Abstract

We report quantitative measurement of the relative proportion of δ- and β- D-mannitol crystalline phases inserted into polyethylene powder pellets, obtained by time-domain terahertz spectroscopy. Nine absorption bands have been identified from 0.2 THz to 2.2 THz. The best quantification of the δ-phase proportion is made using the 1.01 THz absorption band. Coherent detection allows using the spectral phase shift of the transmitted THz waveform to improve the detection sensitivity of the relative δ-phase proportion. We argue that differential phase shift measurements are less sensitive to samples' defects. Using a linear phase shift compensation for pellets of slightly different thicknesses, we were able to distinguish a 0.5% variation in δ-phase proportion.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, and G. Poochikian, “Pharmaceutical solids: a strategic approach to regulatory considerations,” Pharm. Res. 12(7), 945–954 (1995).
    [CrossRef] [PubMed]
  2. A. I. Kim, M. J. Akers, and S. L. Nail, “The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute,” J. Pharm. Sci. 87(8), 931–935 (1998).
    [CrossRef] [PubMed]
  3. L. Yu, N. Milton, E. G. Groleau, D. S. Mishra, and R. E. Vansickle, “Existence of a mannitol hydrate during freeze-drying and practical implications,” J. Pharm. Sci. 88(2), 196–198 (1999).
    [CrossRef] [PubMed]
  4. S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry - exploring preferred orientation effects,” J. Pharm. Biomed. Anal. 28(6), 1149–1159 (2002).
    [CrossRef] [PubMed]
  5. S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. FT-raman spectroscopy,” J. Pharm. Biomed. Anal. 28(6), 1135–1147 (2002).
    [CrossRef] [PubMed]
  6. T. Yoshinari, R. T. Forbes, P. York, and Y. Kawashima, “Moisture induced polymorphic transition of mannitol and its morphological transformation,” Int. J. Pharm. 247(1-2), 69–77 (2002).
    [CrossRef] [PubMed]
  7. V. K. Sharma and D. S. Kalonia, “Effect of vacuum drying on protein-mannitol interactions: the physical state of mannitol and protein structure in the dried state,” AAPS PharmSci.Tech 5(1), E10 (2004).
    [CrossRef]
  8. M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
    [CrossRef] [PubMed]
  9. F. R. Fronczek, H. N. Kamel, and M. Slattery, “Three polymorphs (α, β, and δ) of D-mannitol at 100 K,” Acta Crystallogr. C 59(Pt 10), 567–570 (2003).
    [CrossRef]
  10. R. Chakkittakandy, J. A.W.M Corver, and P. C.M. Planken, “Terahertz spectroscopy to identify the polymorphs in freeze-dried Mannitol,” J. Pharm. Sci. 99(2), 932–940 (2010).
  11. B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
    [CrossRef] [PubMed]
  12. M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, “Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition,” Appl. Phys. Lett. 86(5), 053903 (2005).
    [CrossRef]
  13. M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
    [CrossRef] [PubMed]
  14. H. Wu, E. J. Heilweil, A. S. Hussain, and M. A. Khan, “Process analytical technology (PAT): quantification approaches in terahertz spectroscopy for pharmaceutical application,” J. Pharm. Sci. 97(2), 970–984 (2008).
    [CrossRef]
  15. B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “‘Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys. Condens. Matter 17(46), 7327–7333 (2005).
    [CrossRef]
  16. L. Walter-Lévy, “Sur les variétés cristallines du D-mannitol,” C. R. Acad. Sc. Paris 267, 1779–1782 (1968).
  17. M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
    [CrossRef]

2010 (3)

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

R. Chakkittakandy, J. A.W.M Corver, and P. C.M. Planken, “Terahertz spectroscopy to identify the polymorphs in freeze-dried Mannitol,” J. Pharm. Sci. 99(2), 932–940 (2010).

2009 (1)

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
[CrossRef]

2008 (1)

H. Wu, E. J. Heilweil, A. S. Hussain, and M. A. Khan, “Process analytical technology (PAT): quantification approaches in terahertz spectroscopy for pharmaceutical application,” J. Pharm. Sci. 97(2), 970–984 (2008).
[CrossRef]

2005 (2)

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “‘Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys. Condens. Matter 17(46), 7327–7333 (2005).
[CrossRef]

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, “Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition,” Appl. Phys. Lett. 86(5), 053903 (2005).
[CrossRef]

2004 (1)

V. K. Sharma and D. S. Kalonia, “Effect of vacuum drying on protein-mannitol interactions: the physical state of mannitol and protein structure in the dried state,” AAPS PharmSci.Tech 5(1), E10 (2004).
[CrossRef]

2003 (1)

F. R. Fronczek, H. N. Kamel, and M. Slattery, “Three polymorphs (α, β, and δ) of D-mannitol at 100 K,” Acta Crystallogr. C 59(Pt 10), 567–570 (2003).
[CrossRef]

2002 (4)

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry - exploring preferred orientation effects,” J. Pharm. Biomed. Anal. 28(6), 1149–1159 (2002).
[CrossRef] [PubMed]

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. FT-raman spectroscopy,” J. Pharm. Biomed. Anal. 28(6), 1135–1147 (2002).
[CrossRef] [PubMed]

T. Yoshinari, R. T. Forbes, P. York, and Y. Kawashima, “Moisture induced polymorphic transition of mannitol and its morphological transformation,” Int. J. Pharm. 247(1-2), 69–77 (2002).
[CrossRef] [PubMed]

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[CrossRef] [PubMed]

1999 (1)

L. Yu, N. Milton, E. G. Groleau, D. S. Mishra, and R. E. Vansickle, “Existence of a mannitol hydrate during freeze-drying and practical implications,” J. Pharm. Sci. 88(2), 196–198 (1999).
[CrossRef] [PubMed]

1998 (1)

A. I. Kim, M. J. Akers, and S. L. Nail, “The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute,” J. Pharm. Sci. 87(8), 931–935 (1998).
[CrossRef] [PubMed]

1995 (1)

S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, and G. Poochikian, “Pharmaceutical solids: a strategic approach to regulatory considerations,” Pharm. Res. 12(7), 945–954 (1995).
[CrossRef] [PubMed]

1968 (1)

L. Walter-Lévy, “Sur les variétés cristallines du D-mannitol,” C. R. Acad. Sc. Paris 267, 1779–1782 (1968).

Aimez, V.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “‘Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys. Condens. Matter 17(46), 7327–7333 (2005).
[CrossRef]

Akers, M. J.

A. I. Kim, M. J. Akers, and S. L. Nail, “The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute,” J. Pharm. Sci. 87(8), 931–935 (1998).
[CrossRef] [PubMed]

Beauvais, J.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “‘Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys. Condens. Matter 17(46), 7327–7333 (2005).
[CrossRef]

Beerens, J.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “‘Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys. Condens. Matter 17(46), 7327–7333 (2005).
[CrossRef]

Booth, S. W.

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry - exploring preferred orientation effects,” J. Pharm. Biomed. Anal. 28(6), 1149–1159 (2002).
[CrossRef] [PubMed]

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. FT-raman spectroscopy,” J. Pharm. Biomed. Anal. 28(6), 1135–1147 (2002).
[CrossRef] [PubMed]

Byrn, S.

S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, and G. Poochikian, “Pharmaceutical solids: a strategic approach to regulatory considerations,” Pharm. Res. 12(7), 945–954 (1995).
[CrossRef] [PubMed]

Campbell Roberts, S. N.

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry - exploring preferred orientation effects,” J. Pharm. Biomed. Anal. 28(6), 1149–1159 (2002).
[CrossRef] [PubMed]

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. FT-raman spectroscopy,” J. Pharm. Biomed. Anal. 28(6), 1135–1147 (2002).
[CrossRef] [PubMed]

Chakkittakandy, R.

R. Chakkittakandy, J. A.W.M Corver, and P. C.M. Planken, “Terahertz spectroscopy to identify the polymorphs in freeze-dried Mannitol,” J. Pharm. Sci. 99(2), 932–940 (2010).

Corver, J. A.W.M

R. Chakkittakandy, J. A.W.M Corver, and P. C.M. Planken, “Terahertz spectroscopy to identify the polymorphs in freeze-dried Mannitol,” J. Pharm. Sci. 99(2), 932–940 (2010).

Fischer, B. M.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[CrossRef] [PubMed]

Forbes, R. T.

T. Yoshinari, R. T. Forbes, P. York, and Y. Kawashima, “Moisture induced polymorphic transition of mannitol and its morphological transformation,” Int. J. Pharm. 247(1-2), 69–77 (2002).
[CrossRef] [PubMed]

Fronczek, F. R.

F. R. Fronczek, H. N. Kamel, and M. Slattery, “Three polymorphs (α, β, and δ) of D-mannitol at 100 K,” Acta Crystallogr. C 59(Pt 10), 567–570 (2003).
[CrossRef]

Ganey, M.

S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, and G. Poochikian, “Pharmaceutical solids: a strategic approach to regulatory considerations,” Pharm. Res. 12(7), 945–954 (1995).
[CrossRef] [PubMed]

Grimsey, I. M.

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry - exploring preferred orientation effects,” J. Pharm. Biomed. Anal. 28(6), 1149–1159 (2002).
[CrossRef] [PubMed]

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. FT-raman spectroscopy,” J. Pharm. Biomed. Anal. 28(6), 1135–1147 (2002).
[CrossRef] [PubMed]

Groleau, E. G.

L. Yu, N. Milton, E. G. Groleau, D. S. Mishra, and R. E. Vansickle, “Existence of a mannitol hydrate during freeze-drying and practical implications,” J. Pharm. Sci. 88(2), 196–198 (1999).
[CrossRef] [PubMed]

Hangyo, M.

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, “Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition,” Appl. Phys. Lett. 86(5), 053903 (2005).
[CrossRef]

Heilweil, E. J.

H. Wu, E. J. Heilweil, A. S. Hussain, and M. A. Khan, “Process analytical technology (PAT): quantification approaches in terahertz spectroscopy for pharmaceutical application,” J. Pharm. Sci. 97(2), 970–984 (2008).
[CrossRef]

Hoiberg, C.

S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, and G. Poochikian, “Pharmaceutical solids: a strategic approach to regulatory considerations,” Pharm. Res. 12(7), 945–954 (1995).
[CrossRef] [PubMed]

Houde, D.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “‘Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys. Condens. Matter 17(46), 7327–7333 (2005).
[CrossRef]

Hussain, A. S.

H. Wu, E. J. Heilweil, A. S. Hussain, and M. A. Khan, “Process analytical technology (PAT): quantification approaches in terahertz spectroscopy for pharmaceutical application,” J. Pharm. Sci. 97(2), 970–984 (2008).
[CrossRef]

Ito, M.

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

Jansen, C.

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
[CrossRef]

Jepsen, P. U.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[CrossRef] [PubMed]

Kalonia, D. S.

V. K. Sharma and D. S. Kalonia, “Effect of vacuum drying on protein-mannitol interactions: the physical state of mannitol and protein structure in the dried state,” AAPS PharmSci.Tech 5(1), E10 (2004).
[CrossRef]

Kamel, H. N.

F. R. Fronczek, H. N. Kamel, and M. Slattery, “Three polymorphs (α, β, and δ) of D-mannitol at 100 K,” Acta Crystallogr. C 59(Pt 10), 567–570 (2003).
[CrossRef]

Kawashima, Y.

T. Yoshinari, R. T. Forbes, P. York, and Y. Kawashima, “Moisture induced polymorphic transition of mannitol and its morphological transformation,” Int. J. Pharm. 247(1-2), 69–77 (2002).
[CrossRef] [PubMed]

Khan, M. A.

H. Wu, E. J. Heilweil, A. S. Hussain, and M. A. Khan, “Process analytical technology (PAT): quantification approaches in terahertz spectroscopy for pharmaceutical application,” J. Pharm. Sci. 97(2), 970–984 (2008).
[CrossRef]

Kim, A. I.

A. I. Kim, M. J. Akers, and S. L. Nail, “The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute,” J. Pharm. Sci. 87(8), 931–935 (1998).
[CrossRef] [PubMed]

Koch, M.

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
[CrossRef]

Milton, N.

L. Yu, N. Milton, E. G. Groleau, D. S. Mishra, and R. E. Vansickle, “Existence of a mannitol hydrate during freeze-drying and practical implications,” J. Pharm. Sci. 88(2), 196–198 (1999).
[CrossRef] [PubMed]

Mishra, D. S.

L. Yu, N. Milton, E. G. Groleau, D. S. Mishra, and R. E. Vansickle, “Existence of a mannitol hydrate during freeze-drying and practical implications,” J. Pharm. Sci. 88(2), 196–198 (1999).
[CrossRef] [PubMed]

Miyamaru, F.

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, “Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition,” Appl. Phys. Lett. 86(5), 053903 (2005).
[CrossRef]

Morris, D.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “‘Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys. Condens. Matter 17(46), 7327–7333 (2005).
[CrossRef]

Nail, S. L.

A. I. Kim, M. J. Akers, and S. L. Nail, “The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute,” J. Pharm. Sci. 87(8), 931–935 (1998).
[CrossRef] [PubMed]

Nishizawa, J.-I.

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

Otsuka, M.

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

Pfeiffer, R.

S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, and G. Poochikian, “Pharmaceutical solids: a strategic approach to regulatory considerations,” Pharm. Res. 12(7), 945–954 (1995).
[CrossRef] [PubMed]

Planken, P. C.M.

R. Chakkittakandy, J. A.W.M Corver, and P. C.M. Planken, “Terahertz spectroscopy to identify the polymorphs in freeze-dried Mannitol,” J. Pharm. Sci. 99(2), 932–940 (2010).

Poochikian, G.

S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, and G. Poochikian, “Pharmaceutical solids: a strategic approach to regulatory considerations,” Pharm. Res. 12(7), 945–954 (1995).
[CrossRef] [PubMed]

Salem, B.

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “‘Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys. Condens. Matter 17(46), 7327–7333 (2005).
[CrossRef]

Scheller, M.

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
[CrossRef]

Sharma, V. K.

V. K. Sharma and D. S. Kalonia, “Effect of vacuum drying on protein-mannitol interactions: the physical state of mannitol and protein structure in the dried state,” AAPS PharmSci.Tech 5(1), E10 (2004).
[CrossRef]

Shibata, J.

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

Slattery, M.

F. R. Fronczek, H. N. Kamel, and M. Slattery, “Three polymorphs (α, β, and δ) of D-mannitol at 100 K,” Acta Crystallogr. C 59(Pt 10), 567–570 (2003).
[CrossRef]

Tani, M.

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, “Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition,” Appl. Phys. Lett. 86(5), 053903 (2005).
[CrossRef]

Vansickle, R. E.

L. Yu, N. Milton, E. G. Groleau, D. S. Mishra, and R. E. Vansickle, “Existence of a mannitol hydrate during freeze-drying and practical implications,” J. Pharm. Sci. 88(2), 196–198 (1999).
[CrossRef] [PubMed]

Walter-Lévy, L.

L. Walter-Lévy, “Sur les variétés cristallines du D-mannitol,” C. R. Acad. Sc. Paris 267, 1779–1782 (1968).

Walther, M.

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[CrossRef] [PubMed]

Williams, A. C.

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry - exploring preferred orientation effects,” J. Pharm. Biomed. Anal. 28(6), 1149–1159 (2002).
[CrossRef] [PubMed]

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. FT-raman spectroscopy,” J. Pharm. Biomed. Anal. 28(6), 1135–1147 (2002).
[CrossRef] [PubMed]

Wu, H.

H. Wu, E. J. Heilweil, A. S. Hussain, and M. A. Khan, “Process analytical technology (PAT): quantification approaches in terahertz spectroscopy for pharmaceutical application,” J. Pharm. Sci. 97(2), 970–984 (2008).
[CrossRef]

Yamaguchi, M.

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, “Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition,” Appl. Phys. Lett. 86(5), 053903 (2005).
[CrossRef]

Yamamoto, K.

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, “Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition,” Appl. Phys. Lett. 86(5), 053903 (2005).
[CrossRef]

York, P.

T. Yoshinari, R. T. Forbes, P. York, and Y. Kawashima, “Moisture induced polymorphic transition of mannitol and its morphological transformation,” Int. J. Pharm. 247(1-2), 69–77 (2002).
[CrossRef] [PubMed]

Yoshinari, T.

T. Yoshinari, R. T. Forbes, P. York, and Y. Kawashima, “Moisture induced polymorphic transition of mannitol and its morphological transformation,” Int. J. Pharm. 247(1-2), 69–77 (2002).
[CrossRef] [PubMed]

Yu, L.

L. Yu, N. Milton, E. G. Groleau, D. S. Mishra, and R. E. Vansickle, “Existence of a mannitol hydrate during freeze-drying and practical implications,” J. Pharm. Sci. 88(2), 196–198 (1999).
[CrossRef] [PubMed]

AAPS PharmSci.Tech (1)

V. K. Sharma and D. S. Kalonia, “Effect of vacuum drying on protein-mannitol interactions: the physical state of mannitol and protein structure in the dried state,” AAPS PharmSci.Tech 5(1), E10 (2004).
[CrossRef]

Acta Crystallogr. C (1)

F. R. Fronczek, H. N. Kamel, and M. Slattery, “Three polymorphs (α, β, and δ) of D-mannitol at 100 K,” Acta Crystallogr. C 59(Pt 10), 567–570 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

M. Yamaguchi, F. Miyamaru, K. Yamamoto, M. Tani, and M. Hangyo, “Terahertz absorption spectra of L-, D-, and DL-alanine and their application to determination of enantiometric composition,” Appl. Phys. Lett. 86(5), 053903 (2005).
[CrossRef]

C. R. Acad. Sc. Paris (1)

L. Walter-Lévy, “Sur les variétés cristallines du D-mannitol,” C. R. Acad. Sc. Paris 267, 1779–1782 (1968).

Int. J. Pharm. (1)

T. Yoshinari, R. T. Forbes, P. York, and Y. Kawashima, “Moisture induced polymorphic transition of mannitol and its morphological transformation,” Int. J. Pharm. 247(1-2), 69–77 (2002).
[CrossRef] [PubMed]

J. Pharm. Biomed. Anal. (2)

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry - exploring preferred orientation effects,” J. Pharm. Biomed. Anal. 28(6), 1149–1159 (2002).
[CrossRef] [PubMed]

S. N. Campbell Roberts, A. C. Williams, I. M. Grimsey, and S. W. Booth, “Quantitative analysis of mannitol polymorphs. FT-raman spectroscopy,” J. Pharm. Biomed. Anal. 28(6), 1135–1147 (2002).
[CrossRef] [PubMed]

J. Pharm. Sci. (6)

A. I. Kim, M. J. Akers, and S. L. Nail, “The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute,” J. Pharm. Sci. 87(8), 931–935 (1998).
[CrossRef] [PubMed]

L. Yu, N. Milton, E. G. Groleau, D. S. Mishra, and R. E. Vansickle, “Existence of a mannitol hydrate during freeze-drying and practical implications,” J. Pharm. Sci. 88(2), 196–198 (1999).
[CrossRef] [PubMed]

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

R. Chakkittakandy, J. A.W.M Corver, and P. C.M. Planken, “Terahertz spectroscopy to identify the polymorphs in freeze-dried Mannitol,” J. Pharm. Sci. 99(2), 932–940 (2010).

M. Otsuka, J.-I. Nishizawa, J. Shibata, and M. Ito, “Quantitative evaluation of mefenamic acid polymorphs by terahertz-chemometrics,” J. Pharm. Sci. 99(9), 4048–4053 (2010).
[CrossRef] [PubMed]

H. Wu, E. J. Heilweil, A. S. Hussain, and M. A. Khan, “Process analytical technology (PAT): quantification approaches in terahertz spectroscopy for pharmaceutical application,” J. Pharm. Sci. 97(2), 970–984 (2008).
[CrossRef]

J. Phys. Condens. Matter (1)

B. Salem, D. Morris, V. Aimez, J. Beerens, J. Beauvais, and D. Houde, “‘Pulsed photoconductive antenna terahertz sources made on ion-implanted GaAs substrates,” J. Phys. Condens. Matter 17(46), 7327–7333 (2005).
[CrossRef]

Opt. Commun. (1)

M. Scheller, C. Jansen, and M. Koch, “Analyzing sub-100-μm samples with transmission terahertz time domain spectroscopy,” Opt. Commun. 282(7), 1304–1306 (2009).
[CrossRef]

Pharm. Res. (1)

S. Byrn, R. Pfeiffer, M. Ganey, C. Hoiberg, and G. Poochikian, “Pharmaceutical solids: a strategic approach to regulatory considerations,” Pharm. Res. 12(7), 945–954 (1995).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

B. M. Fischer, M. Walther, and P. U. Jepsen, “Far-infrared vibrational modes of DNA components studied by terahertz time-domain spectroscopy,” Phys. Med. Biol. 47(21), 3807–3814 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(color online) (a) Transmitted THz electric field amplitude measured between 0.7 and 2.2 THz for different 4.2 mm thick pellets containing a mixture of δ- and β- crystalline phase D-mannitol combined with polyethylene powder. The reference sample is the polyethylene only pellet. The δ-phase proportion varies from 10% (bottom curve) to 100% (top curve), by increment of 10%. The curves are displaced vertically for clarity. (b) Corrected data points between 0.9 to 1.3 THz for the 50% δ-phase – 50% β-phase mixture pellet (full squares) and 100% β-phase (full circles). The best fit (solid line) of the 50% δ-phase data points is obtained using three Voigt functions (dashed lines) centered at the δ1, M1 and δ2 peaks. (c) Integrated amplitude corresponding to the area under the fitted absorption peak plotted as a function of the δ-phase proportion, for the δ1 (full squares) and the δ2 (full circles) bands. The R-square values of the best linear fits (solid lines) passing through the data points are 0.9997 and 0.9908 for the δ1 and δ2 bands, respectively.

Fig. 2
Fig. 2

(color online) (a) Absorbance of the δ-phase D-mannitol pellets plotted between 0.75 and 2.2 THz, for various proportions of δ and β phases. The δ-phase proportion varies from 10% (bottom curve) to 100% (top curve), by increment of 10%. The curves are displaced vertically for clarity. (b) Integrated amplitude corresponding to the area under the absorbance peak plotted as a function of the δ-phase proportion, for the δ1 (full squares), δ2 (full triangles) and δ4 (full circles) bands. The R-square values of the best linear fits (solid lines) passing through the data points are 0.9953, 0.9978 and 0.9901(full squares) for the δ1, δ2 and δ4 bands, respectively.

Fig. 3
Fig. 3

(color online) Differential phase shift values of the THz waveform transmitted through the β-phase (0% δ-100% β) and the 10% δ-phase (10% δ-90% β) D-mannitol pellets plotted as a function of the frequency (full square symbol). The corrected data points (empty circle symbol) are obtained by subtracting a linear curve fit (solid line) to the experimental data points.

Fig. 4
Fig. 4

(color online) (a) Corrected values of the differential phase shift, calculated using data from the 100% β-phase and the x% δ-phase D-mannitol pellets, plotted as a function of the frequency for the different δ-phase proportions from 100% (top curve) to 0.5%. Differential phase shift curves obtained for smaller δ-phase proportions (from 0.5% to 10%) are also plotted in the insert with a magnification factor of 10. Dotted lines indicate the central frequencies of the δ1, δ2 and δ4 absorption bands. (b) Amplitude of the differential phase shift, obtained for the δ1 (full squares), δ2 (full triangles) and δ4 (full circles) bands, plotted as a function of the D-mannitol δ-phase proportion. The inset shows a zoom of this plot for low δ1-phase proportion values.

Tables (1)

Tables Icon

Table 1 Absorption bands of δ and β phase D-mannitol between 0.2 and 2.2 THz.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A b s o r b a n c e = α ( ω ) d 2 = ln ( E ( ω ) E 0 ( ω ) ) .

Metrics