Abstract

A forward-imaging needle-type optical coherence tomography (OCT) probe with Doppler OCT (DOCT) capability has the potential to solve critical challenges in interventional procedures. A case in point is stereotactic neurosurgery where probes are advanced into the brain based on predetermined coordinates. Laceration of blood vessels in front of the advancing probe is an unavoidable complication with current methods. Moreover, cerebrospinal fluid (CSF) leakage during surgery can shift the brain rendering the predetermined coordinates unreliable. In order to address these challenges, we developed a forward-imaging OCT probe (740 μm O.D.) using a gradient-index (GRIN) rod lens that can provide real-time imaging feedback for avoiding at-risk vessels (8 frames/s with 1024 A-scans per frame for OCT/DOCT dual imaging) and guiding the instrument to specific targets with 12 μm axial resolution (100 frames/s with 160 A-scans per frame for OCT imaging only). The high signal-to-background characteristic of DOCT provides exceptional sensitivity in detecting and quantifying the blood flow within the sheep brain parenchyma in real time. The OCT/DOCT dual imaging also demonstrated its capability to differentiate the vessel type (artery/vein) on rat’s femoral vessels. We also demonstrated in ex vivo human brain that the location of the tip of the OCT probe can be inferred from micro-anatomical landmarks in OCT images. These findings demonstrate the suitability of OCT guidance during stereotactic procedures in the brain and its potential for reducing the risk of cerebral hemorrhage.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Colbassani, S. Nishio, K. M. Sweeney, R. A. E. Bakay, and Y. Takei, “CT-assisted stereotactic brain biopsy: value of intraoperative frozen section diagnosis,” J. Neurol. Neurosurg. Psychiatry 51(3), 332–341 (1988).
    [CrossRef] [PubMed]
  2. N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
    [CrossRef] [PubMed]
  3. A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
    [CrossRef] [PubMed]
  4. P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med. 339(16), 1105–1111 (1998).
    [CrossRef] [PubMed]
  5. P. A. Starr, “Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach,” Stereotact. Funct. Neurosurg. 79(3-4), 118–145 (2002).
    [CrossRef] [PubMed]
  6. P. D. Sawin, P. W. Hitchon, K. A. Follett, and J. C. Torner, “Computed imaging-assisted stereotactic brain biopsy: a risk analysis of 225 consecutive cases,” Surg. Neurol. 49(6), 640–649 (1998).
    [CrossRef] [PubMed]
  7. D. K. Binder, G. Rau, and P. A. Starr, “Hemorrhagic complications of microelectrode-guided deep brain stimulation,” Stereotact. Funct. Neurosurg. 80(1-4), 28–31 (2003).
    [CrossRef] [PubMed]
  8. D. K. Binder, G. M. Rau, and P. A. Starr, “Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders,” Neurosurgery 56(4), 722–732, discussion 722–732 (2005).
    [CrossRef] [PubMed]
  9. M. I. Hariz, “Complications of deep brain stimulation surgery,” Mov. Disord. 17(S3Suppl 3), S162–S166 (2002).
    [CrossRef] [PubMed]
  10. S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22(21), 1618–1620 (1997).
    [CrossRef] [PubMed]
  11. A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Snopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, and O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1(13), 432–440 (1997).
    [CrossRef] [PubMed]
  12. Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
    [CrossRef] [PubMed]
  13. Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
    [CrossRef] [PubMed]
  14. T. Xie, H. Xie, G. K. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers,” Appl. Opt. 42(31), 6422–6426 (2003).
    [CrossRef] [PubMed]
  15. J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett. 28(8), 628–630 (2003).
    [CrossRef] [PubMed]
  16. A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
    [CrossRef]
  17. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
    [CrossRef] [PubMed]
  18. M. J. Cobb, X. Liu, and X. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett. 30(13), 1680–1682 (2005).
    [CrossRef] [PubMed]
  19. Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005).
    [CrossRef] [PubMed]
  20. J. M. Zara and P. E. Patterson, “Polyimide amplified piezoelectric scanning mirror for spectral domain optical coherence tomography,” Appl. Phys. Lett. 89(26), 263901 (2006).
    [CrossRef]
  21. Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
    [CrossRef] [PubMed]
  22. N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33(7), 657–659 (2008).
    [CrossRef] [PubMed]
  23. Y. Takahashi, Y. Watanabe, and M. Sato, “High speed spectral domain optical coherence tomography with forward and side-imaging probe,” Jpn. J. Appl. Phys. 47(8), 6540–6543 (2008).
    [CrossRef]
  24. A. D. Aguirre, J. Sawinski, S. W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express 18(5), 4222–4239 (2010).
    [CrossRef] [PubMed]
  25. C. P. Fleming, K. J. Quan, and A. M. Rollins, “Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography,” J. Biomed. Opt. 15(4), 041510 (2010).
    [CrossRef] [PubMed]
  26. M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
    [CrossRef] [PubMed]
  27. M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
    [CrossRef] [PubMed]
  28. J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
    [CrossRef] [PubMed]
  29. S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
    [CrossRef] [PubMed]
  30. T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
    [CrossRef] [PubMed]
  31. T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
    [CrossRef] [PubMed]
  32. L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
    [CrossRef] [PubMed]
  33. S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
    [CrossRef] [PubMed]
  34. Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
    [CrossRef] [PubMed]
  35. S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
    [CrossRef] [PubMed]
  36. S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
    [CrossRef] [PubMed]
  37. V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
    [CrossRef] [PubMed]
  38. N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
    [CrossRef] [PubMed]
  39. S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
    [CrossRef] [PubMed]
  40. D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. D. Yang, “Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator,” Opt. Lett. 32(3), 253–255 (2007).
    [CrossRef] [PubMed]
  41. D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
    [CrossRef]
  42. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  43. J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
    [CrossRef] [PubMed]

2011 (1)

2010 (4)

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

A. D. Aguirre, J. Sawinski, S. W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express 18(5), 4222–4239 (2010).
[CrossRef] [PubMed]

C. P. Fleming, K. J. Quan, and A. M. Rollins, “Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography,” J. Biomed. Opt. 15(4), 041510 (2010).
[CrossRef] [PubMed]

2009 (7)

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
[CrossRef] [PubMed]

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[CrossRef] [PubMed]

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[CrossRef] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[CrossRef] [PubMed]

J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33(7), 657–659 (2008).
[CrossRef] [PubMed]

Y. Takahashi, Y. Watanabe, and M. Sato, “High speed spectral domain optical coherence tomography with forward and side-imaging probe,” Jpn. J. Appl. Phys. 47(8), 6540–6543 (2008).
[CrossRef]

2007 (4)

Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. D. Yang, “Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator,” Opt. Lett. 32(3), 253–255 (2007).
[CrossRef] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

2006 (5)

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

J. M. Zara and P. E. Patterson, “Polyimide amplified piezoelectric scanning mirror for spectral domain optical coherence tomography,” Appl. Phys. Lett. 89(26), 263901 (2006).
[CrossRef]

J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[CrossRef] [PubMed]

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

2005 (4)

D. K. Binder, G. M. Rau, and P. A. Starr, “Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders,” Neurosurgery 56(4), 722–732, discussion 722–732 (2005).
[CrossRef] [PubMed]

M. J. Cobb, X. Liu, and X. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett. 30(13), 1680–1682 (2005).
[CrossRef] [PubMed]

Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005).
[CrossRef] [PubMed]

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

2004 (2)

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
[CrossRef] [PubMed]

2003 (5)

2002 (2)

M. I. Hariz, “Complications of deep brain stimulation surgery,” Mov. Disord. 17(S3Suppl 3), S162–S166 (2002).
[CrossRef] [PubMed]

P. A. Starr, “Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach,” Stereotact. Funct. Neurosurg. 79(3-4), 118–145 (2002).
[CrossRef] [PubMed]

2001 (1)

1998 (2)

P. D. Sawin, P. W. Hitchon, K. A. Follett, and J. C. Torner, “Computed imaging-assisted stereotactic brain biopsy: a risk analysis of 225 consecutive cases,” Surg. Neurol. 49(6), 640–649 (1998).
[CrossRef] [PubMed]

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med. 339(16), 1105–1111 (1998).
[CrossRef] [PubMed]

1997 (2)

1988 (1)

H. J. Colbassani, S. Nishio, K. M. Sweeney, R. A. E. Bakay, and Y. Takei, “CT-assisted stereotactic brain biopsy: value of intraoperative frozen section diagnosis,” J. Neurol. Neurosurg. Psychiatry 51(3), 332–341 (1988).
[CrossRef] [PubMed]

Adler, D. C.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

Aguirre, A. D.

Anderson, K. J.

Andrews, P. M.

Ardouin, C.

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med. 339(16), 1105–1111 (1998).
[CrossRef] [PubMed]

Bachman, M.

Bakay, R. A. E.

H. J. Colbassani, S. Nishio, K. M. Sweeney, R. A. E. Bakay, and Y. Takei, “CT-assisted stereotactic brain biopsy: value of intraoperative frozen section diagnosis,” J. Neurol. Neurosurg. Psychiatry 51(3), 332–341 (1988).
[CrossRef] [PubMed]

Baker, K. B.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[CrossRef] [PubMed]

Balaraju, S.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Bansal, A.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Benabid, A. L.

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med. 339(16), 1105–1111 (1998).
[CrossRef] [PubMed]

Benazzouz, A.

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med. 339(16), 1105–1111 (1998).
[CrossRef] [PubMed]

Biedermann, B. R.

Binder, D. K.

D. K. Binder, G. M. Rau, and P. A. Starr, “Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders,” Neurosurgery 56(4), 722–732, discussion 722–732 (2005).
[CrossRef] [PubMed]

D. K. Binder, G. Rau, and P. A. Starr, “Hemorrhagic complications of microelectrode-guided deep brain stimulation,” Stereotact. Funct. Neurosurg. 80(1-4), 28–31 (2003).
[CrossRef] [PubMed]

Boppart, S. A.

Bouma, B. E.

Brenner, M.

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

Brezinski, M. E.

Brodsky, M. A.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Brooks, D. J.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Brown, E.

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

Brown, J.

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

Burchiel, K.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Burris, N.

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

Cable, A.

Chahlavi, A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[CrossRef] [PubMed]

Chen, C. W.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[CrossRef] [PubMed]

Chen, Y.

Chen, Z.

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[CrossRef] [PubMed]

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005).
[CrossRef] [PubMed]

Chen, Z. P.

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Chu, C. R.

Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
[CrossRef] [PubMed]

Chumakov, Y.

Cobb, M. J.

Coffey, R. J.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Colbassani, H. J.

H. J. Colbassani, S. Nishio, K. M. Sweeney, R. A. E. Bakay, and Y. Takei, “CT-assisted stereotactic brain biopsy: value of intraoperative frozen section diagnosis,” J. Neurol. Neurosurg. Psychiatry 51(3), 332–341 (1988).
[CrossRef] [PubMed]

Colt, H.

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

Connolly, J.

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

Conry, M.

Courtney, B. K.

Dalvi, A.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Das, M.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Denisenko, A.

Denk, W.

Desai, N.

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

Dhawan, V.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Dixit, A.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Eigenwillig, C. M.

Elias, W. J.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Farhang, S.

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

Fedder, G. K.

Feldchtein, F.

Fishman, P. S.

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

Fleming, C. P.

C. P. Fleming, K. J. Quan, and A. M. Rollins, “Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography,” J. Biomed. Opt. 15(4), 041510 (2010).
[CrossRef] [PubMed]

Follett, K. A.

P. D. Sawin, P. W. Hitchon, K. A. Follett, and J. C. Torner, “Computed imaging-assisted stereotactic brain biopsy: a risk analysis of 225 consecutive cases,” Surg. Neurol. 49(6), 640–649 (1998).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gelikonov, G.

Gelikonov, V.

Gill, S.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Gladkova, N.

Gordon, M. L.

Griffiths, G.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Gu, C. H.

Gu, J. Y.

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

Guo, S.

Guo, S. G.

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Gupta, P. K.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Han, S.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

Hariz, M. I.

M. I. Hariz, “Complications of deep brain stimulation surgery,” Mov. Disord. 17(S3Suppl 3), S162–S166 (2002).
[CrossRef] [PubMed]

Heywood, P.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Hitchon, P. W.

P. D. Sawin, P. W. Hitchon, K. A. Follett, and J. C. Torner, “Computed imaging-assisted stereotactic brain biopsy: a risk analysis of 225 consecutive cases,” Surg. Neurol. 49(6), 640–649 (1998).
[CrossRef] [PubMed]

Hoffmann, D.

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med. 339(16), 1105–1111 (1998).
[CrossRef] [PubMed]

Hotton, G.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Huang, D.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[CrossRef] [PubMed]

Huang, S. W.

Huber, R.

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

Humayun, M.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

Izatt, J. A.

Jafri, M. S.

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
[CrossRef] [PubMed]

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

Jain, A.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Jan, M.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Jeon, S. W.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[CrossRef] [PubMed]

Jiang, J.

Kelly, P.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Kimmey, M. B.

Klein, T.

Kolios, M. C.

Kopa, A.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Krack, P.

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med. 339(16), 1105–1111 (1998).
[CrossRef] [PubMed]

Kreuter, K.

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

Kumar, S. K. V.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Kuranov, R.

Kuznetzova, I.

Kwon, M. H.

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

Lang, A. E.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Laws, E. R.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Lee, C. S.

Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Li, G. P.

Li, Q.

Li, X.

Li, Z.

Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
[CrossRef] [PubMed]

Limousin, P.

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med. 339(16), 1105–1111 (1998).
[CrossRef] [PubMed]

Liu, G.

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[CrossRef] [PubMed]

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

Liu, G. Y.

Liu, J.

Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Liu, X.

Lo, S.

Lozano, A.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Luk, T.

Ma, H. Z.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Mahon, S.

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

Mariampillai, A.

Matcham, J.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

McDowell, E. J.

Mok, A.

Moro, E.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Morofke, D.

Mukai, D.

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

Munce, N. R.

Naphas, R.

Nishio, S.

H. J. Colbassani, S. Nishio, K. M. Sweeney, R. A. E. Bakay, and Y. Takei, “CT-assisted stereotactic brain biopsy: value of intraoperative frozen section diagnosis,” J. Neurol. Neurosurg. Psychiatry 51(3), 332–341 (1988).
[CrossRef] [PubMed]

Nutt, J. G.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Onozato, M. L.

Paek, A.

Pan, Y.

Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
[CrossRef] [PubMed]

T. Xie, H. Xie, G. K. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers,” Appl. Opt. 42(31), 6422–6426 (2003).
[CrossRef] [PubMed]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
[CrossRef] [PubMed]

Pan, Y. T.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Patel, N. K.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Patterson, P. E.

J. M. Zara and P. E. Patterson, “Polyimide amplified piezoelectric scanning mirror for spectral domain optical coherence tomography,” Appl. Phys. Lett. 89(26), 263901 (2006).
[CrossRef]

Peavy, G. M.

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

Pekar, J.

Penn, R.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Perez, J.

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Pierson, R.

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

Pitris, C.

Pochinko, V.

Pollak, P.

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med. 339(16), 1105–1111 (1998).
[CrossRef] [PubMed]

Pop, M.

Poston, R.

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

Qi, B.

Quan, K. J.

C. P. Fleming, K. J. Quan, and A. M. Rollins, “Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography,” J. Biomed. Opt. 15(4), 041510 (2010).
[CrossRef] [PubMed]

Radhakrishnan, R. C.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Rao, D. K.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Rao, K. D.

Rau, G.

D. K. Binder, G. Rau, and P. A. Starr, “Hemorrhagic complications of microelectrode-guided deep brain stimulation,” Stereotact. Funct. Neurosurg. 80(1-4), 28–31 (2003).
[CrossRef] [PubMed]

Rau, G. M.

D. K. Binder, G. M. Rau, and P. A. Starr, “Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders,” Neurosurgery 56(4), 722–732, discussion 722–732 (2005).
[CrossRef] [PubMed]

Ren, J.

Rezai, A. R.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[CrossRef] [PubMed]

Ridgway, J. M.

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Rohwer, R. G.

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

Rollins, A. M.

C. P. Fleming, K. J. Quan, and A. M. Rollins, “Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography,” J. Biomed. Opt. 15(4), 041510 (2010).
[CrossRef] [PubMed]

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[CrossRef] [PubMed]

Roney, C. A.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Rubinstein, M.

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[CrossRef] [PubMed]

Saidi, A.

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[CrossRef] [PubMed]

Sarunic, M. V.

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

Sato, M.

Y. Takahashi, Y. Watanabe, and M. Sato, “High speed spectral domain optical coherence tomography with forward and side-imaging probe,” Jpn. J. Appl. Phys. 47(8), 6540–6543 (2008).
[CrossRef]

Sawin, P. D.

P. D. Sawin, P. W. Hitchon, K. A. Follett, and J. C. Torner, “Computed imaging-assisted stereotactic brain biopsy: a risk analysis of 225 consecutive cases,” Surg. Neurol. 49(6), 640–649 (1998).
[CrossRef] [PubMed]

Sawinski, J.

Schmitt, J.

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

Schmitt, J. M.

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

Schwartz, K.

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

Scott, B.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Seng-Yue, E.

Sepehr, A.

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Sergeev, A.

Shakhov, A.

Shakhova, N.

Shure, M. A.

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[CrossRef] [PubMed]

Smith, S. W.

Snopova, L.

Stacy, M.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Standish, B. A.

Starr, P. A.

D. K. Binder, G. M. Rau, and P. A. Starr, “Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders,” Neurosurgery 56(4), 722–732, discussion 722–732 (2005).
[CrossRef] [PubMed]

D. K. Binder, G. Rau, and P. A. Starr, “Hemorrhagic complications of microelectrode-guided deep brain stimulation,” Stereotact. Funct. Neurosurg. 80(1-4), 28–31 (2003).
[CrossRef] [PubMed]

P. A. Starr, “Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach,” Stereotact. Funct. Neurosurg. 79(3-4), 118–145 (2002).
[CrossRef] [PubMed]

Stoessl, A. J.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Streltzova, O.

Su, J. P.

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Summers, R. M.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Sweeney, K. M.

H. J. Colbassani, S. Nishio, K. M. Sweeney, R. A. E. Bakay, and Y. Takei, “CT-assisted stereotactic brain biopsy: value of intraoperative frozen section diagnosis,” J. Neurol. Neurosurg. Psychiatry 51(3), 332–341 (1988).
[CrossRef] [PubMed]

Takahashi, Y.

Y. Takahashi, Y. Watanabe, and M. Sato, “High speed spectral domain optical coherence tomography with forward and side-imaging probe,” Jpn. J. Appl. Phys. 47(8), 6540–6543 (2008).
[CrossRef]

Takei, Y.

H. J. Colbassani, S. Nishio, K. M. Sweeney, R. A. E. Bakay, and Y. Takei, “CT-assisted stereotactic brain biopsy: value of intraoperative frozen section diagnosis,” J. Neurol. Neurosurg. Psychiatry 51(3), 332–341 (1988).
[CrossRef] [PubMed]

Tang, C. M.

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
[CrossRef] [PubMed]

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

Tang, R.

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
[CrossRef] [PubMed]

Tang, R. S.

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

Tearney, G. J.

Torner, J. C.

P. D. Sawin, P. W. Hitchon, K. A. Follett, and J. C. Torner, “Computed imaging-assisted stereotactic brain biopsy: a risk analysis of 225 consecutive cases,” Surg. Neurol. 49(6), 640–649 (1998).
[CrossRef] [PubMed]

Toshinaga, O.

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

Totey, S. M.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Traub, M.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Turner, D.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Venkataramana, N. K.

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Vitkin, I. A.

Vokes, D.

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Waltzer, W. C.

Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Wang, F.

Wang, Y.

Wang, Z.

Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Watanabe, Y.

Y. Takahashi, Y. Watanabe, and M. Sato, “High speed spectral domain optical coherence tomography with forward and side-imaging probe,” Jpn. J. Appl. Phys. 47(8), 6540–6543 (2008).
[CrossRef]

Wierwille, J.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Wieser, W.

Wilson, B. C.

Wong, B. J.

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[CrossRef] [PubMed]

Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005).
[CrossRef] [PubMed]

Wong, B. J. F.

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Wooten, V. G. F.

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Wright, G. A.

Wu, J.

J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
[CrossRef] [PubMed]

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

Wu, J. G.

Xie, H.

Xie, H. K.

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

Xie, T.

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

T. Xie, H. Xie, G. K. Fedder, and Y. Pan, “Endoscopic optical coherence tomography with a modified microelectromechanical systems mirror for detection of bladder cancers,” Appl. Opt. 42(31), 6422–6426 (2003).
[CrossRef] [PubMed]

Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
[CrossRef] [PubMed]

Xu, B. Y.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Yang, C.

J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
[CrossRef] [PubMed]

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

Yang, C. H.

Yang, V. X.

Yang, V. X. D.

Yaqoob, Z.

Yazdanfar, S.

Yu, L.

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[CrossRef] [PubMed]

Yu, L. F.

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Yuan, S.

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[CrossRef] [PubMed]

Yuan, S. A.

Yuan, Z.

Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

Zara, J. M.

J. M. Zara and P. E. Patterson, “Polyimide amplified piezoelectric scanning mirror for spectral domain optical coherence tomography,” Appl. Phys. Lett. 89(26), 263901 (2006).
[CrossRef]

J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett. 28(8), 628–630 (2003).
[CrossRef] [PubMed]

Zhou, C.

Ann. Neurol. (1)

A. E. Lang, S. Gill, N. K. Patel, A. Lozano, J. G. Nutt, R. Penn, D. J. Brooks, G. Hotton, E. Moro, P. Heywood, M. A. Brodsky, K. Burchiel, P. Kelly, A. Dalvi, B. Scott, M. Stacy, D. Turner, V. G. F. Wooten, W. J. Elias, E. R. Laws, V. Dhawan, A. J. Stoessl, J. Matcham, R. J. Coffey, and M. Traub, “Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease,” Ann. Neurol. 59(3), 459–466 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. M. Zara and P. E. Patterson, “Polyimide amplified piezoelectric scanning mirror for spectral domain optical coherence tomography,” Appl. Phys. Lett. 89(26), 263901 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Jain, A. Kopa, Y. T. Pan, G. K. Fedder, and H. K. Xie, “A two-axis electrothermal micromirror for endoscopic optical coherence tomography,” IEEE J. Sel. Top. Quantum Electron. 10(3), 636–642 (2004).
[CrossRef]

J. Biomed. Opt. (8)

Z. Wang, C. S. Lee, W. C. Waltzer, J. Liu, H. Xie, Z. Yuan, and Y. Pan, “In vivo bladder imaging with microelectromechanical-systems-based endoscopic spectral domain optical coherence tomography,” J. Biomed. Opt. 12(3), 034009 (2007).
[CrossRef] [PubMed]

C. P. Fleming, K. J. Quan, and A. M. Rollins, “Toward guidance of epicardial cardiac radiofrequency ablation therapy using optical coherence tomography,” J. Biomed. Opt. 15(4), 041510 (2010).
[CrossRef] [PubMed]

M. S. Jafri, S. Farhang, R. S. Tang, N. Desai, P. S. Fishman, R. G. Rohwer, C. M. Tang, and J. M. Schmitt, “Optical coherence tomography in the diagnosis and treatment of neurological disorders,” J. Biomed. Opt. 10(5), 051603 (2005).
[CrossRef] [PubMed]

S. Han, M. V. Sarunic, J. Wu, M. Humayun, and C. Yang, “Handheld forward-imaging needle endoscope for ophthalmic optical coherence tomography inspection,” J. Biomed. Opt. 13(2), 020505 (2008).
[CrossRef] [PubMed]

T. Xie, G. Liu, K. Kreuter, S. Mahon, H. Colt, D. Mukai, G. M. Peavy, Z. Chen, and M. Brenner, “In vivo three-dimensional imaging of normal tissue and tumors in the rabbit pleural cavity using endoscopic swept source optical coherence tomography with thoracoscopic guidance,” J. Biomed. Opt. 14(6), 064045 (2009).
[CrossRef] [PubMed]

L. Yu, G. Liu, M. Rubinstein, A. Saidi, B. J. Wong, and Z. Chen, “Office-based dynamic imaging of vocal cords in awake patients with swept-source optical coherence tomography,” J. Biomed. Opt. 14(6), 064020 (2009).
[CrossRef] [PubMed]

S. G. Guo, L. F. Yu, A. Sepehr, J. Perez, J. P. Su, J. M. Ridgway, D. Vokes, B. J. F. Wong, and Z. P. Chen, “Gradient-index lens rod based probe for office-based optical coherence tomography of the human larynx,” J. Biomed. Opt. 14(1), 014017 (2009).
[CrossRef] [PubMed]

Y. Pan, Z. Li, T. Xie, and C. R. Chu, “Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage,” J. Biomed. Opt. 8(4), 648–654 (2003).
[CrossRef] [PubMed]

J. Neurol. Neurosurg. Psychiatry (1)

H. J. Colbassani, S. Nishio, K. M. Sweeney, R. A. E. Bakay, and Y. Takei, “CT-assisted stereotactic brain biopsy: value of intraoperative frozen section diagnosis,” J. Neurol. Neurosurg. Psychiatry 51(3), 332–341 (1988).
[CrossRef] [PubMed]

J. Neurosci. Methods (2)

M. S. Jafri, R. Tang, and C. M. Tang, “Optical coherence tomography guided neurosurgical procedures in small rodents,” J. Neurosci. Methods 176(2), 85–95 (2009).
[CrossRef] [PubMed]

S. W. Jeon, M. A. Shure, K. B. Baker, D. Huang, A. M. Rollins, A. Chahlavi, and A. R. Rezai, “A feasibility study of optical coherence tomography for guiding deep brain probes,” J. Neurosci. Methods 154(1-2), 96–101 (2006).
[CrossRef] [PubMed]

J. Thorac. Cardiovasc. Surg. (1)

N. Burris, K. Schwartz, C. M. Tang, M. S. Jafri, J. Schmitt, M. H. Kwon, O. Toshinaga, J. Y. Gu, J. Brown, E. Brown, R. Pierson, and R. Poston, “Catheter-based infrared light scanner as a tool to assess conduit quality in coronary artery bypass surgery,” J. Thorac. Cardiovasc. Surg. 133(2), 419–427 (2007).
[CrossRef] [PubMed]

Jpn. J. Appl. Phys. (1)

Y. Takahashi, Y. Watanabe, and M. Sato, “High speed spectral domain optical coherence tomography with forward and side-imaging probe,” Jpn. J. Appl. Phys. 47(8), 6540–6543 (2008).
[CrossRef]

Mov. Disord. (1)

M. I. Hariz, “Complications of deep brain stimulation surgery,” Mov. Disord. 17(S3Suppl 3), S162–S166 (2002).
[CrossRef] [PubMed]

N. Engl. J. Med. (1)

P. Limousin, P. Krack, P. Pollak, A. Benazzouz, C. Ardouin, D. Hoffmann, and A. L. Benabid, “Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease,” N. Engl. J. Med. 339(16), 1105–1111 (1998).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. C. Adler, Y. Chen, R. Huber, J. Schmitt, J. Connolly, and J. G. Fujimoto, “Three-dimensional endomicroscopy using optical coherence tomography,” Nat. Photonics 1(12), 709–716 (2007).
[CrossRef]

Neurosurgery (1)

D. K. Binder, G. M. Rau, and P. A. Starr, “Risk factors for hemorrhage during microelectrode-guided deep brain stimulator implantation for movement disorders,” Neurosurgery 56(4), 722–732, discussion 722–732 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

A. Sergeev, V. Gelikonov, G. Gelikonov, F. Feldchtein, R. Kuranov, N. Gladkova, N. Shakhova, L. Snopova, A. Shakhov, I. Kuznetzova, A. Denisenko, V. Pochinko, Y. Chumakov, and O. Streltzova, “In vivo endoscopic OCT imaging of precancer and cancer states of human mucosa,” Opt. Express 1(13), 432–440 (1997).
[CrossRef] [PubMed]

A. D. Aguirre, J. Sawinski, S. W. Huang, C. Zhou, W. Denk, and J. G. Fujimoto, “High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe,” Opt. Express 18(5), 4222–4239 (2010).
[CrossRef] [PubMed]

T. Xie, S. Guo, Z. Chen, D. Mukai, and M. Brenner, “GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking,” Opt. Express 14(8), 3238–3246 (2006).
[CrossRef] [PubMed]

Q. Li, M. L. Onozato, P. M. Andrews, C. W. Chen, A. Paek, R. Naphas, S. A. Yuan, J. Jiang, A. Cable, and Y. Chen, “Automated quantification of microstructural dimensions of the human kidney using optical coherence tomography (OCT),” Opt. Express 17(18), 16000–16016 (2009).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

V. X. D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): System design, signal processing, and performance,” Opt. Express 11(7), 794–809 (2003).
[CrossRef] [PubMed]

Opt. Lett. (11)

D. Morofke, M. C. Kolios, I. A. Vitkin, and V. X. D. Yang, “Wide dynamic range detection of bidirectional flow in Doppler optical coherence tomography using a two-dimensional Kasai estimator,” Opt. Lett. 32(3), 253–255 (2007).
[CrossRef] [PubMed]

J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
[CrossRef] [PubMed]

S. Yuan, Q. Li, J. Jiang, A. Cable, and Y. Chen, “Three-dimensional coregistered optical coherence tomography and line-scanning fluorescence laminar optical tomography,” Opt. Lett. 34(11), 1615–1617 (2009).
[CrossRef] [PubMed]

J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[CrossRef] [PubMed]

N. R. Munce, A. Mariampillai, B. A. Standish, M. Pop, K. J. Anderson, G. Y. Liu, T. Luk, B. K. Courtney, G. A. Wright, I. A. Vitkin, and V. X. Yang, “Electrostatic forward-viewing scanning probe for Doppler optical coherence tomography using a dissipative polymer catheter,” Opt. Lett. 33(7), 657–659 (2008).
[CrossRef] [PubMed]

J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett. 28(8), 628–630 (2003).
[CrossRef] [PubMed]

Y. Pan, H. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
[CrossRef] [PubMed]

S. A. Boppart, B. E. Bouma, C. Pitris, G. J. Tearney, J. G. Fujimoto, and M. E. Brezinski, “Forward-imaging instruments for optical coherence tomography,” Opt. Lett. 22(21), 1618–1620 (1997).
[CrossRef] [PubMed]

X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
[CrossRef] [PubMed]

M. J. Cobb, X. Liu, and X. Li, “Continuous focus tracking for real-time optical coherence tomography,” Opt. Lett. 30(13), 1680–1682 (2005).
[CrossRef] [PubMed]

Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

S. Yuan, C. A. Roney, J. Wierwille, C. W. Chen, B. Y. Xu, G. Griffiths, J. Jiang, H. Z. Ma, A. Cable, R. M. Summers, and Y. Chen, “Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging,” Phys. Med. Biol. 55(1), 191–206 (2010).
[CrossRef] [PubMed]

Stereotact. Funct. Neurosurg. (2)

D. K. Binder, G. Rau, and P. A. Starr, “Hemorrhagic complications of microelectrode-guided deep brain stimulation,” Stereotact. Funct. Neurosurg. 80(1-4), 28–31 (2003).
[CrossRef] [PubMed]

P. A. Starr, “Placement of deep brain stimulators into the subthalamic nucleus or Globus pallidus internus: technical approach,” Stereotact. Funct. Neurosurg. 79(3-4), 118–145 (2002).
[CrossRef] [PubMed]

Surg. Neurol. (1)

P. D. Sawin, P. W. Hitchon, K. A. Follett, and J. C. Torner, “Computed imaging-assisted stereotactic brain biopsy: a risk analysis of 225 consecutive cases,” Surg. Neurol. 49(6), 640–649 (1998).
[CrossRef] [PubMed]

Transl. Res. (1)

N. K. Venkataramana, S. K. V. Kumar, S. Balaraju, R. C. Radhakrishnan, A. Bansal, A. Dixit, D. K. Rao, M. Das, M. Jan, P. K. Gupta, and S. M. Totey, “Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson’s disease,” Transl. Res. 155(2), 62–70 (2010).
[CrossRef] [PubMed]

Supplementary Material (5)

» Media 1: AVI (2733 KB)     
» Media 2: AVI (1637 KB)     
» Media 3: AVI (3604 KB)     
» Media 4: AVI (3711 KB)     
» Media 5: AVI (5012 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(A) Schematic of the handheld OCT system. FC: fiber coupler; PC: polarization controller; C: collimator, BD: balanced detector, MZI: Mach-Zehnder interferometer (frequency clocks), DAQ: data acquisition board, M: mirror, GSM: galvonometer scanning mirror, O: objective lens, AS: alignment stages, GL: GRIN lens needle. (B) GRIN needle. (C) GRIN needle placed beside a U.S. dime.

Fig. 2
Fig. 2

(A) An OCT image of lemon acquired by a forward-imaging OCT probe. The scale bar is 0.25 mm. (B) The axial intensity plot of a highly reflective mirror. The axial resolution determined by FWHM is 17 μm in air (or 12 μm in tissue). (C) The intensity plot across a sharp edge on a US Air Force target. The transverse resolution determined by 10-90% positions is 13 μm.

Fig. 3
Fig. 3

Compression of a vessel by the OCT probe (Media 1, 2, 3). All the videos are from the same vessel. The bright line on the top of the images is the junction between GRIN rod lens and the transparent cap. The front curved surface of cap had direct contact with the tissue. The scale bar in all videos and the figure is 0.25 mm. (A) The OCT/DOCT superimposed image from Media 1 shows a vessel 0.65 mm in front of the probe. (B) The superimposed image from Media 2 shows a vessel right in front of the probe (C) The superimposed image from Media 3 shows the vessel was compressed by the probe.

Fig. 4
Fig. 4

The quantification of pulsation by flow velocity variance. The first row shows Doppler images at different time points specified in the second row. The third row shows the corresponding velocity variance images. The black rectangle shows the ROI. The value of flow velocity variance in the plot is the average value of ROI. The dashed lines indicate the time points of the corresponding image set. The scale bar is 0.2 mm.

Fig. 5
Fig. 5

Displacement of the blood vessel by the probe (Media 4). The images from A-D are in sequence as the probe was advancing. The scale bar in the video and the figure is 0.25 mm. The OCT/DOCT superimposed image of a vessel (A) 0.75 mm in front of the probe, (B) 0.35 mm in front of the probe with the vessel was being pushed aside, (C) 0.35 mm in front of the probe with the vessel was pushed further away from the probe, and (D) after the probe had passed the vessel.

Fig. 6
Fig. 6

OCT and OCT/DOCT superimposed images of rat femoral vessels. The scale bar represents 0.25 mm. (A) OCT image of femoral artery. (B) Superimposed image of femoral artery. (C) OCT image of femoral vein. (D) Superimposed image of femoral vein.

Fig. 7
Fig. 7

A camera image of the needle-type OCT probe sitting on top of the human basal ganglia with the full-track reconstructed OCT image (Media 5). In Media 5, the scale bar on the left represents 0.25 mm and the scale bar on the right represents 3 mm. The probe on top of the brain tissue shows relative dimension and the direction of insertion (from top right to bottom left). The full-track OCT image is placed proximal to the insertion passage. Major structure are labeled: extreme capsule (ex), claustrum (Cl), external capsule (ec), putamen (PUT), lateral medullary lamina (lml), globus pallidus externa (GPe) and globus pallidus interna (GPi). The width of the reconstructed OCT images in both Media 5 and this figure are expanded for better visualization. The real width is 0.44 mm.

Metrics