Abstract

This paper proposes an automatic algorithm for the montage of OCT data sets, which produces a composite 3D OCT image over a large field of view out of several separate, partially overlapping OCT data sets. First the OCT fundus images (OFIs) are registered, using blood vessel ridges as the feature of interest and a two step iterative procedure to minimize the distance between all matching point pairs over the set of OFIs. Then the OCT data sets are merged to form a full 3D montage using cross-correlation. The algorithm was tested using an imaging protocol consisting of 8 OCT images for each eye, overlapping to cover a total retinal region of approximately 50x35 degrees. The results for 3 normal eyes and 3 eyes with retinal degeneration are analyzed, showing registration errors of 1.5±0.3 and 2.0±0.8 pixels respectively.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
    [CrossRef] [PubMed]
  2. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [CrossRef] [PubMed]
  3. B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
    [CrossRef] [PubMed]
  4. T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
    [CrossRef] [PubMed]
  5. M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
    [CrossRef] [PubMed]
  6. S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
    [CrossRef] [PubMed]
  7. Y. Yu and H. Peng, “Automated high speed stitching of large 3D microscopic images,” Proc. of IEEE 2011 International Symposium on Biomedical Imaging: From Nano to Macro 238–241 (2011).
  8. J. Yoo, I. V. Larina, K. V. Larin, M. E. Dickinson, and M. Liebling, “Increasing the field-of-view of dynamic cardiac OCT via post-acquisition mosaicing without affecting frame-rate or spatial resolution,” Biomed. Opt. Express 2(9), 2614–2622 (2011).
    [CrossRef] [PubMed]
  9. S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
    [CrossRef] [PubMed]
  10. M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
    [CrossRef] [PubMed]
  11. M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).
  12. Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
    [PubMed]
  13. R. Szeliski, “Image alignment and stitching: A tutorial,” MSR-TR-2004–92, Microsoft Research (2004).
  14. X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
    [CrossRef]
  15. H. Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with global and local alignment,” Int. J. Comput. Vis. 36(2), 101–130 (2000).
    [CrossRef]
  16. D. L. Milgram, “Computer Methods for Creating Photomosaics,” IEEE Trans. Comput. C-24(11), 1113–1119 (1975).
    [CrossRef]
  17. G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
    [CrossRef] [PubMed]
  18. A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
    [PubMed]
  19. P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).
  20. D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
    [CrossRef] [PubMed]
  21. A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
    [CrossRef]
  22. S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model,” Proc. SPIE Medical Imaging 6914, 91435 (2008).
  23. G. H. Yang and C. V. Stewart, “Covariance-driven mosaic formation from sparsely-overlapping image sets with application to retinal image mosaicing,” Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1, 804–810 (2004).
  24. T. E. Choe, I. Cohen, M. Lee, and G. Medioni, “Optimal global mosaic generation from retinal images,” Proceedings of 18th International Conference on Pattern Recognition 3, 681–684 (2006).
  25. W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
    [CrossRef]
  26. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
    [CrossRef]
  27. J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
    [CrossRef] [PubMed]
  28. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
    [CrossRef]
  29. Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
    [CrossRef] [PubMed]
  30. A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
    [CrossRef]
  31. T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
    [CrossRef] [PubMed]
  32. S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE  6914, 91435 (2008).
  33. M. Sofka, Y. Gehua, and C. V. Stewart, “Simultaneous Covariance Driven Correspondence (CDC) and Transformation Estimation in the Expectation Maximization Framework,” Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on 1–8 (2007).
  34. Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).
  35. T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009).
    [CrossRef] [PubMed]
  36. G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
    [PubMed]
  37. Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
    [CrossRef] [PubMed]

2011 (5)

2010 (5)

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[CrossRef] [PubMed]

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[CrossRef] [PubMed]

Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]

X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[CrossRef]

2009 (4)

T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009).
[CrossRef] [PubMed]

Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[CrossRef] [PubMed]

2008 (3)

S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE  6914, 91435 (2008).

M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[CrossRef] [PubMed]

2007 (2)

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[CrossRef]

G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[CrossRef] [PubMed]

2006 (2)

P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).

T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[CrossRef] [PubMed]

2002 (2)

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[CrossRef]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[CrossRef]

2000 (1)

H. Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with global and local alignment,” Int. J. Comput. Vis. 36(2), 101–130 (2000).
[CrossRef]

1999 (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

1998 (1)

D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[CrossRef] [PubMed]

1996 (1)

A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]

1975 (1)

D. L. Milgram, “Computer Methods for Creating Photomosaics,” IEEE Trans. Comput. C-24(11), 1113–1119 (1975).
[CrossRef]

Abramoff, M. D.

S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE  6914, 91435 (2008).

M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).

Abràmoft, M. D.

Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]

Aguilar, W.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[CrossRef]

Araie, M.

Bajraszewski, T.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[CrossRef] [PubMed]

Barry, S.

Baumann, B.

Bay, H.

P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).

Becker, D. E.

D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[CrossRef] [PubMed]

Biedermann, B. R.

Bridgford, T.

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[CrossRef] [PubMed]

Burkhardt, H.

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

Cable, A. E.

Can, A.

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[CrossRef]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[CrossRef]

D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[CrossRef] [PubMed]

Cattin, P. C.

P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).

Chan, K. P.

Chanwimaluang, T.

T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
[CrossRef] [PubMed]

Dai, X.

J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[CrossRef] [PubMed]

Datiles, M. B.

A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]

Deng, K.

J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[CrossRef] [PubMed]

Dickinson, M. E.

Drexler, W.

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[CrossRef] [PubMed]

Driever, W.

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

Duker, J. S.

Eigenwillig, C. M.

Emmenlauer, M.

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

Escolano, F.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[CrossRef]

Espinosa-Romero, A.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[CrossRef]

Fabritius, T.

Fan, G. L.

T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
[CrossRef] [PubMed]

Fang, X.

X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[CrossRef]

Feuer, W. J.

G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Filippi, A.

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

Flanagan, J. G.

Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).

Fransen, S. R.

T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
[CrossRef] [PubMed]

Frauel, Y.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[CrossRef]

Fujimoto, J. G.

Fukuma, Y.

Garvin, M. K.

Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]

M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).

Ginneken, B. V.

M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).

Gorczynska, I.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[CrossRef] [PubMed]

Gregori, G.

G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[CrossRef] [PubMed]

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[CrossRef] [PubMed]

Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).

S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[CrossRef] [PubMed]

Gregori, N. Z.

G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Griffa, A.

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

Hangai, M.

Hermann, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[CrossRef] [PubMed]

Hofer, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[CrossRef] [PubMed]

Hood, D. C.

Hu, Z.

Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]

Huang, D.

Huang, X. R.

Huber, R.

Hutchings, N.

Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).

Jiao, S. L.

Kaiser-Kupfer, M. I.

A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]

Kajic, V.

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[CrossRef] [PubMed]

Klein, T.

Knighton, R.

Knighton, R. W.

Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[CrossRef] [PubMed]

Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).

Kowalczyk, A.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[CrossRef] [PubMed]

Kuehl, E. M.

A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]

Larin, K. V.

Larina, I. V.

Lee, K.

Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]

Lee, S.

S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE  6914, 91435 (2008).

Li, Y.

Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[CrossRef] [PubMed]

Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).

Liebling, M.

Lowe, D. G.

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

Lozano, M. A.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[CrossRef]

Lujan, B. J.

Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[CrossRef] [PubMed]

G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Lujan, R. J.

Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).

Luo, B.

X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[CrossRef]

Mahurkar, A. A.

A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]

Makita, S.

Martinez-Perez, M. E.

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[CrossRef]

Milgram, D. L.

D. L. Milgram, “Computer Methods for Creating Photomosaics,” IEEE Trans. Comput. C-24(11), 1113–1119 (1975).
[CrossRef]

Miura, M.

Myllylä, R.

Niemeijer, M.

Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]

M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).

Nitschke, R.

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

Penha, F.

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[CrossRef] [PubMed]

Ponti, A.

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

Potsaid, B.

Povazay, B.

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[CrossRef] [PubMed]

Preibisch, S.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[CrossRef] [PubMed]

Puliafito, C. A.

G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[CrossRef] [PubMed]

Radzewicz, C.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[CrossRef] [PubMed]

Raza, A. S.

Reinhardt, J. M.

S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE  6914, 91435 (2008).

Reisman, C. A.

Ronneberger, O.

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

Rosenfeld, P. J.

G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[CrossRef] [PubMed]

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[CrossRef] [PubMed]

Roysam, B.

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[CrossRef]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[CrossRef]

D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[CrossRef] [PubMed]

Saalfeld, S.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Schuman, J. S.

Schwarb, P.

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

Shum, H. Y.

H. Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with global and local alignment,” Int. J. Comput. Vis. 36(2), 101–130 (2000).
[CrossRef]

Simpson, E.

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[CrossRef] [PubMed]

Sofka, M.

G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[CrossRef] [PubMed]

Sonka, M.

M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).

Stewart, C. V.

G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[CrossRef] [PubMed]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[CrossRef]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[CrossRef]

Szekely, G.

P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).

Szeliski, R.

H. Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with global and local alignment,” Int. J. Comput. Vis. 36(2), 101–130 (2000).
[CrossRef]

Tanenbaum, H. L.

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[CrossRef]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[CrossRef]

D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[CrossRef] [PubMed]

Tang, J.

X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[CrossRef]

Targowski, P.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[CrossRef] [PubMed]

Tian, J.

J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[CrossRef] [PubMed]

Tomancak, P.

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[CrossRef] [PubMed]

Tomidokoro, A.

Trus, B. L.

A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]

Tsai, C. L.

G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[CrossRef] [PubMed]

Turner, J. N.

D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[CrossRef] [PubMed]

Van Gool, L.

P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).

Vivino, M. A.

A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]

Wang, F. H.

G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Wang, Z. G.

Wasilewski, W.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[CrossRef] [PubMed]

Wieser, W.

Wojtkowski, M.

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[CrossRef] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Xu, M.

J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[CrossRef] [PubMed]

Yang, G. H.

G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[CrossRef] [PubMed]

Yang, Q.

Yasuno, Y.

Yehoshua, Z.

G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[CrossRef] [PubMed]

Yoo, J.

Yoshimura, N.

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

Zhai, S.

X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[CrossRef]

Zhang, X.

J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[CrossRef] [PubMed]

Zhao, H.

X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[CrossRef]

Zheng, J.

J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

M. Wojtkowski, T. Bajraszewski, I. Gorczyńska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical coherence tomography,” Am. J. Ophthalmol. 138(3), 412–419 (2004).
[CrossRef] [PubMed]

Bioinformatics (1)

S. Preibisch, S. Saalfeld, and P. Tomancak, “Globally optimal stitching of tiled 3D microscopic image acquisitions,” Bioinformatics 25(11), 1463–1465 (2009).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

IEEE Trans. Biomed. Eng. (1)

D. E. Becker, A. Can, J. N. Turner, H. L. Tanenbaum, and B. Roysam, “Image processing algorithms for retinal montage synthesis, mapping, and real-time location determination,” IEEE Trans. Biomed. Eng. 45(1), 105–118 (1998).
[CrossRef] [PubMed]

IEEE Trans. Comput. (1)

D. L. Milgram, “Computer Methods for Creating Photomosaics,” IEEE Trans. Comput. C-24(11), 1113–1119 (1975).
[CrossRef]

IEEE Trans. Inf. Technol. Biomed. (2)

J. Zheng, J. Tian, K. Deng, X. Dai, X. Zhang, and M. Xu, “Salient feature region: a new method for retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 15(2), 221–232 (2011).
[CrossRef] [PubMed]

T. Chanwimaluang, G. L. Fan, and S. R. Fransen, “Hybrid retinal image registration,” IEEE Trans. Inf. Technol. Biomed. 10(1), 129–142 (2006).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (3)

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347–364 (2002).
[CrossRef]

A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation of high-order image-to-mosaic transformations: Mosaicing the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 412–419 (2002).
[CrossRef]

G. H. Yang, C. V. Stewart, M. Sofka, and C. L. Tsai, “Registration of challenging image pairs: initialization, estimation, and decision,” IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1973–1989 (2007).
[CrossRef] [PubMed]

IET Comput. Vision (1)

X. Fang, B. Luo, H. Zhao, J. Tang, and S. Zhai, “New multi-resolution image stitching with local and global alignment,” IET Comput. Vision 4(4), 231–246 (2010).
[CrossRef]

Int. J. Comput. Vis. (2)

H. Y. Shum and R. Szeliski, “Construction of panoramic image mosaics with global and local alignment,” Int. J. Comput. Vis. 36(2), 101–130 (2000).
[CrossRef]

D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (2)

A. A. Mahurkar, M. A. Vivino, B. L. Trus, E. M. Kuehl, M. B. Datiles, and M. I. Kaiser-Kupfer, “Constructing retinal fundus photomontages. A new computer-based method,” Invest. Ophthalmol. Vis. Sci. 37(8), 1675–1683 (1996).
[PubMed]

B. Povazay, B. Hermann, B. Hofer, V. Kajić, E. Simpson, T. Bridgford, and W. Drexler, “Wide-field optical coherence tomography of the choroid in vivo,” Invest. Ophthalmol. Vis. Sci. 50(4), 1856–1863 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt. (1)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4(1), 95–105 (1999).
[CrossRef]

J. Microsc. (1)

M. Emmenlauer, O. Ronneberger, A. Ponti, P. Schwarb, A. Griffa, A. Filippi, R. Nitschke, W. Driever, and H. Burkhardt, “XuvTools: free, fast and reliable stitching of large 3D datasets,” J. Microsc. 233(1), 42–60 (2009).
[CrossRef] [PubMed]

Lect. Notes Comput. Sci. (1)

W. Aguilar, M. E. Martinez-Perez, Y. Frauel, F. Escolano, M. A. Lozano, and A. Espinosa-Romero, “Graph-based methods for retinal mosaicing and vascular characterization,” Lect. Notes Comput. Sci. 4538, 25–36 (2007).
[CrossRef]

Med. Image Comput. Comput. Assist. Interv. (2)

P. C. Cattin, H. Bay, L. Van Gool, and G. Szekely, “Retina mosaicing using local features,” Med. Image Comput. Comput. Assist. Interv. 4191, 185–192 (2006).

Z. Hu, M. Niemeijer, M. D. Abràmoft, K. Lee, and M. K. Garvin, “Automated segmentation of 3-D spectral OCT retinal blood vessels by neural canal opening false positive suppression,” Med. Image Comput. Comput. Assist. Interv. 13(Pt 3), 33–40 (2010).
[PubMed]

Ophthalmic Surg. Lasers Imaging (1)

Z. Yehoshua, P. J. Rosenfeld, G. Gregori, and F. Penha, “Spectral domain optical coherence tomography imaging of dry age-related macular degeneration,” Ophthalmic Surg. Lasers Imaging 41(6Suppl), S6–S14 (2010).
[CrossRef] [PubMed]

Ophthalmology (1)

G. Gregori, F. H. Wang, P. J. Rosenfeld, Z. Yehoshua, N. Z. Gregori, B. J. Lujan, C. A. Puliafito, and W. J. Feuer, “Spectral domain optical coherence tomography imaging of drusen in nonexudative age-related macular degeneration,” Ophthalmology 118(7), 1373–1379 (2011).
[PubMed]

Opt. Express (6)

Q. Yang, C. A. Reisman, Z. G. Wang, Y. Fukuma, M. Hangai, N. Yoshimura, A. Tomidokoro, M. Araie, A. S. Raza, D. C. Hood, and K. P. Chan, “Automated layer segmentation of macular OCT images using dual-scale gradient information,” Opt. Express 18(20), 21293–21307 (2010).
[CrossRef] [PubMed]

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[CrossRef] [PubMed]

T. Klein, W. Wieser, C. M. Eigenwillig, B. R. Biedermann, and R. Huber, “Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser,” Opt. Express 19(4), 3044–3062 (2011).
[CrossRef] [PubMed]

S. L. Jiao, R. Knighton, X. R. Huang, G. Gregori, and C. A. Puliafito, “Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography,” Opt. Express 13(2), 444–452 (2005).
[CrossRef] [PubMed]

Y. Li, G. Gregori, R. W. Knighton, B. J. Lujan, and P. J. Rosenfeld, “Registration of OCT fundus images with color fundus photographs based on blood vessel ridges,” Opt. Express 19(1), 7–16 (2011).
[CrossRef] [PubMed]

T. Fabritius, S. Makita, M. Miura, R. Myllylä, and Y. Yasuno, “Automated segmentation of the macula by optical coherence tomography,” Opt. Express 17(18), 15659–15669 (2009).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Niemeijer, M. K. Garvin, B. V. Ginneken, M. Sonka, and M. D. Abramoff, “Vessel segmentation in 3D spectral OCT scans of the retina,” Proc. SPIE 6914, 69141R (2008).

Proc. SPIE. (1)

Y. Li, N. Hutchings, R. W. Knighton, G. Gregori, R. J. Lujan, and J. G. Flanagan, “Ridge-branch-based blood vessel detection algorithm for multimodal retinal images,” Proc. SPIE. 7259, 72594K (2009).

Other (7)

S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model - art. no. 691435,” Proc. SPIE  6914, 91435 (2008).

M. Sofka, Y. Gehua, and C. V. Stewart, “Simultaneous Covariance Driven Correspondence (CDC) and Transformation Estimation in the Expectation Maximization Framework,” Computer Vision and Pattern Recognition, 2007. CVPR '07. IEEE Conference on 1–8 (2007).

S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Retinal image mosaicing using the radial distortion correction model,” Proc. SPIE Medical Imaging 6914, 91435 (2008).

G. H. Yang and C. V. Stewart, “Covariance-driven mosaic formation from sparsely-overlapping image sets with application to retinal image mosaicing,” Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1, 804–810 (2004).

T. E. Choe, I. Cohen, M. Lee, and G. Medioni, “Optimal global mosaic generation from retinal images,” Proceedings of 18th International Conference on Pattern Recognition 3, 681–684 (2006).

R. Szeliski, “Image alignment and stitching: A tutorial,” MSR-TR-2004–92, Microsoft Research (2004).

Y. Yu and H. Peng, “Automated high speed stitching of large 3D microscopic images,” Proc. of IEEE 2011 International Symposium on Biomedical Imaging: From Nano to Macro 238–241 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Protocol for sample image acquisition. This montage involves 8 partially overlapping OCT data sets for a given eye.

Fig. 2
Fig. 2

Comparison between the OFI (sum of all intensities along the A-scans) and the enhanced OFI for two sample data sets. Panel A shows a typical B-scan. The same B-scan appears in B with a superimposed RPE segmentation line. C.1 and D.1 are the OFIs. C.2 and D.2 are the corresponding enhanced OFIs. Notice that our very simple algorithm can results in some artifacts (arrows), but its performance is quite satisfactory for the present purposes.

Fig. 3
Fig. 3

Global alignment for a simplified montage of three OFIs. (A) A direct registration relationship exists for two image pairs: (Oa, Oc), and (Ob, Oc). (B) Let Oa be the anchor, and construct a montage. (C) Consider every possible combination of overlapping image pairs, and identify matching point pairs for each. New registration constraints are introduced for the image pair (Oa,Ob).

Fig. 4
Fig. 4

Example montage results of enhanced OFIs for one normal eye (left) and one eye with retinitis pigmentosa (right).

Fig. 5
Fig. 5

OFI montage (left) and a B-scan (right) from the corresponding OCT montage. The position of the B-scan is shown by the red horizontal line. The width of the transition regions is a single pixel.

Fig. 6
Fig. 6

Retinal thickness maps montage for a normal eye.

Tables (1)

Tables Icon

Table 1 Averages and standard deviations (within parentheses) of RMSE values (in pixels) for the different image pairs as well as the whole montage. For our data sets a pixel corresponds to 30 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

[X,Y,1]=[x,y,1] T j =[x,y,1][ a 1,j a 2,j 0 a 2,j a 1,j 0 a 3,j a 4,j 1 ]
Ν = ( A 2 ,, A n ) T .
( 0,x,y,1,0,0,x',y',1,0,0 0,y,x,0,1,0,y',x',0,1,0 )
MN=b

Metrics