Abstract

We demonstrate in experiment that the resolution of a conventional light microscope can be enhanced by 26% with the help of an image inverting interferometer. In order to prove this statement, we measured the point spread function of the system as well as the resolution of two-point objects. Additionally, the contrast transmission function of the interferometric setup was measured and compared to the results gained with a conventional wide-field microscope. Using the interferometric system, the spatial frequencies near the cutoff-frequency were far better transmitted than by the conventional microscope. Finally, we demonstrate the improved resolution with the help of images of two-dimensional structures.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, Die Lehre von der Bildentstehung im Mikroskop (Friedrich Vieweg & Sohn, 1910).
  2. M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [CrossRef] [PubMed]
  3. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
    [CrossRef] [PubMed]
  4. S. A. Jones, S. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of living cells,” Nat. Methods 8, 499–505 (2011).
    [CrossRef] [PubMed]
  5. M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,”Proc. Natl. Acad. Sci. USA (PNAS) 102, 13081–13086 (2005).
    [CrossRef]
  6. S. W. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
    [CrossRef]
  7. J. Bewersdorf, A. Egner, and S. W. Hell, “4Pi Microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.B. Pawley, eds. (SpringerScience+Business Media, New York, 2006), pp. 561–570.
    [CrossRef]
  8. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef] [PubMed]
  9. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA (PNAS) 97, 8206–8210 (2000).
    [CrossRef]
  10. G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
    [CrossRef] [PubMed]
  11. H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy,” Biophys. J. 87, 4146–4152 (2004).
    [CrossRef] [PubMed]
  12. N. Sandeau and H. Giovannini, “Increasing the lateral resolution of 4pi fluorescence microscopes,” J. Opt. Soc. Am. A 23, 1089–1095 (2006).
    [CrossRef]
  13. H. Rigneault, N. Sandeau, and H. Giovannini, “Interferometric confocal microscope,” World Patent n°: WO/2007/141409 (2007).
  14. N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, “Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy,” J. Eur. Opt. Soc. Rap. Public.,  4 (2009), p. 09040.
    [CrossRef]
  15. K. Wicker and R. Heintzmann, “Interferometric resolution improvement for confocal microscopes,” Opt. Express 15, 12206–12216 (2007).
    [CrossRef] [PubMed]
  16. D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the impulse response of an image inversion interferometer,” Opt. Commun. 283, 368–372 (2010).
    [CrossRef]
  17. D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the resolution ability of an image inversion interferometer,” Opt. Commun. 284, 2273–2277 (2011).
    [CrossRef]
  18. K. Wicker, S. Sindbert, and R. Heintzmann, “Characterisation of a resolution enhancing image inversion interferometer,” Opt. Express 17, 15491–15501 (2009).
    [CrossRef] [PubMed]
  19. J. W. Goodmann, Introduction to Fourier Optics (McGraw-Hill Classic Textbook Reissue, 1988).

2011

S. A. Jones, S. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of living cells,” Nat. Methods 8, 499–505 (2011).
[CrossRef] [PubMed]

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the resolution ability of an image inversion interferometer,” Opt. Commun. 284, 2273–2277 (2011).
[CrossRef]

2010

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the impulse response of an image inversion interferometer,” Opt. Commun. 283, 368–372 (2010).
[CrossRef]

2009

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, “Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy,” J. Eur. Opt. Soc. Rap. Public.,  4 (2009), p. 09040.
[CrossRef]

K. Wicker, S. Sindbert, and R. Heintzmann, “Characterisation of a resolution enhancing image inversion interferometer,” Opt. Express 17, 15491–15501 (2009).
[CrossRef] [PubMed]

2007

K. Wicker and R. Heintzmann, “Interferometric resolution improvement for confocal microscopes,” Opt. Express 15, 12206–12216 (2007).
[CrossRef] [PubMed]

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

2006

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

N. Sandeau and H. Giovannini, “Increasing the lateral resolution of 4pi fluorescence microscopes,” J. Opt. Soc. Am. A 23, 1089–1095 (2006).
[CrossRef]

2005

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,”Proc. Natl. Acad. Sci. USA (PNAS) 102, 13081–13086 (2005).
[CrossRef]

2004

H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy,” Biophys. J. 87, 4146–4152 (2004).
[CrossRef] [PubMed]

2000

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA (PNAS) 97, 8206–8210 (2000).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

1994

1992

Abbe, E.

E. Abbe, Die Lehre von der Bildentstehung im Mikroskop (Friedrich Vieweg & Sohn, 1910).

Babovsky, H.

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the resolution ability of an image inversion interferometer,” Opt. Commun. 284, 2273–2277 (2011).
[CrossRef]

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the impulse response of an image inversion interferometer,” Opt. Commun. 283, 368–372 (2010).
[CrossRef]

Bates, M.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Bewersdorf, J.

H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy,” Biophys. J. 87, 4146–4152 (2004).
[CrossRef] [PubMed]

J. Bewersdorf, A. Egner, and S. W. Hell, “4Pi Microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.B. Pawley, eds. (SpringerScience+Business Media, New York, 2006), pp. 561–570.
[CrossRef]

Donnert, G.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

Dyba, M.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA (PNAS) 97, 8206–8210 (2000).
[CrossRef]

Eggeling, C.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA (PNAS) 97, 8206–8210 (2000).
[CrossRef]

J. Bewersdorf, A. Egner, and S. W. Hell, “4Pi Microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.B. Pawley, eds. (SpringerScience+Business Media, New York, 2006), pp. 561–570.
[CrossRef]

Engelhardt, J.

H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy,” Biophys. J. 87, 4146–4152 (2004).
[CrossRef] [PubMed]

Ferrand, P.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, “Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy,” J. Eur. Opt. Soc. Rap. Public.,  4 (2009), p. 09040.
[CrossRef]

Giovannini, H.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, “Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy,” J. Eur. Opt. Soc. Rap. Public.,  4 (2009), p. 09040.
[CrossRef]

N. Sandeau and H. Giovannini, “Increasing the lateral resolution of 4pi fluorescence microscopes,” J. Opt. Soc. Am. A 23, 1089–1095 (2006).
[CrossRef]

H. Rigneault, N. Sandeau, and H. Giovannini, “Interferometric confocal microscope,” World Patent n°: WO/2007/141409 (2007).

Goodmann, J. W.

J. W. Goodmann, Introduction to Fourier Optics (McGraw-Hill Classic Textbook Reissue, 1988).

Gugel, H.

H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy,” Biophys. J. 87, 4146–4152 (2004).
[CrossRef] [PubMed]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,”Proc. Natl. Acad. Sci. USA (PNAS) 102, 13081–13086 (2005).
[CrossRef]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

He, J.

S. A. Jones, S. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of living cells,” Nat. Methods 8, 499–505 (2011).
[CrossRef] [PubMed]

Heintzmann, R.

Hell, S. W.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy,” Biophys. J. 87, 4146–4152 (2004).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA (PNAS) 97, 8206–8210 (2000).
[CrossRef]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
[CrossRef] [PubMed]

S. W. Hell and E. H. K. Stelzer, “Properties of a 4Pi confocal fluorescence microscope,” J. Opt. Soc. Am. A 9, 2159–2166 (1992).
[CrossRef]

J. Bewersdorf, A. Egner, and S. W. Hell, “4Pi Microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.B. Pawley, eds. (SpringerScience+Business Media, New York, 2006), pp. 561–570.
[CrossRef]

Jahn, R.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

Jakobs, S.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy,” Biophys. J. 87, 4146–4152 (2004).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA (PNAS) 97, 8206–8210 (2000).
[CrossRef]

Jones, S. A.

S. A. Jones, S. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of living cells,” Nat. Methods 8, 499–505 (2011).
[CrossRef] [PubMed]

Keller, J.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

Kiessling, A.

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the resolution ability of an image inversion interferometer,” Opt. Commun. 284, 2273–2277 (2011).
[CrossRef]

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the impulse response of an image inversion interferometer,” Opt. Commun. 283, 368–372 (2010).
[CrossRef]

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA (PNAS) 97, 8206–8210 (2000).
[CrossRef]

Kowarschik, R.

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the resolution ability of an image inversion interferometer,” Opt. Commun. 284, 2273–2277 (2011).
[CrossRef]

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the impulse response of an image inversion interferometer,” Opt. Commun. 283, 368–372 (2010).
[CrossRef]

Rigneault, H.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, “Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy,” J. Eur. Opt. Soc. Rap. Public.,  4 (2009), p. 09040.
[CrossRef]

H. Rigneault, N. Sandeau, and H. Giovannini, “Interferometric confocal microscope,” World Patent n°: WO/2007/141409 (2007).

Rizzoli, S. O.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

Rust, M. J.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Sandeau, N.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, “Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy,” J. Eur. Opt. Soc. Rap. Public.,  4 (2009), p. 09040.
[CrossRef]

N. Sandeau and H. Giovannini, “Increasing the lateral resolution of 4pi fluorescence microscopes,” J. Opt. Soc. Am. A 23, 1089–1095 (2006).
[CrossRef]

H. Rigneault, N. Sandeau, and H. Giovannini, “Interferometric confocal microscope,” World Patent n°: WO/2007/141409 (2007).

Schoenle, A.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

Shim, S.

S. A. Jones, S. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of living cells,” Nat. Methods 8, 499–505 (2011).
[CrossRef] [PubMed]

Sindbert, S.

Stelzer, E. H. K.

Storz, R.

H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy,” Biophys. J. 87, 4146–4152 (2004).
[CrossRef] [PubMed]

Wawrezinieck, L.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, “Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy,” J. Eur. Opt. Soc. Rap. Public.,  4 (2009), p. 09040.
[CrossRef]

Weigel, D.

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the resolution ability of an image inversion interferometer,” Opt. Commun. 284, 2273–2277 (2011).
[CrossRef]

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the impulse response of an image inversion interferometer,” Opt. Commun. 283, 368–372 (2010).
[CrossRef]

Westphal, V.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

Wichmann, J.

Wicker, K.

Wurm, C. A.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

Zhuang, X.

S. A. Jones, S. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of living cells,” Nat. Methods 8, 499–505 (2011).
[CrossRef] [PubMed]

Zhuang, X. W.

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Biophys. J.

G. Donnert, J. Keller, C. A. Wurm, S. O. Rizzoli, V. Westphal, A. Schoenle, R. Jahn, S. Jakobs, C. Eggeling, and S. W. Hell, “Two-color far-field fluorescence nanoscopy,” Biophys. J. 92, L67–69L (2007).
[CrossRef] [PubMed]

H. Gugel, J. Bewersdorf, S. Jakobs, J. Engelhardt, R. Storz, and S. W. Hell, “Cooperative 4Pi excitation and detection yields sevenfold sharper optical sections in live-cell microscopy,” Biophys. J. 87, 4146–4152 (2004).
[CrossRef] [PubMed]

J. Eur. Opt. Soc. Rap. Public.

N. Sandeau, L. Wawrezinieck, P. Ferrand, H. Giovannini, and H. Rigneault, “Increasing the lateral resolution of scanning microscopes by a factor of two using 2-Image microscopy,” J. Eur. Opt. Soc. Rap. Public.,  4 (2009), p. 09040.
[CrossRef]

J. Microsc.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82–87 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Nat. Methods

S. A. Jones, S. Shim, J. He, and X. Zhuang, “Fast, three-dimensional super-resolution imaging of living cells,” Nat. Methods 8, 499–505 (2011).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef] [PubMed]

Opt. Commun.

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the impulse response of an image inversion interferometer,” Opt. Commun. 283, 368–372 (2010).
[CrossRef]

D. Weigel, H. Babovsky, A. Kiessling, and R. Kowarschik, “Investigation of the resolution ability of an image inversion interferometer,” Opt. Commun. 284, 2273–2277 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. USA (PNAS)

M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution,”Proc. Natl. Acad. Sci. USA (PNAS) 102, 13081–13086 (2005).
[CrossRef]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. USA (PNAS) 97, 8206–8210 (2000).
[CrossRef]

Other

J. Bewersdorf, A. Egner, and S. W. Hell, “4Pi Microscopy,” in Handbook of Biological Confocal Microscopy, 3rd ed., J.B. Pawley, eds. (SpringerScience+Business Media, New York, 2006), pp. 561–570.
[CrossRef]

H. Rigneault, N. Sandeau, and H. Giovannini, “Interferometric confocal microscope,” World Patent n°: WO/2007/141409 (2007).

J. W. Goodmann, Introduction to Fourier Optics (McGraw-Hill Classic Textbook Reissue, 1988).

E. Abbe, Die Lehre von der Bildentstehung im Mikroskop (Friedrich Vieweg & Sohn, 1910).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Scheme of the imaging process via III. The images transferred by the inverting and the non-inverting arm overlay in the image plane. Two coherent images of a point can be observed if only one object point is considered.

Fig. 2
Fig. 2

Cross-section of the PSF (blue line) and the IPSF (red line).

Fig. 3
Fig. 3

Sketch of the used setup. The image coming from the objective lens is transmitted through the image inverting interferometer onto the CCD-cameras. The image inversion is realized by two concave mirrors.

Fig. 4
Fig. 4

Direct comparison of the conventional PSF (black) with the interferometric one (red). The blue line depicts the theoretical curve of the IPSFpc considering the radius of integration used.

Fig. 5
Fig. 5

Cross-section of the images of two-point objects at a distance of 3.20μm and 2.40μm. Each image contains the conventional intensity distribution (black) as well as the interferometric signal distribution (red).

Fig. 6
Fig. 6

Conventional (black line) and interferometric (red line) recorded images are compared using a 71Lp/mm- and a 360Lp/mm-grating

Fig. 7
Fig. 7

MTF of the conventional (black) and the interferometric (red) microscope. In addition to the contrast of the base frequency f0, the contrast of harmonics is included. The function expected in experiment is illustrated dashed.

Fig. 8
Fig. 8

Detail of the FSU Jena’s logo etched into a chromium layer (a) Wide-field image of the etched structure using a 100x / 1.25 objective lense (λ = 450 nm) (b) Image of the etched structure using the presented setup as a conventional wide-field microscope (3.2x / 0.10, λ = 516 nm) (c) Image recorded by the same system as in (b) but with the help of the III

Fig. 9
Fig. 9

Cross-section of the areas of the logo of the FSU Jena marked in Fig. 8

Fig. 10
Fig. 10

Conventional (a) and interferometric (b) recorded image of two clusters of polystyrene beads

Fig. 11
Fig. 11

Cross-sections of Fig. 10

Tables (1)

Tables Icon

Table 1 Comparison of the values of the conventional and the interferometric PSF in theory and measurement.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I ± ( r , r 0 ) = | h ( r + r 0 ) | 2 + | h ( r r 0 ) | 2 ± h ( r + r 0 ) h ( r r 0 ) cos ( Δ φ ( r ) )
Δ φ ( r ) = φ ni ( r ) φ i ( r )
IPSF pc ( r 0 ) = P h ( r + r 0 ) h ( r r 0 ) cos ( Δ φ ( r ) ) dx dy
IPSF ( r 0 ) = 2 J 1 ( 2 r 0 ) 2 | r 0 |
Δ x Rayleigh = 0.61 λ NA λ - wavelength , NA - numerical aperture
Image ( r 0 ) = Object ( r 0 ) IPSF pc ( r 0 )
MTF ( f x , f y ) = | ( PSF ( x , y ) ) |
IMTF ( f x , f y ) = ( J 1 ( 2 r 0 ) 2 | r 0 | ) circ ( f max 2 ) , circ ( f ) = { 1 f 1 0 f > 1

Metrics