Abstract

In this paper, we analyze the retinal and choroidal blood vasculature in the posterior segment of the human eye with optimized color Doppler and Doppler variance optical coherence tomography. Depth-resolved structure, color Doppler and Doppler variance images are compared. Blood vessels down to the capillary level were detected and visualized with the optimized optical coherence color Doppler and Doppler variance method. For in-vivo imaging of human eyes, bulk-motion induced bulk phase must be identified and removed before using the color Doppler method. It was found that the Doppler variance method is not sensitive to bulk-motion and the method can be used without correcting the bulk-motion when the sample-movement-induced velocity changes gradually. Real-time processing and displaying of the structure and blood vessel images are very interesting and is demonstrated using a dual quad-core Central Processing Unit (CPU) workstation. High resolution images of choroidal capillary of the vasculature network with phased-resolved color Doppler and Doppler variance are shown.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
    [CrossRef] [PubMed]
  3. Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
    [CrossRef] [PubMed]
  4. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [CrossRef]
  5. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000).
    [CrossRef]
  6. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
    [CrossRef]
  7. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [CrossRef] [PubMed]
  8. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  9. Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
    [CrossRef] [PubMed]
  10. Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express 15(12), 7538–7550 (2007).
    [CrossRef] [PubMed]
  11. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [CrossRef] [PubMed]
  12. R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
    [CrossRef] [PubMed]
  13. R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
    [CrossRef] [PubMed]
  14. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009).
    [CrossRef] [PubMed]
  15. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
    [CrossRef]
  16. J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
    [CrossRef] [PubMed]
  17. L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
    [CrossRef] [PubMed]
  18. D. H. Evans and W. N. McDicken, Doppler Ultrasound: Physics, Instrumental, and Clinical Applications, 2nd ed. (Wiley, 2000).
  19. H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002).
    [CrossRef]
  20. C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32(3), 458–464 (1985).
  21. A. P. G. Hoeks, P. J. Brands, T. G. J. Arts, and R. S. Reneman, “Subsample volume processing of Doppler ultrasound signals,” Ultrasound Med. Biol. 20(9), 953–965 (1994).
    [CrossRef] [PubMed]
  22. V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
    [CrossRef] [PubMed]
  23. V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
    [CrossRef]
  24. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  25. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
    [CrossRef] [PubMed]
  26. B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
    [CrossRef] [PubMed]
  27. G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48(32), 6365–6370 (2009).
    [CrossRef] [PubMed]
  28. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009).
    [CrossRef] [PubMed]

2010

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

2009

2008

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

2007

2006

2003

2002

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002).
[CrossRef]

2000

1997

1994

A. P. G. Hoeks, P. J. Brands, T. G. J. Arts, and R. S. Reneman, “Subsample volume processing of Doppler ultrasound signals,” Ultrasound Med. Biol. 20(9), 953–965 (1994).
[CrossRef] [PubMed]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1985

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32(3), 458–464 (1985).

Akiba, M.

An, L.

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

Arts, T. G. J.

A. P. G. Hoeks, P. J. Brands, T. G. J. Arts, and R. S. Reneman, “Subsample volume processing of Doppler ultrasound signals,” Ultrasound Med. Biol. 20(9), 953–965 (1994).
[CrossRef] [PubMed]

Bajraszewski, T.

Barton, J. K.

Bouma, B.

Brands, P. J.

A. P. G. Hoeks, P. J. Brands, T. G. J. Arts, and R. S. Reneman, “Subsample volume processing of Doppler ultrasound signals,” Ultrasound Med. Biol. 20(9), 953–965 (1994).
[CrossRef] [PubMed]

Brecke, K. M.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

Chen, Z.

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[CrossRef] [PubMed]

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48(32), 6365–6370 (2009).
[CrossRef] [PubMed]

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000).
[CrossRef]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

Chiang, H. K.

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Cobbold, R. S.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Dave, D.

de Boer, J.

de Boer, J. F.

Ding, Z.

Drexler, W.

Fabritius, T.

Fercher, A. F.

Fingler, J.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Francis, P.

Fraser, S. E.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gorczynska, I.

Gordon, M.

Gordon, M. L.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Grulkowski, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hoeks, A. P. G.

A. P. G. Hoeks, P. J. Brands, T. G. J. Arts, and R. S. Reneman, “Subsample volume processing of Doppler ultrasound signals,” Ultrasound Med. Biol. 20(9), 953–965 (1994).
[CrossRef] [PubMed]

Hong, Y.

Hong, Y. J.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Kasai, C.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32(3), 458–464 (1985).

Kennedy, K. M.

Kim, S.

Kowalczyk, A.

Koyano, A.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32(3), 458–464 (1985).

Kulkarni, M. D.

Kuppermann, B. D.

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Kurtz, R. M.

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Liu, G.

Lo, S.

Makita, S.

Malekafzali, A.

Milner, T. E.

Miura, M.

Mok, A.

V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
[CrossRef] [PubMed]

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Myllylä, R.

Namekawa, K.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32(3), 458–464 (1985).

Nassif, N.

Nelson, J. S.

Omoto, R.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32(3), 458–464 (1985).

Park, B.

Pekar, J.

Pierce, M. C.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Qi, B.

Rao, B.

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Ren, H.

Reneman, R. S.

A. P. G. Hoeks, P. J. Brands, T. G. J. Arts, and R. S. Reneman, “Subsample volume processing of Doppler ultrasound signals,” Ultrasound Med. Biol. 20(9), 953–965 (1994).
[CrossRef] [PubMed]

Saunders, S.

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

Saxer, C.

Schmetterer, L.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schwartz, D.

Seng-Yue, E.

Shen, Q.

Srinivas, S.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Subhush, H. M.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tao, Y. K.

Tearney, G.

van Gemert, M. J. C.

Vitkin, I.

Vitkin, I. A.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Wang, R. K.

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

Wang, X. J.

Welch, A. J.

Werner, J. S.

White, B. R.

Wilson, B.

Wilson, B. C.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Wilson, D. J.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

Wojtkowski, M.

Xiang, S.

Xie, T.

Yamanari, M.

Yang, V.

Yang, V. X.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yu, L.

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[CrossRef] [PubMed]

G. Liu, J. Zhang, L. Yu, T. Xie, and Z. Chen, “Real-time polarization-sensitive optical coherence tomography data processing with parallel computing,” Appl. Opt. 48(32), 6365–6370 (2009).
[CrossRef] [PubMed]

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Zacharias, L. C.

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhang, J.

Zhao, Y.

Appl. Opt.

IEEE Trans. Sonics Ultrason.

C. Kasai, K. Namekawa, A. Koyano, and R. Omoto, “Real-time two-dimensional blood flow imaging using an autocorrelation technique,” IEEE Trans. Sonics Ultrason. SU-32(3), 458–464 (1985).

J. Biomed. Opt.

R. K. Wang, L. An, S. Saunders, and D. J. Wilson, “Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment,” J. Biomed. Opt. 15(2), 020502 (2010).
[CrossRef] [PubMed]

L. Yu and Z. Chen, “Doppler variance imaging for three-dimensional retina and choroid angiography,” J. Biomed. Opt. 15(1), 016029 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

B. Rao, L. Yu, H. K. Chiang, L. C. Zacharias, R. M. Kurtz, B. D. Kuppermann, and Z. Chen, “Imaging pulsatile retinal blood flow in human eye,” J. Biomed. Opt. 13(4), 040505 (2008).
[CrossRef] [PubMed]

Opt. Commun.

V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, and I. A. Vitkin, “Improved phase-resolved optical Doppler tomography using Kasai velocity estimator and histogram segmentation,” Opt. Commun. 208(4-6), 209–214 (2002).
[CrossRef]

Opt. Express

J. Fingler, R. J. Zawadzki, J. S. Werner, D. Schwartz, and S. E. Fraser, “Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique,” Opt. Express 17(24), 22190–22200 (2009).
[CrossRef] [PubMed]

I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R. A. Leitgeb, A. Kowalczyk, and M. Wojtkowski, “Scanning protocols dedicated to smart velocity ranging in spectral OCT,” Opt. Express 17(26), 23736–23754 (2009).
[CrossRef]

V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, and I. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

Y. Yasuno, Y. J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, “In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography,” Opt. Express 15(10), 6121–6139 (2007).
[CrossRef] [PubMed]

Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express 15(12), 7538–7550 (2007).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009).
[CrossRef] [PubMed]

T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
[CrossRef]

Z. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
[CrossRef] [PubMed]

Z. Chen, T. E. Milner, S. Srinivas, X. J. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
[CrossRef] [PubMed]

J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
[CrossRef]

Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J. F. de Boer, and J. S. Nelson, “Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow,” Opt. Lett. 25(18), 1358–1360 (2000).
[CrossRef]

H. Ren, K. M. Brecke, Z. Ding, Y. Zhao, J. S. Nelson, and Z. Chen, “Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography,” Opt. Lett. 27(6), 409–411 (2002).
[CrossRef]

R. K. Wang, L. An, P. Francis, and D. J. Wilson, “Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography,” Opt. Lett. 35(9), 1467–1469 (2010).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ultrasound Med. Biol.

A. P. G. Hoeks, P. J. Brands, T. G. J. Arts, and R. S. Reneman, “Subsample volume processing of Doppler ultrasound signals,” Ultrasound Med. Biol. 20(9), 953–965 (1994).
[CrossRef] [PubMed]

Other

D. H. Evans and W. N. McDicken, Doppler Ultrasound: Physics, Instrumental, and Clinical Applications, 2nd ed. (Wiley, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) OCT structure image; (b) Color Doppler OCT image without bulk motion correction; (c). Color Doppler OCT image with bulk motion correction; (e) Doppler variance OCT image without bulk motion correction; (f) Doppler variance OCT image with bulk motion correction. Scale bar: 1mm.

Fig. 2
Fig. 2

Speed-up curve for a workstation with dual quad-core CPUs of Intel Xeon processors X5550.

Fig. 3
Fig. 3

(a)OCT projection, (b) Doppler variance projection and (c) color Doppler projection images of choroidal vessels. Scale bar: 1mm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

f ¯ = f P ( f ) d f P ( f ) d f = d θ ( z ) d t = θ j + 1 , z θ j , z T
f ¯ = arg ( A j , z A j + 1 , z * ) T = 1 T arctan [ Im ( A j + 1 , z ) Re ( A j , z ) Im ( A j , z ) Re ( A j + 1 , z ) Re ( A j , z ) Re ( A j + 1 , z ) + Im ( A j + 1 , z ) Im ( A j , z ) ]
σ 2 = ( f f ¯ ) 2 P ( f ) d f P ( f ) d f = f 2 ¯ f ¯ 2 .
σ 2 = 1 T 2 ( 1 | A j , z A j + 1 , z * | A j , z A j , z * ) .
f ¯ = 1 T arctan { j = 1 J [ Im ( A j + 1 , z ) Re ( A j , z ) Im ( A j , z ) Re ( A j + 1 , z ) ] j = 1 J [ Re ( A j , z ) Re ( A j + 1 , z ) + Im ( A j + 1 , z ) Im ( A j , z ) ] }
σ 2 = 1 T 2 [ 1 | j = 1 J ( A j , z A j + 1 , z * ) | j = 1 J ( A j , z A j , z * ) ]
f ¯ = 1 T arctan { j = 1 J z = 1 N [ Im ( A j + 1 , z ) Re ( A j , z ) Im ( A j , z ) Re ( A j + 1 , z ) ] j = 1 J z = 1 N [ Re ( A j , z ) Re ( A j + 1 , z ) + Im ( A j + 1 , z ) Im ( A j , z ) ] }
σ 2 = 1 T 2 [ 1 | j = 1 J z = 1 N ( A j , z A j + 1 , z * ) | j = 1 J z = 1 N ( A j , z A j , z * ) ]
f ¯ = arg ( A j , z exp ( i ϕ j ) A j + 1 , z * exp ( - i ϕ j +1 ) ) / T = arg ( A j , z A j + 1 , z * ) / T + Δ ϕ j / T
σ 2 = 1 T 2 ( 1 | A j , z exp ( i ϕ j ) A j + 1 , z * exp ( - i ϕ j +1 ) | A j , z A j , z * ) = 1 T 2 ( 1 | A j , z A j + 1 , z * | A j , z A j , z * ) .
σ 2 = 1 T 2 [ 1 | j = 1 J ( A j , z A j + 1 , z * ) exp ( i Δ ϕ j ) | j = 1 J ( | A j , z | 2 ) ]
σ 2 = 1 T 2 [ 1 | j = 1 J ( A j , z A j + 1 , z * ) exp ( i Δ ϕ j - i Δ ϕ 1 ) | j = 1 J ( | A j , z | 2 ) ]

Metrics