Abstract

In this paper, we propose a method for efficient gonio-imaging of optically variable devices (OVDs), which are applied as a counterfeit deterrence for valuable documents. A compound-eye image-capturing system composed by a microlens array, a signal separator, and an image sensor was used to capture directionally distributed light from OVDs after being collimated by a convex lens. Multiple images corresponding to different observation angles were obtained in the individual eyes of the system, simultaneously and independently. A demonstration involving a holographic grating provided 100 gonio images that exhibited sensitive color changes of the diffracted light according to the observation angle.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. van Renesse, Optical Document Security, Third edition (Artech House, 2005).
  2. M. Koudelka, S. Magda, P. Belhumeur, and D. Kriegman, “Acquisition, compression, and synthesis of bidirectional texture functions,” in Texture 2003: Proceedings of 3rd International Workshop on Texture Analysis and Synthesis, (2003), pp. 59–64.
  3. M. Sattler, R. Sarlette, and R. Klein, “Efficient and realistic visualization of cloth,” in Eurographics Symposium on Rendering 2003, P. Christensen and D. Cohen-Or ed., (Eurographics/ACM, 2003), pp. 167–177.
  4. K. J. Dana and J. Wang, “Device for convenient measurement of spatially varying bidirectional reflectance,” J. Opt. Soc. Am. A 21(1), 1–12 (2004).
    [CrossRef]
  5. F. E. Nicodemus, “Reflectance nomenclature and directional reflectance and emissivity,” Appl. Opt. 9(6), 1474–1475 (1970).
    [CrossRef] [PubMed]
  6. J. Y. Han and K. Perlin, “Measuring bidirectional texture reflectance with a kaleidoscope,” ACM Trans. Graph. 22(3), 741–748 (2003).
    [CrossRef]
  7. K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
    [CrossRef]
  8. G. Müller, G. Bendels, and R. Klein, “Rapid synchronous acquisition of geometry and BTF for cultural heritage artefacts,” in the 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST), (Eurographics Association, 2005), pp. 13–20.
  9. T. Malzbender, D. Gelb, and H. Wolters, “Polynomial texture maps,” in ACM SIGGRAPH 2001: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, (ACM Press, 2001), pp. 519–528.
  10. G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–882 (1908).
  11. H. E. Ives, “Parallax panoramagrams made with a large diameter lens,” J. Opt. Soc. Am. 20(6), 332–342 (1930).
    [CrossRef]
  12. R. Ng, M. Levoy, M. Brdif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-heldplenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).
  13. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40(11), 1806–1813 (2001).
    [CrossRef]
  14. J. Tanida, R. Shogenji, Y. Kitamura, K. Yamada, M. Miyamoto, and S. Miyatake, “Color imaging with an integrated compound imaging system,” Opt. Express 11(18), 2109–2117 (2003).
    [CrossRef] [PubMed]
  15. R. Shogenji, Y. Kitamura, K. Yamada, S. Miyatake, and J. Tanida, “Multispectral imaging using compact compound optics,” Opt. Express 12(8), 1643–1655 (2004).
    [CrossRef] [PubMed]
  16. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, and Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43(8), 1719–1727 (2004).
    [CrossRef] [PubMed]
  17. R. Horisaki, K. Choi, J. Hahn, J. Tanida, and D. J. Brady, “Generalized sampling using a compound-eye imaging system for multi-dimensional object acquisition,” Opt. Express 18(18), 19367–19378 (2010).
    [CrossRef] [PubMed]
  18. Y. Akao, A. Yamamoto, and Y. Higashikawa, “Study on the groove number of 2D hologram applied to security documents,” in Abstract of 14th Annual Meeting of Japanese Association of Forensic Science and Technology, M. Yoshino, ed. (Komiyama Printing Co., Ltd., Tokyo, Japan, 2008), p.191 [in Japanese].

2010 (1)

2004 (3)

2003 (2)

2001 (1)

1999 (1)

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

1970 (1)

1930 (1)

1908 (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–882 (1908).

Brady, D. J.

Choi, K.

Dana, K. J.

K. J. Dana and J. Wang, “Device for convenient measurement of spatially varying bidirectional reflectance,” J. Opt. Soc. Am. A 21(1), 1–12 (2004).
[CrossRef]

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

Hahn, J.

Han, J. Y.

J. Y. Han and K. Perlin, “Measuring bidirectional texture reflectance with a kaleidoscope,” ACM Trans. Graph. 22(3), 741–748 (2003).
[CrossRef]

Horisaki, R.

Ichioka, Y.

Ishida, K.

Ives, H. E.

Kitamura, Y.

Koenderink, J. J.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

Kondou, N.

Kumagai, T.

Lippmann, G.

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–882 (1908).

Masaki, Y.

Miyamoto, M.

Miyatake, S.

Miyazaki, D.

Morimoto, T.

Nayar, S. K.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

Nicodemus, F. E.

Perlin, K.

J. Y. Han and K. Perlin, “Measuring bidirectional texture reflectance with a kaleidoscope,” ACM Trans. Graph. 22(3), 741–748 (2003).
[CrossRef]

Shogenji, R.

Tanida, J.

van Ginneken, B.

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

Wang, J.

Yamada, K.

ACM Trans. Graph. (2)

J. Y. Han and K. Perlin, “Measuring bidirectional texture reflectance with a kaleidoscope,” ACM Trans. Graph. 22(3), 741–748 (2003).
[CrossRef]

K. J. Dana, B. van Ginneken, S. K. Nayar, and J. J. Koenderink, “Reflectance and texture of real world surfaces,” ACM Trans. Graph. 18(1), 1–34 (1999).
[CrossRef]

Appl. Opt. (3)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Phys. (1)

G. Lippmann, “Epreuves reversibles donnant la sensation du relief,” J. Phys. 7, 821–882 (1908).

Opt. Express (3)

Other (7)

R. Ng, M. Levoy, M. Brdif, G. Duval, M. Horowitz, and P. Hanrahan, “Light field photography with a hand-heldplenoptic camera,” Stanford Tech. Rep. CTSR 2005–02 (Stanford University, 2005).

Y. Akao, A. Yamamoto, and Y. Higashikawa, “Study on the groove number of 2D hologram applied to security documents,” in Abstract of 14th Annual Meeting of Japanese Association of Forensic Science and Technology, M. Yoshino, ed. (Komiyama Printing Co., Ltd., Tokyo, Japan, 2008), p.191 [in Japanese].

R. L. van Renesse, Optical Document Security, Third edition (Artech House, 2005).

M. Koudelka, S. Magda, P. Belhumeur, and D. Kriegman, “Acquisition, compression, and synthesis of bidirectional texture functions,” in Texture 2003: Proceedings of 3rd International Workshop on Texture Analysis and Synthesis, (2003), pp. 59–64.

M. Sattler, R. Sarlette, and R. Klein, “Efficient and realistic visualization of cloth,” in Eurographics Symposium on Rendering 2003, P. Christensen and D. Cohen-Or ed., (Eurographics/ACM, 2003), pp. 167–177.

G. Müller, G. Bendels, and R. Klein, “Rapid synchronous acquisition of geometry and BTF for cultural heritage artefacts,” in the 6th International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST), (Eurographics Association, 2005), pp. 13–20.

T. Malzbender, D. Gelb, and H. Wolters, “Polynomial texture maps,” in ACM SIGGRAPH 2001: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, (ACM Press, 2001), pp. 519–528.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Principle of the gonio-imaging by using compound-eye optics.

Fig. 2
Fig. 2

Schematic diagram of image formation in the proposed optical configuration.

Fig. 3
Fig. 3

Schematic diagram of geometrical variables defining the measurement geometry.

Fig. 4
Fig. 4

Schematic diagram of the experimental setup.

Fig. 5
Fig. 5

Schematic diagram of TOMBO.

Fig. 6
Fig. 6

Schematic diagram of compound-eye image consisting of unit images in the x”-y” plane.

Fig. 7
Fig. 7

Overview of a holographic grating used for gonio-imaging experiment.

Fig. 8
Fig. 8

Result of gonio-imaging of a holographic grating.

Tables (3)

Tables Icon

Table 1 Specifications of the TOMBO System

Tables Icon

Table 2 Polar Angle θ r of Observation Direction r at Center of Each Unit Image

Tables Icon

Table 3 Azimuthal Angle φ r of Observation Direction r at Center of Each Unit Image

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 f = 1 a + Z + 1 b + Z ' ,
K = b + Z ' a + Z .
θ r = tan 1 ( l l d x ' 2 + y ' 2 a ) ,
ϕ r =  arg( x j y )    [ mod  2 π ] ,

Metrics