Abstract

We report simultaneous dual wavelength dye laser emission using Littman-Metcalf and Littrow cavity configurations with minimum cavity elements. Dual wavelength operation is obtained by laser operation in two optical paths inside the cavity, one of which uses reflection in the circulating dye cell. Styryl 14 laser dye operating in the 910 nm to 960 nm was used in a 15%:85% PC/EG solvent green pumped with a Q-switched doubled Nd3+:YAG laser.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13(1), 142–147 (2005).
    [CrossRef] [PubMed]
  2. L. Guo, R. Lan, H. Liu, H. Yu, H. Zhang, J. Wang, D. Hu, S. Zhuang, L. Chen, Y. Zhao, X. Xu, and Z. Wang, “1319 nm and 1338 nm dual-wavelength operation of LD end-pumped Nd:YAG ceramic laser,” Opt. Express 18(9), 9098–9106 (2010).
    [CrossRef] [PubMed]
  3. B. Yao, Y. Tian, G. Li, and Y. Wang, “InGaAs/GaAs saturable absorber for diode-pumped passively Q-switched dual-wavelength Tm:YAP lasers,” Opt. Express 18(13), 13574–13579 (2010).
    [CrossRef] [PubMed]
  4. H. Yoshioka, S. Nakamura, T. Ogawa, and S. Wada, “Dual-wavelength mode-locked Yb:YAG ceramic laser in single cavity,” Opt. Express 18(2), 1479–1486 (2010).
    [CrossRef] [PubMed]
  5. E R Muller, “Terahertz Radiation: Applications and Sources,” The Industrial Physicist, AIP, August (2003) 27–29.
  6. G Flinn, “Terahertz radiation finds a place in biomedicine,” Biophotonics Interational, May 40–43 (2005).
  7. M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
    [CrossRef]
  8. Diodes Inc, ( www.virginiadiodes.com ).
  9. Y. Lee and T. B. Norris, “Poled Lithium Niobate crystals enables THz pulse generation,” Laser Focus World 4, 67–71 (2005).
  10. M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two color laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005), doi:.
    [CrossRef]
  11. F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965)16 (3), 177 (1966)].
    [CrossRef]
  12. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves,” Opt. Lett. 20(16), 1716–1718 (1995).
    [CrossRef] [PubMed]
  13. P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent CW-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
    [CrossRef]
  14. T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1416 (2000).
    [CrossRef]
  15. Y. Sasaki, H. Yokoyama, and H. Ito, “Tunable THz-wave generation using dual-wavelength optical-pulse source based on diode lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMI6.
  16. M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” J. Opt. Soc. Am. B 21(10), 1758–1771 (2004).
    [CrossRef]
  17. Y. Sasaki, H. Yokoyama, and H. Ito, “Dual-wavelength optical-pulse source based on diode lasers for high-repetition-rate, narrow-bandwidth terahertz-wave generation,” Opt. Express 12(14), 3066–3071 (2004).
    [CrossRef] [PubMed]
  18. K. S. Lee, C. S. Kim, R. K. Kim, G. Patterson, M. Kolesik, J. V. Moloney, and N. Peyghambarian, “Dual-wavelength external cavity laser with a sampled grating formed in a silica PLC waveguide for terahertz beat signal generation,” Appl. Phys. B 87(2), 293–296 (2007).
    [CrossRef]
  19. J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops,” Opt. Commun. 273(1), 231–237 (2007).
    [CrossRef]
  20. H. Maestre, A. J. Torregrosa, C. R. Fernández-Pousa, M. L. Rico, and J. Capmany, “Dual-wavelength green laser with a 4.5 THz frequency difference based on self-frequency- doubling in Nd3+ -doped aperiodically poled lithium niobate,” Opt. Lett. 33(9), 1008–1010 (2008).
    [CrossRef] [PubMed]
  21. H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
    [CrossRef] [PubMed]
  22. H. Kong and S. Lee, “Dual wavelength and continuously variable polarization dye laser,” IEEE J. Quantum Electron. 17(4), 439–441 (1981).
    [CrossRef]
  23. N. Melikechi, “A two-wavelength dye laser with broadband tenability,” J. Phys. E Sci. Instrum. 20(5), 558–559 (1987), doi:.
    [CrossRef]
  24. F.-S. Choa and P.-L. Liu, “Dual wavelength tunable IR dye laser system synchronously pumped by a ND:YAG laser,” Appl. Opt. 28(15), 2990–2993 (1989).
    [CrossRef] [PubMed]
  25. D.-K. Ko, G. Lim, S. H. Kim, and J. Lee, “Dual-wavelength operation of a self-seeded dye laser oscillator,” Appl. Opt. 35(12), 1995–1998 (1996).
    [CrossRef] [PubMed]
  26. S. Jelvani, B. Khodadoost, E. Mohajerani, and R. Sadighi, “Dual wavelength dye laser pumped by a copper vapor laser,” Laser Phys. 13(10), 1275–1278 (2003).
  27. H. Lotem, “Littrow-mounted diffraction grating cavity,” Appl. Opt. 33(6), 930–934 (1994).
    [PubMed]
  28. M. G. Littman and H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” Appl. Opt. 17(14), 2224–2227 (1978).
    [CrossRef] [PubMed]
  29. K. Kato, “Ar-ion-laser-pumped infrared dye laser at 875-1084 nm,” Opt. Lett. 9(12), 544–545 (1984).
    [CrossRef] [PubMed]
  30. S. O. Kanstad and G. Wang, “Laser resonators folded by diffraction gratings,” Appl. Opt. 17(1), 87–90 (1978).
    [CrossRef] [PubMed]
  31. L. W. Casperson, “Beam modes in complex lenslike media and resonators,” J. Opt. Soc. Am. 66(12), 1373–1379 (1976).
    [CrossRef]

2010 (3)

2009 (1)

2008 (1)

2007 (2)

K. S. Lee, C. S. Kim, R. K. Kim, G. Patterson, M. Kolesik, J. V. Moloney, and N. Peyghambarian, “Dual-wavelength external cavity laser with a sampled grating formed in a silica PLC waveguide for terahertz beat signal generation,” Appl. Phys. B 87(2), 293–296 (2007).
[CrossRef]

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops,” Opt. Commun. 273(1), 231–237 (2007).
[CrossRef]

2005 (3)

Y. Lee and T. B. Norris, “Poled Lithium Niobate crystals enables THz pulse generation,” Laser Focus World 4, 67–71 (2005).

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two color laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005), doi:.
[CrossRef]

X. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13(1), 142–147 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (1)

S. Jelvani, B. Khodadoost, E. Mohajerani, and R. Sadighi, “Dual wavelength dye laser pumped by a copper vapor laser,” Laser Phys. 13(10), 1275–1278 (2003).

2002 (1)

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
[CrossRef]

2000 (1)

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1416 (2000).
[CrossRef]

1999 (1)

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent CW-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[CrossRef]

1996 (1)

1995 (1)

1994 (1)

1989 (1)

1987 (1)

N. Melikechi, “A two-wavelength dye laser with broadband tenability,” J. Phys. E Sci. Instrum. 20(5), 558–559 (1987), doi:.
[CrossRef]

1984 (1)

1981 (1)

H. Kong and S. Lee, “Dual wavelength and continuously variable polarization dye laser,” IEEE J. Quantum Electron. 17(4), 439–441 (1981).
[CrossRef]

1978 (2)

1976 (1)

1965 (1)

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965)16 (3), 177 (1966)].
[CrossRef]

Ajili, L.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
[CrossRef]

Beere, H.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
[CrossRef]

Berman, P. R.

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965)16 (3), 177 (1966)].
[CrossRef]

Camara Mayorga, I.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two color laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005), doi:.
[CrossRef]

Capmany, J.

Casperson, L. W.

Chang, F.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent CW-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[CrossRef]

Chen, L.

Choa, F.-S.

Davies, G.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
[CrossRef]

Faist, J.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
[CrossRef]

Fernández-Pousa, C. R.

Gu, P.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent CW-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[CrossRef]

Guo, L.

Hofmann, M.

Hu, B. B.

Hu, D.

Huang, D.

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops,” Opt. Commun. 273(1), 231–237 (2007).
[CrossRef]

Ito, H.

Y. Sasaki, H. Yokoyama, and H. Ito, “Dual-wavelength optical-pulse source based on diode lasers for high-repetition-rate, narrow-bandwidth terahertz-wave generation,” Opt. Express 12(14), 3066–3071 (2004).
[CrossRef] [PubMed]

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1416 (2000).
[CrossRef]

Jelvani, S.

S. Jelvani, B. Khodadoost, E. Mohajerani, and R. Sadighi, “Dual wavelength dye laser pumped by a copper vapor laser,” Laser Phys. 13(10), 1275–1278 (2003).

Jiang, M.

Kanstad, S. O.

Kato, K.

Khodadoost, B.

S. Jelvani, B. Khodadoost, E. Mohajerani, and R. Sadighi, “Dual wavelength dye laser pumped by a copper vapor laser,” Laser Phys. 13(10), 1275–1278 (2003).

Kim, C. S.

K. S. Lee, C. S. Kim, R. K. Kim, G. Patterson, M. Kolesik, J. V. Moloney, and N. Peyghambarian, “Dual-wavelength external cavity laser with a sampled grating formed in a silica PLC waveguide for terahertz beat signal generation,” Appl. Phys. B 87(2), 293–296 (2007).
[CrossRef]

Kim, R. K.

K. S. Lee, C. S. Kim, R. K. Kim, G. Patterson, M. Kolesik, J. V. Moloney, and N. Peyghambarian, “Dual-wavelength external cavity laser with a sampled grating formed in a silica PLC waveguide for terahertz beat signal generation,” Appl. Phys. B 87(2), 293–296 (2007).
[CrossRef]

Kim, S. H.

Ko, D.-K.

Koch, S. W.

Kolesik, M.

K. S. Lee, C. S. Kim, R. K. Kim, G. Patterson, M. Kolesik, J. V. Moloney, and N. Peyghambarian, “Dual-wavelength external cavity laser with a sampled grating formed in a silica PLC waveguide for terahertz beat signal generation,” Appl. Phys. B 87(2), 293–296 (2007).
[CrossRef]

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” J. Opt. Soc. Am. B 21(10), 1758–1771 (2004).
[CrossRef]

Kong, H.

H. Kong and S. Lee, “Dual wavelength and continuously variable polarization dye laser,” IEEE J. Quantum Electron. 17(4), 439–441 (1981).
[CrossRef]

Lan, R.

Lee, J.

Lee, K. S.

K. S. Lee, C. S. Kim, R. K. Kim, G. Patterson, M. Kolesik, J. V. Moloney, and N. Peyghambarian, “Dual-wavelength external cavity laser with a sampled grating formed in a silica PLC waveguide for terahertz beat signal generation,” Appl. Phys. B 87(2), 293–296 (2007).
[CrossRef]

Lee, S.

H. Kong and S. Lee, “Dual wavelength and continuously variable polarization dye laser,” IEEE J. Quantum Electron. 17(4), 439–441 (1981).
[CrossRef]

Lee, Y.

Y. Lee and T. B. Norris, “Poled Lithium Niobate crystals enables THz pulse generation,” Laser Focus World 4, 67–71 (2005).

Li, G.

Lim, G.

Linfield, E.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
[CrossRef]

Littman, M. G.

Liu, H.

Liu, P.-L.

Liu, X.

Lotem, H.

Lu, C.

Lu, F.

Maestre, H.

Malcoci, A.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two color laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005), doi:.
[CrossRef]

Matus, M.

Melikechi, N.

N. Melikechi, “A two-wavelength dye laser with broadband tenability,” J. Phys. E Sci. Instrum. 20(5), 558–559 (1987), doi:.
[CrossRef]

Metcalf, H. J.

Miles, R. E.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two color laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005), doi:.
[CrossRef]

Mohajerani, E.

S. Jelvani, B. Khodadoost, E. Mohajerani, and R. Sadighi, “Dual wavelength dye laser pumped by a copper vapor laser,” Laser Phys. 13(10), 1275–1278 (2003).

Moloney, J. V.

K. S. Lee, C. S. Kim, R. K. Kim, G. Patterson, M. Kolesik, J. V. Moloney, and N. Peyghambarian, “Dual-wavelength external cavity laser with a sampled grating formed in a silica PLC waveguide for terahertz beat signal generation,” Appl. Phys. B 87(2), 293–296 (2007).
[CrossRef]

M. Matus, M. Kolesik, J. V. Moloney, M. Hofmann, and S. W. Koch, “Dynamics of two-color laser systems with spectrally filtered feedback,” J. Opt. Soc. Am. B 21(10), 1758–1771 (2004).
[CrossRef]

Naftaly, M.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two color laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005), doi:.
[CrossRef]

Nakamura, S.

Ng, J.

Norris, T. B.

Y. Lee and T. B. Norris, “Poled Lithium Niobate crystals enables THz pulse generation,” Laser Focus World 4, 67–71 (2005).

Nuss, M. C.

Ogawa, T.

Pan, C.-L.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent CW-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[CrossRef]

Patterson, G.

K. S. Lee, C. S. Kim, R. K. Kim, G. Patterson, M. Kolesik, J. V. Moloney, and N. Peyghambarian, “Dual-wavelength external cavity laser with a sampled grating formed in a silica PLC waveguide for terahertz beat signal generation,” Appl. Phys. B 87(2), 293–296 (2007).
[CrossRef]

Peyghambarian, N.

K. S. Lee, C. S. Kim, R. K. Kim, G. Patterson, M. Kolesik, J. V. Moloney, and N. Peyghambarian, “Dual-wavelength external cavity laser with a sampled grating formed in a silica PLC waveguide for terahertz beat signal generation,” Appl. Phys. B 87(2), 293–296 (2007).
[CrossRef]

Rico, M. L.

Ritchie, D.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
[CrossRef]

Rochat, M.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
[CrossRef]

Sadighi, R.

S. Jelvani, B. Khodadoost, E. Mohajerani, and R. Sadighi, “Dual wavelength dye laser pumped by a copper vapor laser,” Laser Phys. 13(10), 1275–1278 (2003).

Sakai, K.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent CW-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[CrossRef]

Sasaki, Y.

Shi, Z.

Shikata, J.

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1416 (2000).
[CrossRef]

Stone, M. R.

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two color laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005), doi:.
[CrossRef]

Sun, J.

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops,” Opt. Commun. 273(1), 231–237 (2007).
[CrossRef]

Tani, M.

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent CW-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[CrossRef]

Taniuchi, T.

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1416 (2000).
[CrossRef]

Tian, Y.

Torregrosa, A. J.

Wada, S.

Wang, G.

Wang, J.

Wang, Y.

Wang, Z.

Willenberg, H.

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
[CrossRef]

Xu, X.

Yang, X.

Yao, B.

Yokoyama, H.

Yoshioka, H.

Yu, H.

Yu, Y.

Yuan, X.

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops,” Opt. Commun. 273(1), 231–237 (2007).
[CrossRef]

Zernike, F.

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965)16 (3), 177 (1966)].
[CrossRef]

Zhang, H.

Zhang, X.

H. Yu, H. Zhang, Z. Wang, J. Wang, Y. Yu, Z. Shi, X. Zhang, and M. Jiang, “High-power dual-wavelength laser with disordered Nd:CNGG crystals,” Opt. Lett. 34(2), 151–153 (2009).
[CrossRef] [PubMed]

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops,” Opt. Commun. 273(1), 231–237 (2007).
[CrossRef]

Zhao, Y.

Zhou, X.

Zhuang, S.

Appl. Opt. (5)

Appl. Phys. B (1)

K. S. Lee, C. S. Kim, R. K. Kim, G. Patterson, M. Kolesik, J. V. Moloney, and N. Peyghambarian, “Dual-wavelength external cavity laser with a sampled grating formed in a silica PLC waveguide for terahertz beat signal generation,” Appl. Phys. B 87(2), 293–296 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, and D. Ritchie, “Low-threshold terahertz quantum-cascade lasers,” Appl. Phys. Lett. 81(8), 1381 (2002).
[CrossRef]

Electron. Lett. (2)

M. Naftaly, M. R. Stone, A. Malcoci, R. E. Miles, and I. Camara Mayorga, “Generation of CW terahertz radiation using two color laser with Fabry-Perot etalon,” Electron. Lett. 41(3), 128–129 (2005), doi:.
[CrossRef]

T. Taniuchi, J. Shikata, and H. Ito, “Tunable terahertz-wave generation in DAST crystal with dual-wavelength KTP optical parametric oscillator,” Electron. Lett. 36(16), 1414–1416 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Kong and S. Lee, “Dual wavelength and continuously variable polarization dye laser,” IEEE J. Quantum Electron. 17(4), 439–441 (1981).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. E Sci. Instrum. (1)

N. Melikechi, “A two-wavelength dye laser with broadband tenability,” J. Phys. E Sci. Instrum. 20(5), 558–559 (1987), doi:.
[CrossRef]

Jpn. J. Appl. Phys. (1)

P. Gu, F. Chang, M. Tani, K. Sakai, and C.-L. Pan, “Generation of Coherent CW-Terahertz Radiation Using a Tunable Dual-Wavelength External Cavity Laser Diode,” Jpn. J. Appl. Phys. 38(Part 2, No. 11A), L1246–L1248 (1999).
[CrossRef]

Laser Focus World (1)

Y. Lee and T. B. Norris, “Poled Lithium Niobate crystals enables THz pulse generation,” Laser Focus World 4, 67–71 (2005).

Laser Phys. (1)

S. Jelvani, B. Khodadoost, E. Mohajerani, and R. Sadighi, “Dual wavelength dye laser pumped by a copper vapor laser,” Laser Phys. 13(10), 1275–1278 (2003).

Opt. Commun. (1)

J. Sun, X. Yuan, X. Zhang, and D. Huang, “Single-longitudinal-mode dual-wavelength fiber ring laser by incorporating variable saturable absorbers and feedback fiber loops,” Opt. Commun. 273(1), 231–237 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

F. Zernike and P. R. Berman, “Generation of far infrared as a difference frequency,” Phys. Rev. Lett. 15(26), 999–1001 (1965)16 (3), 177 (1966)].
[CrossRef]

Other (4)

Diodes Inc, ( www.virginiadiodes.com ).

E R Muller, “Terahertz Radiation: Applications and Sources,” The Industrial Physicist, AIP, August (2003) 27–29.

G Flinn, “Terahertz radiation finds a place in biomedicine,” Biophotonics Interational, May 40–43 (2005).

Y. Sasaki, H. Yokoyama, and H. Ito, “Tunable THz-wave generation using dual-wavelength optical-pulse source based on diode lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (CD) (Optical Society of America, 2004), paper CMI6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Dye laser in Littrow configuration. Tuning is achieved by rotating the grating. OC: Output coupler.

Fig. 2
Fig. 2

Dye laser in Littman-Metcalf configuration. Tuning is achieved by rotating the 100% mirror. OC: Output coupler.

Fig. 3
Fig. 3

Wavelength tuning of the dye laser using Styryl 13 on a 15%:85% PC-EG solution with a 8.4x10−4 M concentration pumped by 532 nm 4 nsec pulses on Littman-Metcalf configuration.

Fig. 4
Fig. 4

(a) Double lasing spot observed on a fluorescent card placed 300 mm from the flow cell using Littman-Metcalf configuration. The left spot (black circle) is smaller than the right spot (white circle). (b) Spectrum obtained when both spots were measured simultaneously in the spectrum analyzer showing dual wavelength operation.

Fig. 5
Fig. 5

Dye laser cavity in Littrow configuration. OC: Output coupler.

Fig. 6
Fig. 6

Ring cavity thorough the flow cell using TIR and the external reflecting elements. OC: Output coupler.

Fig. 7
Fig. 7

Ring cavity at different flow cell – diffraction grating distances. The angles required to form a stable ring cavity are different depending on the distance; in the figure the stable angles for the shortest distance (gray line) are not the same as if the grating is farther apart (red/black line), thus the angle selected by the grating is different. OC: Output coupler.

Fig. 8
Fig. 8

Dual wavelength laser in Littrow configuration. Different wavelengths are obtained using the linear (double line) and ring (single line) trajectories depicted in the figure. Tuning is achieved by rotating the grating. Wavelength peak separation is achieved by controlling the separation (dcm) between the grating and the flow cell. OC: Output coupler.

Fig. 9
Fig. 9

Dye laser cavity in Littman-Metcalf configuration. OC: Output coupler.

Fig. 10
Fig. 10

Ring cavity thorough the flow cell using TIR, the diffraction grating and a mirror reflecting the first diffracting order. OC: Output coupler.

Fig. 11
Fig. 11

Ring cavity at different diffraction grating–mirror distances. The angles required to form a stable ring cavity are different depending on the distance; in the figure the stable angles for the shortest distance (gray line) are not the same as if the mirror is farther apart (red/black line), thus the angle selected by the grating is different. OC: Output coupler.

Fig. 12
Fig. 12

Dual wavelength laser in Littman-Metcalf configuration. Different wavelengths are obtained using the trajectories depicted in the figure: linear (double line) and ring (continuous black/red line). Tuning is achieved by rotating the retroflecting mirror and the wavelength separation is controlled by the separation between the grating and retroreflecting mirror (dcm).

Fig. 13
Fig. 13

Dual wavelength tunability of the dye laser using Styryl 14 on a 15%:85% PC-EG solution with a 8.4x10−4 M concentration pumped by 532 nm 4 nsec pulses on (a) Littrow and (b) Littman-Metcalf configurations.

Fig. 14
Fig. 14

Separation between wavelength in the dual wavelength operation with respect to the distance between the flow cell and the feedback element (dcm) for the (a) Littrow and (b) Littman-Metcalf configurations.

Fig. 15
Fig. 15

Dual wavelength lasing in Littrow configuration (λ1 = 935.3 nm and λ2 = 965.0 nm) and the signal through a LBO crystal exhibiting second harmonic (467.6 nm and 482.5 nm) and sum frequency generation (479.9 nm). The inset shows the complete wavelength scan in which a long pass filter was used to reduce the fundamental signals strength.

Fig. 16
Fig. 16

Wavelengths scan for the dual wavelength laser second harmonic and sum frequency when changing the flow cell-grating separation and tuning the wavelength to maintain the sum frequency at a fixed wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Λ ( sin θ i + sin θ m ) = m λ

Metrics