Abstract

Initial reports of plasmonic ‘hot-spots’ enabled the detection of single molecules via surface-enhanced Raman scattering (SERS) from random distributions of plasmonic nanoparticles. Investigations of systems with near-field plasmonically coupled nanoparticles began, however, the ability to fabricate reproducible arrays of such particles has been lacking. We report on the fabrication of large-area, periodic arrays of plasmonic 'hot-spots' using Ag atomic layer deposition to overcoat Si nanopillar templates leading to reproducible interpillar gaps down to <2 nm. These plasmonic 'hot-spots' arrays exhibited over an order of magnitude increase in the SERS response in comparison to similar arrays with larger interpillar separations.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [CrossRef]
  2. D. L. Jeanmaire and R. P. van Duyne, “Surface Raman electrochemistry part I: heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
    [CrossRef]
  3. M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
    [CrossRef] [PubMed]
  4. J. P. Kottmann and O. J. F. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001).
    [CrossRef] [PubMed]
  5. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
    [CrossRef]
  6. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Field, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  7. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  8. For a recent review seeN. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
    [CrossRef] [PubMed]
  9. K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
    [CrossRef] [PubMed]
  10. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
    [CrossRef]
  11. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
    [CrossRef] [PubMed]
  12. H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [CrossRef]
  13. J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
    [CrossRef]
  14. J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
    [CrossRef]
  15. J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
    [CrossRef] [PubMed]
  16. H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
    [CrossRef] [PubMed]
  17. C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
    [CrossRef] [PubMed]
  18. D. A. Alexson, S. C. Badescu, O. J. Glembocki, S. M. Prokes, and R. W. Rendell, “Metal-Adsorbate hybridized electronic states and their impact on surface enhanced Raman scattering,” Chem. Phys. Lett. 477(1-3), 144–149 (2009).
    [CrossRef]
  19. S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. Ancona, “Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 90(9), 093105 (2007).
    [CrossRef]
  20. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
    [CrossRef] [PubMed]
  21. J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
    [CrossRef] [PubMed]
  22. X. Chen and K. Jiang, “A large-area hybrid metallic nanostructure array and its optical properties,” Nanotechnology 19(21), 215305 (2008).
    [CrossRef] [PubMed]
  23. M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
    [CrossRef]
  24. A. Niskanen, T. Hatanpaa, K. Arstila, M. Leskela, and M. Ritala, “Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates,” Chem. Vapor Deposit. 13(8), 408–413 (2007).
    [CrossRef]
  25. J. D. Caldwell, O. J. Glembocki, R. W. Rendell, S. M. Prokes, J. P. Long, and F. J. Bezares, “Plasmo-photonic nanowire arrays for large-area surface-enhanced Raman scattering sensors,” Proc. SPIE 7757, 775723, 775723 (2010).
    [CrossRef]
  26. K. T. Carron and L. G. Hurley, “Axial and azimuthal angle determination with surface-enhanced Raman spectroscopy - thiophenol on copper, silver and gold metal-surfaces,” J. Phys. Chem. 95(24), 9979–9984 (1991).
    [CrossRef]
  27. S. Li, D. Wu, X. Xu, and R. Gu, “Theoretical and experimental studies on the adsorption behavior of thiophenol on gold nanoparticles,” J. Raman Spectrosc. 38(11), 1436–1443 (2007).
    [CrossRef]

2011 (3)

For a recent review seeN. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
[CrossRef]

2010 (3)

J. D. Caldwell, O. J. Glembocki, R. W. Rendell, S. M. Prokes, J. P. Long, and F. J. Bezares, “Plasmo-photonic nanowire arrays for large-area surface-enhanced Raman scattering sensors,” Proc. SPIE 7757, 775723, 775723 (2010).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

2009 (1)

D. A. Alexson, S. C. Badescu, O. J. Glembocki, S. M. Prokes, and R. W. Rendell, “Metal-Adsorbate hybridized electronic states and their impact on surface enhanced Raman scattering,” Chem. Phys. Lett. 477(1-3), 144–149 (2009).
[CrossRef]

2008 (3)

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[CrossRef] [PubMed]

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

X. Chen and K. Jiang, “A large-area hybrid metallic nanostructure array and its optical properties,” Nanotechnology 19(21), 215305 (2008).
[CrossRef] [PubMed]

2007 (3)

S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. Ancona, “Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 90(9), 093105 (2007).
[CrossRef]

A. Niskanen, T. Hatanpaa, K. Arstila, M. Leskela, and M. Ritala, “Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates,” Chem. Vapor Deposit. 13(8), 408–413 (2007).
[CrossRef]

S. Li, D. Wu, X. Xu, and R. Gu, “Theoretical and experimental studies on the adsorption behavior of thiophenol on gold nanoparticles,” J. Raman Spectrosc. 38(11), 1436–1443 (2007).
[CrossRef]

2006 (1)

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[CrossRef] [PubMed]

2005 (1)

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

2001 (1)

2000 (1)

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[CrossRef]

1999 (2)

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

1997 (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Field, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1996 (1)

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
[CrossRef] [PubMed]

1995 (1)

J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

1991 (1)

K. T. Carron and L. G. Hurley, “Axial and azimuthal angle determination with surface-enhanced Raman spectroscopy - thiophenol on copper, silver and gold metal-surfaces,” J. Phys. Chem. 95(24), 9979–9984 (1991).
[CrossRef]

1977 (1)

D. L. Jeanmaire and R. P. van Duyne, “Surface Raman electrochemistry part I: heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Alexson, D. A.

D. A. Alexson, S. C. Badescu, O. J. Glembocki, S. M. Prokes, and R. W. Rendell, “Metal-Adsorbate hybridized electronic states and their impact on surface enhanced Raman scattering,” Chem. Phys. Lett. 477(1-3), 144–149 (2009).
[CrossRef]

Ancona, M.

S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. Ancona, “Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 90(9), 093105 (2007).
[CrossRef]

Arstila, K.

A. Niskanen, T. Hatanpaa, K. Arstila, M. Leskela, and M. Ritala, “Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates,” Chem. Vapor Deposit. 13(8), 408–413 (2007).
[CrossRef]

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Badescu, S. C.

D. A. Alexson, S. C. Badescu, O. J. Glembocki, S. M. Prokes, and R. W. Rendell, “Metal-Adsorbate hybridized electronic states and their impact on surface enhanced Raman scattering,” Chem. Phys. Lett. 477(1-3), 144–149 (2009).
[CrossRef]

Bantz, K. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Bassim, N. D.

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Bezares, F. J.

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. J. Glembocki, R. W. Rendell, S. M. Prokes, J. P. Long, and F. J. Bezares, “Plasmo-photonic nanowire arrays for large-area surface-enhanced Raman scattering sensors,” Proc. SPIE 7757, 775723, 775723 (2010).
[CrossRef]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Borjesson, L.

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Brus, L.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[CrossRef]

Caldwell, J. D.

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. J. Glembocki, R. W. Rendell, S. M. Prokes, J. P. Long, and F. J. Bezares, “Plasmo-photonic nanowire arrays for large-area surface-enhanced Raman scattering sensors,” Proc. SPIE 7757, 775723, 775723 (2010).
[CrossRef]

Carron, K. T.

K. T. Carron and L. G. Hurley, “Axial and azimuthal angle determination with surface-enhanced Raman spectroscopy - thiophenol on copper, silver and gold metal-surfaces,” J. Phys. Chem. 95(24), 9979–9984 (1991).
[CrossRef]

Chang, W.-S.

For a recent review seeN. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Chen, C.-F.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[CrossRef] [PubMed]

Chen, H.-Y.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[CrossRef] [PubMed]

Chen, X.

X. Chen and K. Jiang, “A large-area hybrid metallic nanostructure array and its optical properties,” Nanotechnology 19(21), 215305 (2008).
[CrossRef] [PubMed]

Chilkoti, A.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Field, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Degiron, A.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Dorfmüller, J.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Duval, M. L.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Etrich, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Feygelson, M.

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Field, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Field, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

George, T. F.

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
[CrossRef] [PubMed]

Glembocki, O. J.

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. J. Glembocki, R. W. Rendell, S. M. Prokes, J. P. Long, and F. J. Bezares, “Plasmo-photonic nanowire arrays for large-area surface-enhanced Raman scattering sensors,” Proc. SPIE 7757, 775723, 775723 (2010).
[CrossRef]

D. A. Alexson, S. C. Badescu, O. J. Glembocki, S. M. Prokes, and R. W. Rendell, “Metal-Adsorbate hybridized electronic states and their impact on surface enhanced Raman scattering,” Chem. Phys. Lett. 477(1-3), 144–149 (2009).
[CrossRef]

S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. Ancona, “Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 90(9), 093105 (2007).
[CrossRef]

Grady, N. K.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Gu, R.

S. Li, D. Wu, X. Xu, and R. Gu, “Theoretical and experimental studies on the adsorption behavior of thiophenol on gold nanoparticles,” J. Raman Spectrosc. 38(11), 1436–1443 (2007).
[CrossRef]

Gwo, S.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[CrossRef] [PubMed]

Halas, N. J.

For a recent review seeN. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Hatanpaa, T.

M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
[CrossRef]

A. Niskanen, T. Hatanpaa, K. Arstila, M. Leskela, and M. Ritala, “Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates,” Chem. Vapor Deposit. 13(8), 408–413 (2007).
[CrossRef]

Haynes, C. L.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Hill, R. T.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Hollars, C. W.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Hosten, C.

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Hulteen, J. C.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

Hurley, L. G.

K. T. Carron and L. G. Hurley, “Axial and azimuthal angle determination with surface-enhanced Raman spectroscopy - thiophenol on copper, silver and gold metal-surfaces,” J. Phys. Chem. 95(24), 9979–9984 (1991).
[CrossRef]

Huser, T. R.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Im, H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Field, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jackson, J. B.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. van Duyne, “Surface Raman electrochemistry part I: heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Jensen, T. R.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Jiang, J.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[CrossRef]

Jiang, K.

X. Chen and K. Jiang, “A large-area hybrid metallic nanostructure array and its optical properties,” Nanotechnology 19(21), 215305 (2008).
[CrossRef] [PubMed]

Kall, M.

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Kariniemi, M.

M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
[CrossRef]

Kasica, R.

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Kemell, M.

M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
[CrossRef]

Kern, K.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Khunsin, W.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Field, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, J.

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[CrossRef] [PubMed]

Kneipp, K.

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Field, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kottmann, J. P.

Lal, S.

For a recent review seeN. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Lane, S. M.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Leskela, M.

M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
[CrossRef]

A. Niskanen, T. Hatanpaa, K. Arstila, M. Leskela, and M. Ritala, “Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates,” Chem. Vapor Deposit. 13(8), 408–413 (2007).
[CrossRef]

Li, S.

S. Li, D. Wu, X. Xu, and R. Gu, “Theoretical and experimental studies on the adsorption behavior of thiophenol on gold nanoparticles,” J. Raman Spectrosc. 38(11), 1436–1443 (2007).
[CrossRef]

Lin, K.-J.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[CrossRef] [PubMed]

Lindquist, N. C.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Link, S.

For a recent review seeN. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Long, J. P.

J. D. Caldwell, O. J. Glembocki, R. W. Rendell, S. M. Prokes, J. P. Long, and F. J. Bezares, “Plasmo-photonic nanowire arrays for large-area surface-enhanced Raman scattering sensors,” Proc. SPIE 7757, 775723, 775723 (2010).
[CrossRef]

Martin, O. J. F.

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Michaels, A. M.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[CrossRef]

Mock, J. J.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Niinisto, J.

M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
[CrossRef]

Niskanen, A.

A. Niskanen, T. Hatanpaa, K. Arstila, M. Leskela, and M. Ritala, “Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates,” Chem. Vapor Deposit. 13(8), 408–413 (2007).
[CrossRef]

Nordlander, P.

For a recent review seeN. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Oh, S.-H.

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

Oubre, C.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Pandey, L. N.

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Field, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Prokes, S. M.

J. D. Caldwell, O. J. Glembocki, R. W. Rendell, S. M. Prokes, J. P. Long, and F. J. Bezares, “Plasmo-photonic nanowire arrays for large-area surface-enhanced Raman scattering sensors,” Proc. SPIE 7757, 775723, 775723 (2010).
[CrossRef]

D. A. Alexson, S. C. Badescu, O. J. Glembocki, S. M. Prokes, and R. W. Rendell, “Metal-Adsorbate hybridized electronic states and their impact on surface enhanced Raman scattering,” Chem. Phys. Lett. 477(1-3), 144–149 (2009).
[CrossRef]

S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. Ancona, “Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 90(9), 093105 (2007).
[CrossRef]

Rendell, R. W.

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. J. Glembocki, R. W. Rendell, S. M. Prokes, J. P. Long, and F. J. Bezares, “Plasmo-photonic nanowire arrays for large-area surface-enhanced Raman scattering sensors,” Proc. SPIE 7757, 775723, 775723 (2010).
[CrossRef]

D. A. Alexson, S. C. Badescu, O. J. Glembocki, S. M. Prokes, and R. W. Rendell, “Metal-Adsorbate hybridized electronic states and their impact on surface enhanced Raman scattering,” Chem. Phys. Lett. 477(1-3), 144–149 (2009).
[CrossRef]

S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. Ancona, “Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 90(9), 093105 (2007).
[CrossRef]

Ritala, M.

M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
[CrossRef]

A. Niskanen, T. Hatanpaa, K. Arstila, M. Leskela, and M. Ritala, “Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates,” Chem. Vapor Deposit. 13(8), 408–413 (2007).
[CrossRef]

Rockstuhl, C.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Sajavaara, T.

M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
[CrossRef]

Shirey, L.

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Smith, D. R.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Smith, M. T.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Stockman, M. I.

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
[CrossRef] [PubMed]

Talley, C. E.

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

Treichel, D. A.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

Tzeng, S.-D.

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[CrossRef] [PubMed]

Ukaegbu, M.

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

van Duyne, R. P.

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

D. L. Jeanmaire and R. P. van Duyne, “Surface Raman electrochemistry part I: heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

Vogelgesang, R.

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Field, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Wu, D.

S. Li, D. Wu, X. Xu, and R. Gu, “Theoretical and experimental studies on the adsorption behavior of thiophenol on gold nanoparticles,” J. Raman Spectrosc. 38(11), 1436–1443 (2007).
[CrossRef]

Xu, H.

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Xu, X.

S. Li, D. Wu, X. Xu, and R. Gu, “Theoretical and experimental studies on the adsorption behavior of thiophenol on gold nanoparticles,” J. Raman Spectrosc. 38(11), 1436–1443 (2007).
[CrossRef]

Zauscher, S.

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

K. Kneipp, H. Kneipp, and J. Kneipp, “Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells,” Acc. Chem. Res. 39(7), 443–450 (2006).
[CrossRef] [PubMed]

ACS Nano (1)

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors,” ACS Nano 5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. M. Prokes, O. J. Glembocki, R. W. Rendell, and M. Ancona, “Enhanced plasmon coupling in crossed dielectric/metal nanowire composite geometries and applications to surface-enhanced Raman spectroscopy,” Appl. Phys. Lett. 90(9), 093105 (2007).
[CrossRef]

Chem. Mater. (1)

M. Kariniemi, J. Niinisto, T. Hatanpaa, M. Kemell, T. Sajavaara, M. Ritala, and M. Leskela, “Plasma-enhanced atomic layer deposition of silver thin films,” Chem. Mater. 23(11), 2901–2907 (2011).
[CrossRef]

Chem. Phys. Lett. (2)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

D. A. Alexson, S. C. Badescu, O. J. Glembocki, S. M. Prokes, and R. W. Rendell, “Metal-Adsorbate hybridized electronic states and their impact on surface enhanced Raman scattering,” Chem. Phys. Lett. 477(1-3), 144–149 (2009).
[CrossRef]

Chem. Rev. (1)

For a recent review seeN. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, “Plasmons in strongly coupled metallic nanostructures,” Chem. Rev. 111(6), 3913–3961 (2011).
[CrossRef] [PubMed]

Chem. Vapor Deposit. (1)

A. Niskanen, T. Hatanpaa, K. Arstila, M. Leskela, and M. Ritala, “Radical-enhanced atomic layer deposition of silver thin films using phosphine-adducted silver carboxylates,” Chem. Vapor Deposit. 13(8), 408–413 (2007).
[CrossRef]

J. Am. Chem. Soc. (1)

C.-F. Chen, S.-D. Tzeng, H.-Y. Chen, K.-J. Lin, and S. Gwo, “Tunable plasmonic response from alkanethiolate-stabilized gold nanoparticle superlattices: evidence of near-field coupling,” J. Am. Chem. Soc. 130(3), 824–826 (2008).
[CrossRef] [PubMed]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. van Duyne, “Surface Raman electrochemistry part I: heterocyclic, aromatic and aliphatic amines adsorbed on the anodized silver electrode,” J. Electroanal. Chem. 84(1), 1–20 (1977).
[CrossRef]

J. Phys. Chem. (1)

K. T. Carron and L. G. Hurley, “Axial and azimuthal angle determination with surface-enhanced Raman spectroscopy - thiophenol on copper, silver and gold metal-surfaces,” J. Phys. Chem. 95(24), 9979–9984 (1991).
[CrossRef]

J. Phys. Chem. B (2)

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[CrossRef]

J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, T. R. Jensen, and R. P. van Duyne, “Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103(19), 3854–3863 (1999).
[CrossRef]

J. Raman Spectrosc. (1)

S. Li, D. Wu, X. Xu, and R. Gu, “Theoretical and experimental studies on the adsorption behavior of thiophenol on gold nanoparticles,” J. Raman Spectrosc. 38(11), 1436–1443 (2007).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. van Duyne, “Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553–1558 (1995).
[CrossRef]

Nano Lett. (5)

J. J. Mock, R. T. Hill, A. Degiron, S. Zauscher, A. Chilkoti, and D. R. Smith, “Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film,” Nano Lett. 8(8), 2245–2252 (2008).
[CrossRef] [PubMed]

H. Im, K. C. Bantz, N. C. Lindquist, C. L. Haynes, and S.-H. Oh, “Vertically oriented sub-10-nm plasmonic nanogap arrays,” Nano Lett. 10(6), 2231–2236 (2010).
[CrossRef] [PubMed]

C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5(8), 1569–1574 (2005).
[CrossRef] [PubMed]

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole-dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, and K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

X. Chen and K. Jiang, “A large-area hybrid metallic nanostructure array and its optical properties,” Nanotechnology 19(21), 215305 (2008).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B Condens. Matter (1)

M. I. Stockman, L. N. Pandey, and T. F. George, “Inhomogeneous localization of polar eigenmodes in fractals,” Phys. Rev. B Condens. Matter 53(5), 2183–2186 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Field, “Single molecule detection using surface-enhanced Raman scattering,” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

H. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[CrossRef]

Proc. SPIE (1)

J. D. Caldwell, O. J. Glembocki, R. W. Rendell, S. M. Prokes, J. P. Long, and F. J. Bezares, “Plasmo-photonic nanowire arrays for large-area surface-enhanced Raman scattering sensors,” Proc. SPIE 7757, 775723, 775723 (2010).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

COMSOL simulations of two 50 nm diameter Ag (a) spheres and (b) 300 nm long nanowires, separated by 5 nm in air. The plots designate the predicted SERS enhancement (E4) as a function of position within the structures.

Fig. 2
Fig. 2

(a) 5x magnification optical reflection image of each of the arrays studied within this work. In this image, each square is a single 100x100 nanopillar array, with the corresponding nanopillar diameters and gaps provided on the axes. (b) A 65 kX magnification SEM image of Ag PEALD coated Si nanopillar arrays collected at 45° to illustrate the nanopillar structure and PEALD film morphology. (c)-(f) 50 kX magnification SEM images of ~200 nm diameter Ag PEALD coated, Si-nanopillars with interpillar gaps of 196, 124, 16 and <2 nm, respectively. A 100kX magnification image of the tightest spaced array is presented in (g).

Fig. 3
Fig. 3

Neat Raman spectra of thiophenol (black trace), SERS spectra collected from the Ag PEALD film without nanopillars (green trace), and on arrays of ~200 nm diameter nanopillars with interpillar gaps of 198 (blue trace), 52 (light-blue trace) and <2 nm (red trace) gaps. Each spectra was normalized to account for both the incident laser power and corresponding acquisition time, while the corresponding number of molecules probed in each measurement is shown in the legend. The arrow in the figure denotes the position of the 998 cm−1 mode (C-H wag) used in the enhancement factor calculations and in the SERS spatial plots presented in Fig. 4. Inset: Semi-logarithmic plot comparing the SERS spectra from the <2nm gap arrays and the neat spectra.

Fig. 4
Fig. 4

(a) SERS intensity measured at 532 nm incident as a function of interparticle gap at each diameter as indicated in the figure. (b) Corresponding COMSOL simulations (red open squares; line provide as guide to the eye) of the coupling-induced enhancement of the SERS response from semi-infinite, periodic arrays of Ag-coated Si nanopillars as a function of interpillar gap. All data points are normalized to the SERS intensity of the array with the widest separation (210 nm gap) simulated. For comparison, the experimental normalized SERS enhancement results from the 279 nm diameter nanopillars are also provided (blue diamonds).

Fig. 5
Fig. 5

Spatial plots of the SERS intensity measured as a function of nanopillar diameter and interpillar gap at (a) 532 and (b) 785 nm incident. The values plotted correspond to the average SERS intensity of the C-H wag mode of thiophenol (998 cm−1) from a given array after being normalized to account for the laser power and acquisition time. All values are presented in units of countsW−1s−1.

Metrics