Abstract

We study a high efficiency plasmonic near-field probe that integrates a spiral plasmonic lens and a sharp conical tip under circular polarized illumination. To achieve high field enhancement, two layers of spiral plasmonic lens and a composite tip design are adopted. The plasmonic probe exhibits optical spin dependence due to the use of spiral plasmonic lens. Under 633 nm wavelength excitation, an electric field enhancement factor of 366 and circular polarization extinction ratio of 81 can be achieved. Such a spin dependence enables the hot spot at the tip apex to be switched on and off by modulating the polarization handedness. The probe can be made in an array format that is suitable for large area parallel near-field optics applications such as lithography and microscopy.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE 5377, 1–20 (2004).
  2. J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998).
    [CrossRef]
  3. L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
    [CrossRef]
  4. J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, “Four beams evanescent waves interference lithography for patterning of two dimensional features,” Opt. Express 15(6), 3437–3451 (2007).
    [CrossRef] [PubMed]
  5. V. M. Murukeshan, J. K. Chua, S. K. Tan, and Q. Y. Lin, “Nano-scale three dimensional surface relief features using single exposure counterpropagating multiple evanescent waves interference phenomenon,” Opt. Express 16(18), 13857–13870 (2008).
    [CrossRef] [PubMed]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  7. X. Guo, J. Du, Y. Guo, and J. Yao, “Large-area surface-plasmon polariton interference lithography,” Opt. Lett. 31(17), 2613–2615 (2006).
    [CrossRef] [PubMed]
  8. M. He, Z. Zhang, S. Shi, J. Du, X. Li, S. Li, and W. Ma, “A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique,” Opt. Express 18(15), 15975–15980 (2010).
    [CrossRef] [PubMed]
  9. X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
    [CrossRef]
  10. L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
    [CrossRef] [PubMed]
  11. R. Guo, E. C. Kinzel, Y. Li, S. M. Uppuluri, A. Raman, and X. Xu, “Three-dimensional mapping of optical near field of a nanoscale bowtie antenna,” Opt. Express 18(5), 4961–4971 (2010).
    [CrossRef] [PubMed]
  12. S. M. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
    [CrossRef] [PubMed]
  13. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
    [CrossRef] [PubMed]
  14. G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
    [CrossRef] [PubMed]
  15. Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
    [CrossRef] [PubMed]
  16. W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
    [CrossRef] [PubMed]
  17. G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 035004–035009 (2010).
    [CrossRef]
  18. A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
    [CrossRef] [PubMed]
  19. P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
    [CrossRef] [PubMed]
  20. S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
    [CrossRef] [PubMed]
  21. Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35(11), 1755–1757 (2010).
    [CrossRef] [PubMed]
  22. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
    [CrossRef] [PubMed]
  23. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010).
    [CrossRef] [PubMed]
  24. X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
    [CrossRef] [PubMed]
  25. E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
    [CrossRef]

2010 (10)

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 035004–035009 (2010).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
[CrossRef] [PubMed]

R. Guo, E. C. Kinzel, Y. Li, S. M. Uppuluri, A. Raman, and X. Xu, “Three-dimensional mapping of optical near field of a nanoscale bowtie antenna,” Opt. Express 18(5), 4961–4971 (2010).
[CrossRef] [PubMed]

S. M. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
[CrossRef] [PubMed]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35(11), 1755–1757 (2010).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

M. He, Z. Zhang, S. Shi, J. Du, X. Li, S. Li, and W. Ma, “A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique,” Opt. Express 18(15), 15975–15980 (2010).
[CrossRef] [PubMed]

2009 (5)

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
[CrossRef] [PubMed]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[CrossRef] [PubMed]

X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (3)

2004 (1)

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

1999 (1)

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

1998 (1)

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998).
[CrossRef]

Abeysinghe, D. C.

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35(11), 1755–1757 (2010).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Agio, M.

X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[CrossRef] [PubMed]

Ahmad, S. A. A.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

Armes, S. P.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Beermann, J.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Berkovitch, N.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Chen, W.

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35(11), 1755–1757 (2010).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 035004–035009 (2010).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[CrossRef] [PubMed]

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
[CrossRef] [PubMed]

Chen, X. W.

X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[CrossRef] [PubMed]

Chua, J. K.

Crozier, K. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Du, J.

Ebbesen, T. W.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Elings, V. B.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Ghislain, L. P.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Ginzburg, P.

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
[CrossRef] [PubMed]

Guo, R.

Guo, X.

Guo, Y.

Haq, E. U.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

He, M.

Hobbs, J. K.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

Ishihara, T.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

Jin, E. X.

Kino, G. S.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Kinzel, E. C.

Leggett, G. J.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

Lerman, G. M.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Levy, U.

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Li, S.

Li, X.

Li, Y.

Lin, Q. Y.

Liu, Z.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

Lu, Y.

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 035004–035009 (2010).
[CrossRef]

Luo, X.

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

Ma, W.

Manalis, S. R.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Micklefield, J.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

Ming, H.

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 035004–035009 (2010).
[CrossRef]

Minne, S. C.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Murukeshan, V. M.

Nelson, R. L.

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35(11), 1755–1757 (2010).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

Nevet, A.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
[CrossRef] [PubMed]

Normatov, A.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Novikov, S. M.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Orenstein, M.

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

Quate, C. F.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Raman, A.

Roberts, C. J.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

Rui, G.

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 035004–035009 (2010).
[CrossRef]

Sandoghdar, V.

X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[CrossRef] [PubMed]

Shi, S.

Silverman, J. P.

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998).
[CrossRef]

Søndergaard, T.

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

Tan, S. K.

Uppuluri, S. M.

Wang, L.

Wang, P.

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 035004–035009 (2010).
[CrossRef]

Weaver, J. M. R.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

Wilder, K.

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

Wong, L. S.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

Wu, Z.

Xu, X.

Yanai, A.

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Yang, S.

Yao, J.

Zhan, Q.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 035004–035009 (2010).
[CrossRef]

Z. Wu, W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Two-photon fluorescence characterization of spiral plasmonic lenses as circular polarization analyzers,” Opt. Lett. 35(11), 1755–1757 (2010).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

S. Yang, W. Chen, R. L. Nelson, and Q. Zhan, “Miniature circular polarization analyzer with spiral plasmonic lens,” Opt. Lett. 34(20), 3047–3049 (2009).
[CrossRef] [PubMed]

W. Chen and Q. Zhan, “Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. 34(6), 722–724 (2009).
[CrossRef] [PubMed]

Q. Zhan, “Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. 31(11), 1726–1728 (2006).
[CrossRef] [PubMed]

Zhang, Y.

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

Zhang, Z.

Appl. Phys. Lett. (2)

L. P. Ghislain, V. B. Elings, K. B. Crozier, S. R. Manalis, S. C. Minne, K. Wilder, G. S. Kino, and C. F. Quate, “Near-field photolithography with a solid immersion lens,” Appl. Phys. Lett. 74(4), 501–503 (1999).
[CrossRef]

X. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004).
[CrossRef]

J. Opt. (1)

G. Rui, W. Chen, Y. Lu, P. Wang, H. Ming, and Q. Zhan, “Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination,” J. Opt. 12(3), 035004–035009 (2010).
[CrossRef]

J. Vac. Sci. Technol. B (1)

J. P. Silverman, “Challenges and progress in x-ray lithography,” J. Vac. Sci. Technol. B 16(6), 3137–3141 (1998).
[CrossRef]

Nano Lett. (7)

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer,” Nano Lett. 10(6), 2075–2079 (2010).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10(8), 3123–3128 (2010).
[CrossRef] [PubMed]

X. W. Chen, V. Sandoghdar, and M. Agio, “Highly efficient interfacing of guided plasmons and photons in nanowires,” Nano Lett. 9(11), 3756–3761 (2009).
[CrossRef] [PubMed]

E. U. Haq, Z. Liu, Y. Zhang, S. A. A. Ahmad, L. S. Wong, S. P. Armes, J. K. Hobbs, G. J. Leggett, J. Micklefield, C. J. Roberts, and J. M. R. Weaver, “Parallel scanning near-field photolithography: the snomipede,” Nano Lett. 10(11), 4375–4380 (2010).
[CrossRef]

P. Ginzburg, A. Nevet, N. Berkovitch, A. Normatov, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Plasmonic resonance effects for tandem receiving-transmitting nanoantennas,” Nano Lett. 11(1), 220–224 (2010).
[CrossRef] [PubMed]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9(12), 4320–4325 (2009).
[CrossRef] [PubMed]

G. M. Lerman, A. Yanai, and U. Levy, “Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light,” Nano Lett. 9(5), 2139–2143 (2009).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (7)

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[CrossRef] [PubMed]

J. K. Chua, V. M. Murukeshan, S. K. Tan, and Q. Y. Lin, “Four beams evanescent waves interference lithography for patterning of two dimensional features,” Opt. Express 15(6), 3437–3451 (2007).
[CrossRef] [PubMed]

V. M. Murukeshan, J. K. Chua, S. K. Tan, and Q. Y. Lin, “Nano-scale three dimensional surface relief features using single exposure counterpropagating multiple evanescent waves interference phenomenon,” Opt. Express 16(18), 13857–13870 (2008).
[CrossRef] [PubMed]

R. Guo, E. C. Kinzel, Y. Li, S. M. Uppuluri, A. Raman, and X. Xu, “Three-dimensional mapping of optical near field of a nanoscale bowtie antenna,” Opt. Express 18(5), 4961–4971 (2010).
[CrossRef] [PubMed]

S. M. Uppuluri, E. C. Kinzel, Y. Li, and X. Xu, “Parallel optical nanolithography using nanoscale bowtie aperture array,” Opt. Express 18(7), 7369–7375 (2010).
[CrossRef] [PubMed]

A. Normatov, P. Ginzburg, N. Berkovitch, G. M. Lerman, A. Yanai, U. Levy, and M. Orenstein, “Efficient coupling and field enhancement for the nano-scale: plasmonic needle,” Opt. Express 18(13), 14079–14086 (2010).
[CrossRef] [PubMed]

M. He, Z. Zhang, S. Shi, J. Du, X. Li, S. Li, and W. Ma, “A practical nanofabrication method: surface plasmon polaritons interference lithography based on backside-exposure technique,” Opt. Express 18(15), 15975–15980 (2010).
[CrossRef] [PubMed]

Opt. Lett. (5)

Other (1)

F. M. Schellenberg, “Resolution enhancement technology: the past, the present, and extensions for the future,” in Optical Microlithography XVII, B. W. Smith, ed., Proc. SPIE 5377, 1–20 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Diagram of plasmonic near-field probe that intergrates spiral plasmonic lens and a conical tip under circularly polarized illumination. Two layers of single Archimedes’s spiral slots with different width and height are etched through gold film as a spiral plasmonic lens. A sharp composite tip is fabricated at the center of the spiral plasmonic lens structure. (b) The top view of the spiral plasmonic lens. (c) Schematic diagram of tip that combines a dielectric base and a metallic tip.

Fig. 2
Fig. 2

(a) Transverse electric field distribution of the TEM01 mode for the fiber with a glass core and radius of 50 nm. Transverse electric field distribution of (b) LHS and (c) RHS structure without the sharp tip illuminated by RHC polarization. The color scaling in (b) and (c) are the same. (d) The linescan of the normalized (a), (b), and (c).

Fig. 3
Fig. 3

Finite element method simulation results of the intensity distributons on the near-field probe with (a) LHS and (b) RHS under the same RHC polarized illmination. The color scaling is chosen to be identical for both plots to illustrate to conrast.

Fig. 4
Fig. 4

(a) Electric field enhancement and (b) extinction ratio versus the half-cone taper angle of the tip for the probe comprises of a dielectric base and a metallic tip.

Fig. 5
Fig. 5

(a) Electric field enhancement factor and (b) extinction ratio versus the half-cone taper angle of the tip for a full metallic probe.

Fig. 6
Fig. 6

(a) Scheme of the two dimensional array of the near-field probe. The spiral plasmonic lenses are either left-handed or right-handed. Top view is shown in the inset. (b) Simulated result of the intensity at 10 nm above the tip apex for RHC polarized illumination.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r = r 0 Λ 2 π φ ,

Metrics