Abstract

We report a theoretical model and experimental results for laser-induced local heating in liquids, and propose a method to detect and quantify the contributions of photochemical and Soret effects in several different situations. The time-dependent thermal and mass diffusion equations in the presence and absence of laser excitation are solved. The two effects can produce similar transients for the laser-on refractive index gradient, but very different laser-off behavior. The Soret effect, also called thermal diffusion, and photochemical reaction contributions in photochemically reacting aqueous Cr(VI)-diphenylcarbazide, Eosin Y, and Eosin Y-doped micellar solutions, are decoupled in this work. The extensive use of lasers in various optical techniques suggests that the results may have significance extending from physical-chemical to biological applications.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Soret, “Concentrations differentes d’une dissolution dont deux parties sont a’ des temperatures differentes,” Arch. Sci. Phys. Nat. 2, 48–61 (1879).
  2. B. J. deGans, R. Kita, S. Wiegand, and J. Luettmer-Strathmann, “Unusual thermal diffusion in polymer solutions,” Phys. Rev. Lett. 91, 245501 (2003).
    [CrossRef]
  3. A. Würger, “Molecular-weight dependent thermal diffusion in dilute polymer solutions,” Phys. Rev. Lett. 102, 078302 (2009).
    [CrossRef] [PubMed]
  4. R. Piazza and A. Guarino, “Soret effect in interacting micellar solutions,” Phys. Rev. Lett. 88, 208302 (2002).
    [CrossRef] [PubMed]
  5. R. Rusconi, L. Isa, and R. Piazza, “Thermal-lensing measurement of particle thermophoresis in aqueous dispersions,” J. Opt. Soc. Am. B 21, 605–616 (2004).
    [CrossRef]
  6. S. N. Rasuli and R. Golestanian, “Soret motion of a charged spherical colloid,” Phys. Rev. Lett. 101, 108301 (2008).
    [CrossRef] [PubMed]
  7. J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, “Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 031408 (2002).
    [CrossRef]
  8. B. Hoffmann, W. Köhler, and M. Krekhova, “On the mechanism of transient bleaching of the optical absorption of ferrofluids and dyed liquids,” J. Chem. Phys. 118, 3237–3242 (2003).
    [CrossRef]
  9. S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics (North Holland, 1962)
  10. F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010).
    [CrossRef]
  11. M. Giglio and A. Vendramini, “Thermal-diffusion measurements near a consolute critical-point,” Phys. Rev. Lett. 34, 561–564 (1975).
    [CrossRef]
  12. C. Debuschewitz and W. K¨ohler, “Molecular origin of thermal diffusion in benzene plus cyclohexane mixtures,” Phys. Rev. Lett. 87, 055901 (2001).
    [CrossRef] [PubMed]
  13. P. A. Artola and B. Rousseau, “Microscopic interpretation of a pure chemical contribution to the Soret effect,” Phys. Rev. Lett. 98, 125901 (2007).
    [CrossRef] [PubMed]
  14. D. Jung and M. Lücke, “Localized waves without the existence of extended waves: oscillatory convection of binary mixtures with strong Soret effect,” Phys. Rev. Lett. 89, 054502 (2002).
    [CrossRef] [PubMed]
  15. K. I. Morozov, “Soret effect in molecular mixtures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 031204 (2009).
    [CrossRef]
  16. A. Parola and R. Piazza, “Particle thermophoresis in liquids,” Eur. Phys. J. E 15, 255–263 (2004).
    [CrossRef] [PubMed]
  17. N. Ghofraniha, C. Conti, G. Ruocco, and F. Zamponi, “Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material,” Phys. Rev. Lett. 102, 038303 (2009).
    [CrossRef] [PubMed]
  18. S. Fayolle, T. Bickel, S. LeBoiteux, and A. Würger, “Thermodiffusion of charged micelles,” Phys. Rev. Lett. 95, 208301 (2005).
    [CrossRef] [PubMed]
  19. S. Duhr, and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96, 168301 (2006).
    [CrossRef] [PubMed]
  20. S. A. Putnam, D. G. Cahil, and G. C. L. Wong, “Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles,” Langmuir 23, 9221–9228 (2007).
    [CrossRef] [PubMed]
  21. R. Piazza, “Thermophoresis: moving particles with thermal gradients,” Soft Matter 4, 1740–1744 (2008).
    [CrossRef]
  22. D. Vigolo, S. Buzzaccaro, and R. Piazza, “Thermophoresis and thermoelectricity in surfactant solutions,” Langmuir 26, 7792–7801 (2010).
    [CrossRef] [PubMed]
  23. D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002).
    [CrossRef] [PubMed]
  24. S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97, 038103 (2006).
    [CrossRef] [PubMed]
  25. M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99, 148104 (2007).
    [CrossRef] [PubMed]
  26. N. Arnaud and J. Georges, “Thermal lens spectrometry in aqueous solutions of Brij 35: investigation of micelle effects on the time-resolved and steady-state signals,” Spectrochim. Acta [A] 57, 1085–1092 (2001).
    [CrossRef]
  27. P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
    [CrossRef]
  28. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
    [CrossRef] [PubMed]
  29. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
    [CrossRef]
  30. J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
    [CrossRef]
  31. M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperaturecoefficient of optical-path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
    [CrossRef]
  32. N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
    [CrossRef]
  33. S. Hazebroucq, F. Labat, D. Lincot, and C. Adamo, “Theoretical insights on the electronic properties of eosin Y, an organic dye for photovoltaic applications,” J. Phys. Chem. A 112, 7264–7270 (2008).
    [CrossRef] [PubMed]
  34. N. Arnaud and J. Georges, “On the analytical use of the Soret-enhanced thermal lens signal in aqueous solutions,” Anal. Chim. Acta 445, 239–244 (2001).
    [CrossRef]

2010

F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010).
[CrossRef]

D. Vigolo, S. Buzzaccaro, and R. Piazza, “Thermophoresis and thermoelectricity in surfactant solutions,” Langmuir 26, 7792–7801 (2010).
[CrossRef] [PubMed]

2009

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

K. I. Morozov, “Soret effect in molecular mixtures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 031204 (2009).
[CrossRef]

N. Ghofraniha, C. Conti, G. Ruocco, and F. Zamponi, “Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material,” Phys. Rev. Lett. 102, 038303 (2009).
[CrossRef] [PubMed]

A. Würger, “Molecular-weight dependent thermal diffusion in dilute polymer solutions,” Phys. Rev. Lett. 102, 078302 (2009).
[CrossRef] [PubMed]

2008

S. N. Rasuli and R. Golestanian, “Soret motion of a charged spherical colloid,” Phys. Rev. Lett. 101, 108301 (2008).
[CrossRef] [PubMed]

S. Hazebroucq, F. Labat, D. Lincot, and C. Adamo, “Theoretical insights on the electronic properties of eosin Y, an organic dye for photovoltaic applications,” J. Phys. Chem. A 112, 7264–7270 (2008).
[CrossRef] [PubMed]

R. Piazza, “Thermophoresis: moving particles with thermal gradients,” Soft Matter 4, 1740–1744 (2008).
[CrossRef]

2007

S. A. Putnam, D. G. Cahil, and G. C. L. Wong, “Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles,” Langmuir 23, 9221–9228 (2007).
[CrossRef] [PubMed]

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99, 148104 (2007).
[CrossRef] [PubMed]

P. A. Artola and B. Rousseau, “Microscopic interpretation of a pure chemical contribution to the Soret effect,” Phys. Rev. Lett. 98, 125901 (2007).
[CrossRef] [PubMed]

2006

S. Duhr, and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96, 168301 (2006).
[CrossRef] [PubMed]

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97, 038103 (2006).
[CrossRef] [PubMed]

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

2005

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

S. Fayolle, T. Bickel, S. LeBoiteux, and A. Würger, “Thermodiffusion of charged micelles,” Phys. Rev. Lett. 95, 208301 (2005).
[CrossRef] [PubMed]

2004

2003

B. Hoffmann, W. Köhler, and M. Krekhova, “On the mechanism of transient bleaching of the optical absorption of ferrofluids and dyed liquids,” J. Chem. Phys. 118, 3237–3242 (2003).
[CrossRef]

B. J. deGans, R. Kita, S. Wiegand, and J. Luettmer-Strathmann, “Unusual thermal diffusion in polymer solutions,” Phys. Rev. Lett. 91, 245501 (2003).
[CrossRef]

2002

R. Piazza and A. Guarino, “Soret effect in interacting micellar solutions,” Phys. Rev. Lett. 88, 208302 (2002).
[CrossRef] [PubMed]

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, “Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 031408 (2002).
[CrossRef]

D. Jung and M. Lücke, “Localized waves without the existence of extended waves: oscillatory convection of binary mixtures with strong Soret effect,” Phys. Rev. Lett. 89, 054502 (2002).
[CrossRef] [PubMed]

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002).
[CrossRef] [PubMed]

2001

N. Arnaud and J. Georges, “Thermal lens spectrometry in aqueous solutions of Brij 35: investigation of micelle effects on the time-resolved and steady-state signals,” Spectrochim. Acta [A] 57, 1085–1092 (2001).
[CrossRef]

C. Debuschewitz and W. K¨ohler, “Molecular origin of thermal diffusion in benzene plus cyclohexane mixtures,” Phys. Rev. Lett. 87, 055901 (2001).
[CrossRef] [PubMed]

N. Arnaud and J. Georges, “On the analytical use of the Soret-enhanced thermal lens signal in aqueous solutions,” Anal. Chim. Acta 445, 239–244 (2001).
[CrossRef]

1994

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperaturecoefficient of optical-path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

1992

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

1975

M. Giglio and A. Vendramini, “Thermal-diffusion measurements near a consolute critical-point,” Phys. Rev. Lett. 34, 561–564 (1975).
[CrossRef]

1879

C. Soret, “Concentrations differentes d’une dissolution dont deux parties sont a’ des temperatures differentes,” Arch. Sci. Phys. Nat. 2, 48–61 (1879).

Adamo, C.

S. Hazebroucq, F. Labat, D. Lincot, and C. Adamo, “Theoretical insights on the electronic properties of eosin Y, an organic dye for photovoltaic applications,” J. Phys. Chem. A 112, 7264–7270 (2008).
[CrossRef] [PubMed]

Anjos, V.

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Arnaud, N.

N. Arnaud and J. Georges, “Thermal lens spectrometry in aqueous solutions of Brij 35: investigation of micelle effects on the time-resolved and steady-state signals,” Spectrochim. Acta [A] 57, 1085–1092 (2001).
[CrossRef]

N. Arnaud and J. Georges, “On the analytical use of the Soret-enhanced thermal lens signal in aqueous solutions,” Anal. Chim. Acta 445, 239–244 (2001).
[CrossRef]

Artola, P. A.

P. A. Artola and B. Rousseau, “Microscopic interpretation of a pure chemical contribution to the Soret effect,” Phys. Rev. Lett. 98, 125901 (2007).
[CrossRef] [PubMed]

Astrath, F. B. G.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

Astrath, N. G. C.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Bacri, J. C.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, “Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 031408 (2002).
[CrossRef]

Baesso, M. L.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperaturecoefficient of optical-path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

Bell, M. J. V.

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Bento, A. C.

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Bickel, T.

S. Fayolle, T. Bickel, S. LeBoiteux, and A. Würger, “Thermodiffusion of charged micelles,” Phys. Rev. Lett. 95, 208301 (2005).
[CrossRef] [PubMed]

Bourdon, A.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, “Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 031408 (2002).
[CrossRef]

Braun, D.

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97, 038103 (2006).
[CrossRef] [PubMed]

S. Duhr, and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96, 168301 (2006).
[CrossRef] [PubMed]

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002).
[CrossRef] [PubMed]

Buzzaccaro, S.

D. Vigolo, S. Buzzaccaro, and R. Piazza, “Thermophoresis and thermoelectricity in surfactant solutions,” Langmuir 26, 7792–7801 (2010).
[CrossRef] [PubMed]

Cahil, D. G.

S. A. Putnam, D. G. Cahil, and G. C. L. Wong, “Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles,” Langmuir 23, 9221–9228 (2007).
[CrossRef] [PubMed]

Catunda, T.

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Chakraborty, P.

F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010).
[CrossRef]

Conti, C.

N. Ghofraniha, C. Conti, G. Ruocco, and F. Zamponi, “Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material,” Phys. Rev. Lett. 102, 038303 (2009).
[CrossRef] [PubMed]

Debuschewitz, C.

C. Debuschewitz and W. K¨ohler, “Molecular origin of thermal diffusion in benzene plus cyclohexane mixtures,” Phys. Rev. Lett. 87, 055901 (2001).
[CrossRef] [PubMed]

deGans, B. J.

B. J. deGans, R. Kita, S. Wiegand, and J. Luettmer-Strathmann, “Unusual thermal diffusion in polymer solutions,” Phys. Rev. Lett. 91, 245501 (2003).
[CrossRef]

Demouchy, G.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, “Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 031408 (2002).
[CrossRef]

Duhr, S.

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97, 038103 (2006).
[CrossRef] [PubMed]

S. Duhr, and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96, 168301 (2006).
[CrossRef] [PubMed]

Fairbridge, C.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

Fayolle, S.

S. Fayolle, T. Bickel, S. LeBoiteux, and A. Würger, “Thermodiffusion of charged micelles,” Phys. Rev. Lett. 95, 208301 (2005).
[CrossRef] [PubMed]

Franko, M.

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

Gandra, F. G.

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Georges, J.

N. Arnaud and J. Georges, “Thermal lens spectrometry in aqueous solutions of Brij 35: investigation of micelle effects on the time-resolved and steady-state signals,” Spectrochim. Acta [A] 57, 1085–1092 (2001).
[CrossRef]

N. Arnaud and J. Georges, “On the analytical use of the Soret-enhanced thermal lens signal in aqueous solutions,” Anal. Chim. Acta 445, 239–244 (2001).
[CrossRef]

Ghofraniha, N.

N. Ghofraniha, C. Conti, G. Ruocco, and F. Zamponi, “Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material,” Phys. Rev. Lett. 102, 038303 (2009).
[CrossRef] [PubMed]

Giglio, M.

M. Giglio and A. Vendramini, “Thermal-diffusion measurements near a consolute critical-point,” Phys. Rev. Lett. 34, 561–564 (1975).
[CrossRef]

Glessner, J. J. G.

F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010).
[CrossRef]

Golestanian, R.

S. N. Rasuli and R. Golestanian, “Soret motion of a charged spherical colloid,” Phys. Rev. Lett. 101, 108301 (2008).
[CrossRef] [PubMed]

Guarino, A.

R. Piazza and A. Guarino, “Soret effect in interacting micellar solutions,” Phys. Rev. Lett. 88, 208302 (2002).
[CrossRef] [PubMed]

Hazebroucq, S.

S. Hazebroucq, F. Labat, D. Lincot, and C. Adamo, “Theoretical insights on the electronic properties of eosin Y, an organic dye for photovoltaic applications,” J. Phys. Chem. A 112, 7264–7270 (2008).
[CrossRef] [PubMed]

Hirsch, L. R.

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

Hoffmann, B.

B. Hoffmann, W. Köhler, and M. Krekhova, “On the mechanism of transient bleaching of the optical absorption of ferrofluids and dyed liquids,” J. Chem. Phys. 118, 3237–3242 (2003).
[CrossRef]

Holmden, C.

F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010).
[CrossRef]

Huang, F.

F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010).
[CrossRef]

Ichikawa, H.

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99, 148104 (2007).
[CrossRef] [PubMed]

Ichikawa, M.

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99, 148104 (2007).
[CrossRef] [PubMed]

Isa, L.

Jacinto, C.

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Jung, D.

D. Jung and M. Lücke, “Localized waves without the existence of extended waves: oscillatory convection of binary mixtures with strong Soret effect,” Phys. Rev. Lett. 89, 054502 (2002).
[CrossRef] [PubMed]

K¨ohler, W.

C. Debuschewitz and W. K¨ohler, “Molecular origin of thermal diffusion in benzene plus cyclohexane mixtures,” Phys. Rev. Lett. 87, 055901 (2001).
[CrossRef] [PubMed]

Kieffer, S. W.

F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010).
[CrossRef]

Kimura, Y.

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99, 148104 (2007).
[CrossRef] [PubMed]

Kita, R.

B. J. deGans, R. Kita, S. Wiegand, and J. Luettmer-Strathmann, “Unusual thermal diffusion in polymer solutions,” Phys. Rev. Lett. 91, 245501 (2003).
[CrossRef]

Köhler, W.

B. Hoffmann, W. Köhler, and M. Krekhova, “On the mechanism of transient bleaching of the optical absorption of ferrofluids and dyed liquids,” J. Chem. Phys. 118, 3237–3242 (2003).
[CrossRef]

Krekhova, M.

B. Hoffmann, W. Köhler, and M. Krekhova, “On the mechanism of transient bleaching of the optical absorption of ferrofluids and dyed liquids,” J. Chem. Phys. 118, 3237–3242 (2003).
[CrossRef]

Labat, F.

S. Hazebroucq, F. Labat, D. Lincot, and C. Adamo, “Theoretical insights on the electronic properties of eosin Y, an organic dye for photovoltaic applications,” J. Phys. Chem. A 112, 7264–7270 (2008).
[CrossRef] [PubMed]

LeBoiteux, S.

S. Fayolle, T. Bickel, S. LeBoiteux, and A. Würger, “Thermodiffusion of charged micelles,” Phys. Rev. Lett. 95, 208301 (2005).
[CrossRef] [PubMed]

Lenglet, J.

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, “Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 031408 (2002).
[CrossRef]

Lesher, C. E.

F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010).
[CrossRef]

Libchaber, A.

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002).
[CrossRef] [PubMed]

Lima, S. M.

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Lincot, D.

S. Hazebroucq, F. Labat, D. Lincot, and C. Adamo, “Theoretical insights on the electronic properties of eosin Y, an organic dye for photovoltaic applications,” J. Phys. Chem. A 112, 7264–7270 (2008).
[CrossRef] [PubMed]

Lowe, R. D.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Lücke, M.

D. Jung and M. Lücke, “Localized waves without the existence of extended waves: oscillatory convection of binary mixtures with strong Soret effect,” Phys. Rev. Lett. 89, 054502 (2002).
[CrossRef] [PubMed]

Luettmer-Strathmann, J.

B. J. deGans, R. Kita, S. Wiegand, and J. Luettmer-Strathmann, “Unusual thermal diffusion in polymer solutions,” Phys. Rev. Lett. 91, 245501 (2003).
[CrossRef]

Lundstrom, C. C.

F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010).
[CrossRef]

Malacarne, L. C.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

Medina, A. N.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Michaelian, K. H.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

Morozov, K. I.

K. I. Morozov, “Soret effect in molecular mixtures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 031204 (2009).
[CrossRef]

Parola, A.

A. Parola and R. Piazza, “Particle thermophoresis in liquids,” Eur. Phys. J. E 15, 255–263 (2004).
[CrossRef] [PubMed]

Pedreira, P. R. B.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

Pereira, J. R. D.

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

Piazza, R.

D. Vigolo, S. Buzzaccaro, and R. Piazza, “Thermophoresis and thermoelectricity in surfactant solutions,” Langmuir 26, 7792–7801 (2010).
[CrossRef] [PubMed]

R. Piazza, “Thermophoresis: moving particles with thermal gradients,” Soft Matter 4, 1740–1744 (2008).
[CrossRef]

A. Parola and R. Piazza, “Particle thermophoresis in liquids,” Eur. Phys. J. E 15, 255–263 (2004).
[CrossRef] [PubMed]

R. Rusconi, L. Isa, and R. Piazza, “Thermal-lensing measurement of particle thermophoresis in aqueous dispersions,” J. Opt. Soc. Am. B 21, 605–616 (2004).
[CrossRef]

R. Piazza and A. Guarino, “Soret effect in interacting micellar solutions,” Phys. Rev. Lett. 88, 208302 (2002).
[CrossRef] [PubMed]

Putnam, S. A.

S. A. Putnam, D. G. Cahil, and G. C. L. Wong, “Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles,” Langmuir 23, 9221–9228 (2007).
[CrossRef] [PubMed]

Rasuli, S. N.

S. N. Rasuli and R. Golestanian, “Soret motion of a charged spherical colloid,” Phys. Rev. Lett. 101, 108301 (2008).
[CrossRef] [PubMed]

Rohling, J. H.

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Rollemberg, M. C.

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

Rousseau, B.

P. A. Artola and B. Rousseau, “Microscopic interpretation of a pure chemical contribution to the Soret effect,” Phys. Rev. Lett. 98, 125901 (2007).
[CrossRef] [PubMed]

Ruocco, G.

N. Ghofraniha, C. Conti, G. Ruocco, and F. Zamponi, “Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material,” Phys. Rev. Lett. 102, 038303 (2009).
[CrossRef] [PubMed]

Rusconi, R.

Santoro, P. A.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

Shen, J.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperaturecoefficient of optical-path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Snook, R. D.

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperaturecoefficient of optical-path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Soret, C.

C. Soret, “Concentrations differentes d’une dissolution dont deux parties sont a’ des temperatures differentes,” Arch. Sci. Phys. Nat. 2, 48–61 (1879).

Vendramini, A.

M. Giglio and A. Vendramini, “Thermal-diffusion measurements near a consolute critical-point,” Phys. Rev. Lett. 34, 561–564 (1975).
[CrossRef]

Vigolo, D.

D. Vigolo, S. Buzzaccaro, and R. Piazza, “Thermophoresis and thermoelectricity in surfactant solutions,” Langmuir 26, 7792–7801 (2010).
[CrossRef] [PubMed]

Wiegand, S.

B. J. deGans, R. Kita, S. Wiegand, and J. Luettmer-Strathmann, “Unusual thermal diffusion in polymer solutions,” Phys. Rev. Lett. 91, 245501 (2003).
[CrossRef]

Wong, G. C. L.

S. A. Putnam, D. G. Cahil, and G. C. L. Wong, “Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles,” Langmuir 23, 9221–9228 (2007).
[CrossRef] [PubMed]

Würger, A.

A. Würger, “Molecular-weight dependent thermal diffusion in dilute polymer solutions,” Phys. Rev. Lett. 102, 078302 (2009).
[CrossRef] [PubMed]

S. Fayolle, T. Bickel, S. LeBoiteux, and A. Würger, “Thermodiffusion of charged micelles,” Phys. Rev. Lett. 95, 208301 (2005).
[CrossRef] [PubMed]

Yoshikawa, K.

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99, 148104 (2007).
[CrossRef] [PubMed]

Zamponi, F.

N. Ghofraniha, C. Conti, G. Ruocco, and F. Zamponi, “Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material,” Phys. Rev. Lett. 102, 038303 (2009).
[CrossRef] [PubMed]

Zhou, J.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, A. N. Medina, and M. L. Baesso, “Thermal-lens study of photochemical reaction kinetics,” Opt. Lett. 34, 3460–3462 (2009).
[CrossRef] [PubMed]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

Anal. Chim. Acta

N. Arnaud and J. Georges, “On the analytical use of the Soret-enhanced thermal lens signal in aqueous solutions,” Anal. Chim. Acta 445, 239–244 (2001).
[CrossRef]

Appl. Phys. Lett.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, K. H. Michaelian, C. Fairbridge, L. C. Malacarne, P. R. B. Pedreira, P. A. Santoro, and M. L. Baesso, “Arrhenius behavior of hydrocarbon fuel photochemical reaction rates by thermal lens spectroscopy,” Appl. Phys. Lett. 95, 191902 (2009).
[CrossRef]

Arch. Sci. Phys. Nat.

C. Soret, “Concentrations differentes d’une dissolution dont deux parties sont a’ des temperatures differentes,” Arch. Sci. Phys. Nat. 2, 48–61 (1879).

Chem. Phys.

J. Shen, R. D. Lowe, and R. D. Snook, “A model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry,” Chem. Phys. 165, 385–396 (1992).
[CrossRef]

Eur. Phys. J. E

A. Parola and R. Piazza, “Particle thermophoresis in liquids,” Eur. Phys. J. E 15, 255–263 (2004).
[CrossRef] [PubMed]

J. Appl. Phys.

M. L. Baesso, J. Shen, and R. D. Snook, “Mode-mismatched thermal lens determination of temperaturecoefficient of optical-path length in soda lime glass at different wavelengths,” J. Appl. Phys. 75, 3732–3737 (1994).
[CrossRef]

P. R. B. Pedreira, L. R. Hirsch, J. R. D. Pereira, A. N. Medina, A. C. Bento, M. L. Baesso, M. C. Rollemberg, M. Franko, and J. Shen, “Real-time quantitative investigation of photochemical reaction using thermal lens measurements: theory and experiment,” J. Appl. Phys. 100, 044906 (2006).
[CrossRef]

J. Chem. Phys.

B. Hoffmann, W. Köhler, and M. Krekhova, “On the mechanism of transient bleaching of the optical absorption of ferrofluids and dyed liquids,” J. Chem. Phys. 118, 3237–3242 (2003).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

S. Hazebroucq, F. Labat, D. Lincot, and C. Adamo, “Theoretical insights on the electronic properties of eosin Y, an organic dye for photovoltaic applications,” J. Phys. Chem. A 112, 7264–7270 (2008).
[CrossRef] [PubMed]

Langmuir

S. A. Putnam, D. G. Cahil, and G. C. L. Wong, “Temperature dependence of thermodiffusion in aqueous suspensions of charged nanoparticles,” Langmuir 23, 9221–9228 (2007).
[CrossRef] [PubMed]

D. Vigolo, S. Buzzaccaro, and R. Piazza, “Thermophoresis and thermoelectricity in surfactant solutions,” Langmuir 26, 7792–7801 (2010).
[CrossRef] [PubMed]

Nature

F. Huang, P. Chakraborty, C. C. Lundstrom, C. Holmden, J. J. G. Glessner, S. W. Kieffer, and C. E. Lesher, “Isotope fractionation in silicate melts by thermal diffusion,” Nature 464, 396–400 (2010).
[CrossRef]

Opt. Lett.

Phys. Rev. B

N. G. C. Astrath, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, C. Jacinto, T. Catunda, S. M. Lima, F. G. Gandra, M. J. V. Bell, and V. Anjos, “Time-resolved thermal lens measurements of the thermo-optical properties of glasses at low temperature down to 20K,” Phys. Rev. B 71, 214202 (2005).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

K. I. Morozov, “Soret effect in molecular mixtures,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79, 031204 (2009).
[CrossRef]

J. Lenglet, A. Bourdon, J. C. Bacri, and G. Demouchy, “Thermodiffusion in magnetic colloids evidenced and studied by forced Rayleigh scattering experiments,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65, 031408 (2002).
[CrossRef]

Phys. Rev. Lett.

S. N. Rasuli and R. Golestanian, “Soret motion of a charged spherical colloid,” Phys. Rev. Lett. 101, 108301 (2008).
[CrossRef] [PubMed]

M. Giglio and A. Vendramini, “Thermal-diffusion measurements near a consolute critical-point,” Phys. Rev. Lett. 34, 561–564 (1975).
[CrossRef]

C. Debuschewitz and W. K¨ohler, “Molecular origin of thermal diffusion in benzene plus cyclohexane mixtures,” Phys. Rev. Lett. 87, 055901 (2001).
[CrossRef] [PubMed]

P. A. Artola and B. Rousseau, “Microscopic interpretation of a pure chemical contribution to the Soret effect,” Phys. Rev. Lett. 98, 125901 (2007).
[CrossRef] [PubMed]

D. Jung and M. Lücke, “Localized waves without the existence of extended waves: oscillatory convection of binary mixtures with strong Soret effect,” Phys. Rev. Lett. 89, 054502 (2002).
[CrossRef] [PubMed]

D. Braun and A. Libchaber, “Trapping of DNA by thermophoretic depletion and convection,” Phys. Rev. Lett. 89, 188103 (2002).
[CrossRef] [PubMed]

S. Duhr and D. Braun, “Optothermal molecule trapping by opposing fluid flow with thermophoretic drift,” Phys. Rev. Lett. 97, 038103 (2006).
[CrossRef] [PubMed]

M. Ichikawa, H. Ichikawa, K. Yoshikawa, and Y. Kimura, “Extension of a DNA molecule by local heating with a laser,” Phys. Rev. Lett. 99, 148104 (2007).
[CrossRef] [PubMed]

N. Ghofraniha, C. Conti, G. Ruocco, and F. Zamponi, “Time-dependent nonlinear optical susceptibility of an out-of-equilibrium soft material,” Phys. Rev. Lett. 102, 038303 (2009).
[CrossRef] [PubMed]

S. Fayolle, T. Bickel, S. LeBoiteux, and A. Würger, “Thermodiffusion of charged micelles,” Phys. Rev. Lett. 95, 208301 (2005).
[CrossRef] [PubMed]

S. Duhr, and D. Braun, “Thermophoretic depletion follows Boltzmann distribution,” Phys. Rev. Lett. 96, 168301 (2006).
[CrossRef] [PubMed]

B. J. deGans, R. Kita, S. Wiegand, and J. Luettmer-Strathmann, “Unusual thermal diffusion in polymer solutions,” Phys. Rev. Lett. 91, 245501 (2003).
[CrossRef]

A. Würger, “Molecular-weight dependent thermal diffusion in dilute polymer solutions,” Phys. Rev. Lett. 102, 078302 (2009).
[CrossRef] [PubMed]

R. Piazza and A. Guarino, “Soret effect in interacting micellar solutions,” Phys. Rev. Lett. 88, 208302 (2002).
[CrossRef] [PubMed]

Soft Matter

R. Piazza, “Thermophoresis: moving particles with thermal gradients,” Soft Matter 4, 1740–1744 (2008).
[CrossRef]

Spectrochim. Acta [A]

N. Arnaud and J. Georges, “Thermal lens spectrometry in aqueous solutions of Brij 35: investigation of micelle effects on the time-resolved and steady-state signals,” Spectrochim. Acta [A] 57, 1085–1092 (2001).
[CrossRef]

Other

S. R. De Groot and P. Mazur, Nonequilibrium Thermodynamics (North Holland, 1962)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagrams of the time-resolved TL experimental apparatuses. Mi, Li, and Pi denote mirrors, lenses, and photodiodes, respectively.

Fig. 2
Fig. 2

Normalized experimental TL signals I(t)/I(0) (open circles) for (a) 40ppb Cr(VI), and (b) 6.5wt% Brij 35 in aqueous cobalt nitrate (absorbance 0.04) solutions. Dotted (green) and dashed (red) lines denotes on-transient least-square curve fits using Eq. (14) and Eq. (12) with θm = 0 and KT = 0, respectively. Off-transient curves were generated using the parameters obtained in the fits.

Fig. 3
Fig. 3

Normalized experimental TL signals I(t)/I(0) (open circles) for (a) aqueous 2.33ppm Eosin Y (EY), and (b) 5.6wt% Brij 35 in aqueous 6.66ppm Eosin Y solutions. Solid (blue) line, least-squares curve fit to Eq. (14) using both the PCR and Soret models with Eq. (12); dotted (green) and dashed (red) lines, on-transient fits using Eq. (12) with θm = 0 (only PCR) and KT = 0 (only Soret), respectively. The off-transient curves were generated with the same equations and the parameters obtained from the on-transient curves.

Fig. 4
Fig. 4

Normalized experimental TL signal I(t)/I(0) (open circles) for the 5.6wt% Brij 35 in aqueous 6.66ppm Eosin Y solution. Solid line (blue), least-squares curve fit using both the PCR and Soret models (Eq. (14) using Eq. (12)); dotted (green) and dashed (red) lines, on/off-contributions of the PCR and Soret effects using the same equations with θm = 0 and kT = 0, respectively.

Fig. 5
Fig. 5

Excitation power dependence of (a) θth and (b) θm for the samples.

Tables (1)

Tables Icon

Table 1 Results of Experimental Measurements for Aqueous Solutions

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

T ( r , z , t ) t D 2 T ( r , z , t ) = Q ( r , t ) ,
Q ( r , t ) = Q 0 e 2 r 2 / ω 2 C ( t ) ɛ [ 1 H ( t ξ ) ] ,
T ( r , t ) = Q 0 ɛ [ C e q t 0 t e 2 r 2 / ω 2 1 + 2 τ / t c 1 + 2 τ / t c d τ + ( C 0 C e q ) e K T t t 0 t e K T τ e 2 r 2 / ω 2 1 + 2 τ / t c 1 + 2 τ / t c d τ ] ,
c ( r , t ) t D m 2 c ( r , t ) = S T c ¯ ( 1 c ¯ ) D m 2 T ( r , t )
c ( r , t ) = S T c ¯ ( 1 c ¯ ) D m D Q 0 ɛ [ C e q t 0 t e 2 r 2 / ω 2 1 + 2 τ / t m 1 + 2 τ / t m d τ + ( C 0 C e q ) e K T t t 0 t e K T τ e 2 r 2 / ω 2 1 + 2 τ / t m 1 + 2 τ / t m d τ ] .
ϕ P C R ( r , t ) = 2 π λ p L d n d T [ T ( r , t ) T ( 0 , t ) ] ,
ϕ Soret ( r , t ) = 2 π λ p L d n d c [ c ( r , t ) c ( 0 , t ) ] .
ϕ P C R ( g , t ) = θ t h t c [ c r t 0 t 1 e 2 m g 1 + 2 τ / t c 1 + 2 τ / t c d τ + ( 1 c r ) e K T t 0 t e K T τ ( 1 e 2 m g 1 + 2 τ / t c ) 1 + 2 τ / t c d τ ] .
ϕ Soret ( g , t ) = θ m t m [ c r t 0 t 1 e 2 m g 1 + 2 τ / t m 1 + 2 τ / t m d τ + ( 1 c r ) e K T t 0 t e K T τ ( 1 e 2 mg 1 + 2 τ / t m ) 1 + 2 τ / t m d τ ] .
θ t h = P e C 0 ɛ L k λ p d n d T ,
θ m = S T c ¯ ( 1 c ¯ ) P e C 0 ɛ L k λ p d n d c .
ϕ T L ( g , t ) = ϕ P C R ( g , t ) + ϕ Soret ( g , t ) .
U ( Z 1 + Z 2 , t ) = C 0 e ( 1 + i V ) g i ϕ T L ( g , t ) d g ,
I ( t ) = | U ( Z 1 + Z 2 , t ) | 2 .

Metrics