Abstract

An improved image processing procedure for suppressing the phase noise due to a motion artifact acquired during optical coherence tomography scanning and effectively illustrating the blood vessel distribution in a living tissue is demonstrated. This new processing procedure and the widely used procedure for micro-angiography application are based on the selection of high-frequency components in the spatial-frequency spectrum of B-mode scanning (x-space), which are contributed from the image portions of moving objects. However, by switching the processing order between the x-space and k-space, the new processing procedure shows the superior function of effectively suppressing the phase noise due to a motion artifact. After the blood vessel positions are precisely acquired based on the new processing procedure, the projected blood flow speed can be more accurately calibrated based on a previously reported method. The demonstrated new procedure is useful for clinical micro-angiography application, in which a stepping motor of generating motion artifacts is usually used in the scanning probe.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. P. Chen, T. E. Milner, D. Dave, and J. S. Nelson, “Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media,” Opt. Lett. 22(1), 64–66 (1997).
    [CrossRef] [PubMed]
  2. J. Zhang and Z. P. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7457 (2005).
    [CrossRef] [PubMed]
  3. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M.J.C. van Gemert, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22(14), 1119–1121 (1997).
    [CrossRef] [PubMed]
  4. Y. Zhao, Z. P. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, “Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity,” Opt. Lett. 25(2), 114–116 (2000).
    [CrossRef] [PubMed]
  5. J. A. Izatt, M. D. Kulkarni, S. Yazdanfar, J. K. Barton, and A. J. Welch, “In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography,” Opt. Lett. 22(18), 1439–1441 (1997).
    [CrossRef] [PubMed]
  6. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
    [CrossRef] [PubMed]
  7. B. Baumann, B. Potsaid, M. F. Kraus, J. J. Liu, D. Huang, J. Hornegger, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT,” Biomed. Opt. Express 2(6), 1539–1552 (2011).
    [CrossRef] [PubMed]
  8. Z. Zhi, W. Cepurna, E. Johnson, T. Shen, J. Morrison, and R. K. Wang, “Volumetric and quantitative imaging of retinal blood flow in rats with optical microangiography,” Biomed. Opt. Express 2(3), 579–591 (2011).
    [CrossRef] [PubMed]
  9. F. Jaillon, S. Makita, E. J. Min, B. H. Lee, and Y. Yasuno, “Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography,” Biomed. Opt. Express 2(5), 1147–1158 (2011).
    [CrossRef] [PubMed]
  10. B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
    [CrossRef] [PubMed]
  11. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
    [CrossRef] [PubMed]
  12. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [PubMed]
  13. R. K. Wang and Z. Ma, “Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography,” Opt. Lett. 31(20), 3001–3003 (2006).
    [CrossRef] [PubMed]
  14. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [CrossRef] [PubMed]
  15. R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
    [CrossRef] [PubMed]
  16. L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
    [CrossRef] [PubMed]
  17. Z. Zhi, Y. Jung, Y. Jia, L. An, and R. K. Wang, “Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography,” Biomed. Opt. Express 2(5), 1059–1068 (2011).
    [CrossRef] [PubMed]
  18. L. An and R. K. Wang, “Full range complex ultrahigh sensitive optical microangiography,” Opt. Lett. 36(6), 831–833 (2011).
    [CrossRef] [PubMed]
  19. M. T. Tsai, C. K. Lee, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” J. Biomed. Opt. 14(4), 044028 (2009).
    [CrossRef] [PubMed]
  20. C. C. Yang, M.-T. Tsai, H.-C. Lee, C.-K. Lee, C.-H. Yu, H.-M. Chen, C.-P. Chiang, C.-C. Chang, Y.-M. Wang, and C. C. Yang, “Effective indicators for diagnosis of oral cancer using optical coherence tomography,” Opt. Express 16(20), 15847–15862 (2008).
    [CrossRef] [PubMed]
  21. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18(9), 1080–1086 (2008).
    [CrossRef]
  22. J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
    [CrossRef] [PubMed]
  23. K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15(26), 18130–18140 (2007).
    [CrossRef] [PubMed]

2011

2010

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

2009

2008

C. C. Yang, M.-T. Tsai, H.-C. Lee, C.-K. Lee, C.-H. Yu, H.-M. Chen, C.-P. Chiang, C.-C. Chang, Y.-M. Wang, and C. C. Yang, “Effective indicators for diagnosis of oral cancer using optical coherence tomography,” Opt. Express 16(20), 15847–15862 (2008).
[CrossRef] [PubMed]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18(9), 1080–1086 (2008).
[CrossRef]

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

2007

2006

2005

2000

1997

An, L.

Bancu, M. G.

Barton, J. K.

Baumann, B.

Bernstein, J. J.

Bouma, B. E.

Cable, A. E.

Cepurna, W.

Chang, C.-C.

Chen, H. M.

M. T. Tsai, C. K. Lee, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” J. Biomed. Opt. 14(4), 044028 (2009).
[CrossRef] [PubMed]

Chen, H.-M.

Chen, Z.

Chen, Z. P.

Chiang, C. P.

M. T. Tsai, C. K. Lee, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” J. Biomed. Opt. 14(4), 044028 (2009).
[CrossRef] [PubMed]

Chiang, C.-P.

Choe, S. W.

Dave, D.

de Boer, J. F.

Duker, J. S.

Fawzi, A.

Fujimoto, J. G.

Gil-Flamer, J.

Guo, S.

Hong, Y.

Hornegger, J.

Huang, D.

Izatt, J. A.

Jaillon, F.

Jia, Y.

Jin, X.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Johnson, E.

Jung, Y.

Kim, K. H.

Kowalczyk, A.

Kraus, M. F.

Kulkarni, M. D.

Larin, K. V.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18(9), 1080–1086 (2008).
[CrossRef]

Lee, B. H.

Lee, C. K.

M. T. Tsai, C. K. Lee, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” J. Biomed. Opt. 14(4), 044028 (2009).
[CrossRef] [PubMed]

Lee, C.-K.

Lee, H. C.

M. T. Tsai, C. K. Lee, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” J. Biomed. Opt. 14(4), 044028 (2009).
[CrossRef] [PubMed]

Lee, H.-C.

Lee, K. K. C.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Lee, T. W.

Liu, J. J.

Liu, L.

Ma, Z.

Maguluri, G. N.

Makita, S.

Malekafzali, A.

Manapuram, R. K.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18(9), 1080–1086 (2008).
[CrossRef]

Manne, V. G. R.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18(9), 1080–1086 (2008).
[CrossRef]

Mariampillai, A.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Milner, T. E.

Min, E. J.

Morrison, J.

Munce, N. R.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Nelson, J. S.

Park, B. H.

Potsaid, B.

Rogomentich, F. J.

Saxer, C.

Shen, T.

Sorg, B. S.

Srinivas, S.

Standish, B. A.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Subhush, H. M.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

Sun, J.

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tan, O.

Tsai, M. T.

M. T. Tsai, C. K. Lee, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” J. Biomed. Opt. 14(4), 044028 (2009).
[CrossRef] [PubMed]

Tsai, M.-T.

van Gemert, M.J.C.

Vitkin, I. A.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Wang, R. K.

Wang, X.

Wang, Y.

Wang, Y. M.

M. T. Tsai, C. K. Lee, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” J. Biomed. Opt. 14(4), 044028 (2009).
[CrossRef] [PubMed]

Wang, Y.-M.

Welch, A. J.

Wilson, B. C.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Wilson, D. J.

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

Wojtkowski, M.

Wood, M. F. G.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Wu, L.

Xiang, S.

Xie, H.

Yamanari, M.

Yang, C. C.

Yang, V. X. D.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yu, C.-H.

Zhang, J.

Zhao, Y.

Zhi, Z.

Biomed. Opt. Express

Cancer Res.

B. A. Standish, K. K. C. Lee, X. Jin, A. Mariampillai, N. R. Munce, M. F. G. Wood, B. C. Wilson, I. A. Vitkin, and V. X. D. Yang, “Interstitial Doppler optical coherence tomography as a local tumor necrosis predictor in photodynamic therapy of prostatic carcinoma: an in vivo study,” Cancer Res. 68(23), 9987–9995 (2008).
[CrossRef] [PubMed]

J. Biomed. Opt.

M. T. Tsai, C. K. Lee, H. C. Lee, H. M. Chen, C. P. Chiang, Y. M. Wang, and C. C. Yang, “Differentiating oral lesions in different carcinogenesis stages with optical coherence tomography,” J. Biomed. Opt. 14(4), 044028 (2009).
[CrossRef] [PubMed]

L. An, H. M. Subhush, D. J. Wilson, and R. K. Wang, “High-resolution wide-field imaging of retinal and choroidal blood perfusion with optical microangiography,” J. Biomed. Opt. 15(2), 026011 (2010).
[CrossRef] [PubMed]

Laser Phys.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18(9), 1080–1086 (2008).
[CrossRef]

Opt. Express

J. Sun, S. Guo, L. Wu, L. Liu, S. W. Choe, B. S. Sorg, and H. Xie, “3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror,” Opt. Express 18(12), 12065–12075 (2010).
[CrossRef] [PubMed]

K. H. Kim, B. H. Park, G. N. Maguluri, T. W. Lee, F. J. Rogomentich, M. G. Bancu, B. E. Bouma, J. F. de Boer, and J. J. Bernstein, “Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography,” Opt. Express 15(26), 18130–18140 (2007).
[CrossRef] [PubMed]

C. C. Yang, M.-T. Tsai, H.-C. Lee, C.-K. Lee, C.-H. Yu, H.-M. Chen, C.-P. Chiang, C.-C. Chang, Y.-M. Wang, and C. C. Yang, “Effective indicators for diagnosis of oral cancer using optical coherence tomography,” Opt. Express 16(20), 15847–15862 (2008).
[CrossRef] [PubMed]

A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, and M. Wojtkowski, “Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 17(13), 10584–10598 (2009).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

R. K. Wang and L. An, “Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo,” Opt. Express 17(11), 8926–8940 (2009).
[CrossRef] [PubMed]

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[PubMed]

J. Zhang and Z. P. Chen, “In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography,” Opt. Express 13(19), 7449–7457 (2005).
[CrossRef] [PubMed]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

(a) Setup of the two SS-OCT systems. In the sample arm, one of the systems is connected with a scanning probe with its layout shown in part (b) and the other system is connected with a scanning galvanometer setup as shown in part (c).

Fig. 2
Fig. 2

(a) OCT structure image of buccal mucosa from the oral cavity of a volunteer obtained with probe scanning. PP, EP, and LP stand for plastic plate, epithelium, and lamina propria, respectively. (b) Phase shift mapping of the OCT image of part (a) obtained by evaluating the phase difference between two neighboring A-mode scans.

Fig. 3
Fig. 3

(a) OCT structure image of a sample consisting of 14 layers of Scotch tape on a coverslip with probe scanning. (b) Phase shift mapping of the OCT image of part (a) obtained by evaluating the phase difference between two neighboring A-mode scans. (c) Variation of the maximum-count phase shift in each A-mode scan along the B-mode scan (the x direction).

Fig. 4
Fig. 4

(a) OCT structure image of human skin on a finger of a volunteer obtained with galvanometer scanning. (b) Phase shift mapping of the OCT image of part (a) obtained by evaluating the phase difference between two neighboring A-mode scans. The phase noise in the right portion is caused by an intentional motion of the finger. The arrow indicates a blood vessel, which can be seen through the phase shift evaluation. The other blood vessel is blurred by the phase noise.

Fig. 5
Fig. 5

(a) Duplicate of Fig. 4(a) with the portion circled by the dashed square being magnified to give part (b). The upper (red) and lower (blue) horizontal dashed line scan profiles are shown in parts (c) and (d), respectively.

Fig. 6
Fig. 6

(a) and (b): Processed results of blood vessel distribution based on our procedure and the reference procedure, respectively, from the scanning result shown in Fig. 4(a).

Fig. 7
Fig. 7

(a) and (b): Processed results of blood vessel distribution based on our procedure and the reference procedure, respectively, from the scanning result shown in Fig. 2(a).

Fig. 8
Fig. 8

(a) Duplicate of Fig. 6(a) with three selections of different A-mode scan depth ranges as I, II, and III. The ODT images based on selected ranges I, II, and III are shown in parts (b), (c), and (d), respectively. The speed scale coding is shown at the bottom.

Fig. 11
Fig. 11

(a)-(c): Line-scan profiles of projected blood flow speed along the dashed lines in Figs. 10(b)-10(d), respectively. The spiky curves (Data) show the results in Figs. 10(b)-10(d). The smoother curves (Fitting) are obtained after the high spatial-frequency components are filtered. The arrows indicate the locations of the two blood vessels.

Fig. 9
Fig. 9

(a)-(c): Line-scan profiles of projected blood flow speed along the dashed lines in Figs. 8(b)-8(d), respectively. The spiky curves (Data) show the results in Figs. 8(b)-8(d). The smoother curves (Fitting) are obtained after the high spatial-frequency components are filtered. The arrows indicate the locations of the two blood vessels.

Fig. 10
Fig. 10

(a) Duplicate of Fig. 7(a) with three selections of different A-mode scan depth ranges as I, II, and III. The ODT images based on selected ranges I, II, and III are shown in parts (b), (c), and (d), respectively. The speed scale coding is shown at the right end.

Fig. 12
Fig. 12

(a) OCT structure image of human skin on a finger of a volunteer obtained with probe scanning. (b) Phase shift mapping of the OCT image of part (a) obtained by evaluating the phase difference between two neighboring A-mode scans. Processed results of blood vessel distribution based on our procedure and the reference procedure from the scanning result shown in part (a) are illustrated in parts (c) and (d), respectively.

Fig. 13
Fig. 13

(a) Duplicate of Fig. 12(c) with two selections of different A-mode scan depth ranges as I and II. The ODT images based on selected ranges I and II are shown in parts (b) and (c), respectively. The speed scale coding is shown at the bottom.

Fig. 14
Fig. 14

(a) and (b): Line-scan profiles of projected blood flow speed along the upper dashed lines in Figs. 13(b) and 13(c), respectively. (c) and (d): Line-scan profiles of projected blood flow speed along the lower dashed lines in Figs. 13(b) and 13(c), respectively. The spiky curves (Data) show the results in Figs. 13(b) and 13(c). The smoother curves (Fitting) are obtained after the high spatial-frequency components are filtered. The arrows indicate the locations of the blood vessels.

Fig. 15
Fig. 15

(a) Another OCT structure image of human skin on a finger of a volunteer obtained with probe scanning. (b) Phase shift mapping of the OCT image of part (a) obtained by evaluating the phase difference between two neighboring A-mode scans. Processed results of blood vessel distribution based on our procedure and the reference procedure from the scanning result shown in part (a) are illustrated in parts (c) and (d), respectively.

Fig. 17
Fig. 17

(a) and (b): Line-scan profiles of projected blood flow speed along the dashed lines in Figs. 16(b) and 16(c), respectively. The spiky curves (Data) show the results in Figs. 16(b) and 16(c). The smoother curves (Fitting) are obtained after the high spatial-frequency components are filtered. The arrows indicate the locations of the blood vessels.

Fig. 16
Fig. 16

(a) Duplicate of Fig. 15(c) with two selections of different A-mode scan depth ranges as I and II. The ODT images based on selected ranges I and II are shown in parts (b) and (c), respectively. The speed scale coding is shown at the bottom.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

B( z l ,x )=Abs{ S[ F k ( F x 1 { W[ F x ( A( k, z l ,x ) ) ] } ) ] }.
A( k, z l ,x )=a( z l ,x )cos[ k z l +ϕ( z l ,x ) ].
B( z l ,x )=Abs( F x 1 { W[ F x ( Abs{ S[ F k ( A( k, z l ,x ) ) ] } ) ] } ).
Abs( F k { a( z l ,x )exp[ ik z l +iϕ( z l ,x ) ] } )=Abs{ a( z l ,x )exp[ iϕ( z l ,x ) ]δ( z z l ) } =a( z l ,x )δ( z z l ).
Abs( F k { F x 1 [ W( F x { a( z l ,x )exp[ ik z l +iϕ( z l ,x ) ] } ) ] } ) =Abs[ F k { exp( ik z l )[ F x 1 ( W{ F x [ a( z l ,x ) ] F x [ exp( iϕ( z l ,x ) ) ] } ) ] } ].

Metrics