lett. 84, 1219–1221 (2004).
[CrossRef]

N. van der Valk, and P. Planken, “Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip,” Appl. Phys. Lett. 81, 1558–1560 (2002).
[CrossRef]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011 (2003).
[CrossRef]

M. W¨achter, M. Nagel, and H. Kurz, “Tapered photoconductive terahertz field probe tip with subwavelength spatial resolution,” Appl. Phys. Lett. 95, 041112 (2009).
[CrossRef]

A. Bitzer, “andM.Walther, “Terahertz near-field imaging of metallic subwavelength holes and hole arrays,” Appl. Phys. Lett. 92, 231101 (2008).
[CrossRef]

T. Kiwa, Y. Kondo, Y. Minami, I. Kawayama, M. Tonouchi, and K. Tsukada, “Terahertz chemical microscope for label-free detection of protein complex,” Appl. Phys. Lett. 96, 211114 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (3)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52, 2438–2447 (2004).
[CrossRef]

C. Fumeaux, D. Baumann, P. Leuchtmann, and R. Vahldieck, “A generalized local time-step scheme for efficient FVTD simulations in strongly inhomogeneous meshes,” IEEE Trans. Microw. Theory Tech. 52, 1067–1076 (2004).
[CrossRef]

C. Fumeaux, K. Sankaran, and R. Vahldieck, “Spherical perfectly matched absorber for finite-volume 3-D domain truncation,” IEEE Trans. Microw. Theory Tech. 55, 2773–2781 (2007).
[CrossRef]

Infrared Phys. Technol. (1)

T. Yuan, J. Xu, and X.-C. Zhang, “Development of terahertz wave microscopes,” Infrared Phys. Technol. 45, 417–425 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

A. J. Huber, F. Keilmann, J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008).
[CrossRef] [PubMed]

Nat. Photonics (2)

M. Tonouchi, “Cutting edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[CrossRef]

Y. Kawano, and K. Ishibashi, “An on-chip near-field terahertz probe and detector,” Nat. Photonics 2, 618–621 (2008).
[CrossRef]

Opt. Commun. (1)

S. Hunsche, M. Koch, I. Brener, and M. Nuss, “THz near-field imaging,” Opt. Commun. 150, 22–26 (1998).
[CrossRef]

Opt. Express (6)

Opt. Lett. (3)

Proc. IEEE (1)

W. Withayachumnankul, G. M. Png, X. Yin, S. Atakaramians, I. Jones, H. Lin, B. S. Y. Ung, J. Balakrishnan, B. W.-H. Ng, B. Ferguson, S. P. Mickan, B. M. Fischer, and D. Abbott, “T-ray sensing and imaging,” Proc. IEEE 95, 1528–1558 (2007).
[CrossRef]

Proc. SPIE (1)

T. Yuan, H. Park, J. Xu, H. Han, and X.-C. Zhang, “Field induced THz wave emission with nanometer resolution,” Proc. SPIE 5649, 1–8 (2005).
[CrossRef]

Other (11)

K. Wang, A. Barkan, and D. Mittleman, “Sub-wavelength resolution using apertureless terahertz near-field microscopy,” CLEO, CMP5 (2003).

R. Kersting, F. Buersgens, G. Acuna, and G. Cho, “Terahertz near-field microscopy,” Advances in Solid State Physics (Springer Berlin / Heidelberg, 2008).
[CrossRef]

C. Fumeaux, D. Baumann, S. Atakaramians, and E. Li, “Considerations on paraxial Gaussian beam source conditions for time-domain full-wave simulations,” 25th Annual Review of Progress in Applied Computational Electromagnetics, 401 – 406 (2009).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Y. S. Lee, Principles of Terahertz Science and Technology (Springer, New York, USA, 2008).

B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 1991).
[CrossRef]

M. I. Bakunov, S. B. Bodrov, and A. V. Maslov, “Temporal Dynamics of Optical-to-Terahertz Conversion in Electro-Optic Crystal,” CLEO, JWA93 (2007).

P. Bonnet, X. Ferrieres, B. L. Michielsen, P. Klotz, and J. L. Roumigui`eres, Finite-volume time domain method, in Time Domain Electromagnetics (S. M. Rao, Ed. San Diego, CA: Academic Press, 1999).

T. Yuan, S. P. Mickan, J. Xu, D. Abbott, and X.-C. Zhang “Towards an apertureless electro-optic T-ray microscope,” CLEO, 637 – 638 (2002).

B. M. Fischer, “Broadband THz Time-Domain Spectroscopy of Biomolecules,” Ph.D. Thesis, University of Freiburg (2005).

H. Lin, B. M. Fischer, and D. Abbott, “Comparative simulation study of ZnTe heating effects in focused THz radiation generation,” 35th International Conference on Infrared, Millimeter, and TerahertzWaves, 63 – 64 (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

The pump laser beam is focused into a 1 mm thick ZnTe crystal by means of an optical lens. The emitted THz radiation polarized parallel to the x-axis is sliced along the x-axis and y-axis respectively by translating two sharp razor blades in the near-field region in parallel to the crystal back surface.

Fig. 2
Fig. 2

Schematic of the numerical FVTD model. The center of the crystal surface is opened up in its center to reveal the source plane inside of the EO crystal. The inset shows the surface skin triangulation and illustrates the refinement of the mesh near the blade tip and on the crystal surface.

Fig. 3
Fig. 3

Amplitude distribution at 0.8 THz with a simulated (a) x-axis and (b) y-axis knife-edge.

Fig. 4
Fig. 4

Amplitude distribution at 2.4 THz with a simulated (a) x-axis and (b) y-axis knife-edge.

Fig. 5
Fig. 5

Normalized THz amplitude radiation pattern with the x-axis and y-axis knife edge at the center of the beam for frequencies (a) 0.8 THz and (b) 2.4 THz. The green dashed lines highlight the acceptance angle of 28° from the crystal to the parabolic mirror, within which the THz radiation is measured.

Fig. 6
Fig. 6

(a) The power spectrum of the THz waveforms acquired with a x-axis knife-edge scanned at a distance of 150 μm from the crystal. With each movement of the knife, the THz electric field becomes weaker until when the THz radiation is entirely blocked by the knife. This can be seen at x = 0 mm, where the knife does not obstruct the THz beam, as opposed to x = 2 mm, where the THz radiation is totally blocked. (b) Selected frequency components are shown at different knife positions.

Fig. 7
Fig. 7

(a) The power spectrum of the THz waveforms acquired with a y-axis knife-edge scanned at a distance of 150 μm from the crystal. With each movement of the knife, the THz field becomes weaker until when the THz radiation is entirely blocked by the knife. This can be seen at y = 3 mm, where the knife does not obstruct the THz beam, as opposed to y = 5 mm, where the THz radiation is totally blocked. (b) Selected frequency components are shown at different knife positions.

Fig. 8
Fig. 8

(a) x-axis and (b) y-axis experimental and simulated knife-edge profile of THz radiation beam at 150 μm from the crystal backside at 0.35 THz.

Fig. 9
Fig. 9

(a) x-axis and (b) y-axis experimental and simulated knife-edge profile of THz radiation beam at 150 μm from the crystal backside at 0.615 THz.

Fig. 10
Fig. 10

(a) x-axis and (b) y-axis experimental and simulated knife-edge profile of THz radiation beam at 150 μm from the crystal backside at 1.04 THz.

Fig. 11
Fig. 11

(a) x-axis and (b) y-axis experimental and simulated knife-edge profile of THz radiation beam at 150 μm from the crystal backside at 1.46 THz.

Fig. 12
Fig. 12

(a) x-axis and (b) y-axis experimental and simulated knife-edge profile of THz radiation beam at 150 μm from the crystal backside at 2.1 THz.

Fig. 13
Fig. 13

(a) x-axis and (b) y-axis experimental and simulated knife-edge profile of THz radiation beam at 150 μm from the crystal backside at 2.5 THz.

Fig. 14
Fig. 14

Contour plot along the x and y-axis of the THz beam profile at 50 μm away from crystal surface at (a) 2 THz (b) 1.26 THz and (c) 1 THz. The normalized z-component of the Poynting vector is represented.

Fig. 15
Fig. 15

(a) (Left) Simulated sample structure comprising of grooves separated by decreasing sub-wavelength distances. (Right) The TOPAS sample comprising of vertical grooves (in white) separated by sub-wavelength distances of 300 μm, 200 μm, 150 μm and 100 μm. (b) (Left) Response from convolving THz beam waist at 2 THz with the simulated sample. (Right) Experimental grayscale image of the magnitude at 2 THz, resolves all distances. (c) (Left) Response from convolving THz beam waist at 1.26 THz with the simulated sample. (Right) Experimental grayscale image of the magnitude at 1.26 THz, resolves all distances. (d) (Left) Response from convolving THz beam waist at 1 THz with the simulated sample. (Right) Experimental grayscale image of the magnitude at 1 THz, resolves only the 300 μm distance.

Metrics