Abstract

Microspheres of Nd3+ doped barium titano silicate glass were prepared and the whispering gallery mode resonances were observed in a modified confocal microscope. A bulk sample of the same glass was calibrated as temperature sensor by the fluorescence intensity ratio technique. After that, the microsphere was heated by laser irradiation process technique in the microscope and the surface temperature was estimated using the fluorescence intensity ratio. This temperature is correlated with the displacement of the whispering gallery mode peaks, showing an average red-shift of 10 pm/K in a wide range of surface temperatures varying from 300 K to 950K. The limit of resolution in temperature was estimated for the fluorescence intensity ratio and the whispering gallery mode displacement, showing an improvement of an order of magnitude for the second method.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
    [CrossRef]
  2. H. Kusama, O. J. Sovers, and T. Yoshioka, “Line Shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
    [CrossRef]
  3. O. Svelto, Principles of Lasers, 3rd ed. (Plenum, 1989), pp. 70–71.
  4. H. Berthou and C. K. Jörgensen, “Optical-fiber temperature sensor based on upconversion-excited fluorescence,” Opt. Lett. 15(19), 1100–1102 (1990).
    [CrossRef] [PubMed]
  5. W. J. Miniscalco, in Rare Earth Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, 1993), p. 35.
  6. E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19(13), 990–992 (1994).
    [CrossRef] [PubMed]
  7. P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–581 (1998).
    [CrossRef]
  8. S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4655 (1998).
    [CrossRef]
  9. S. A. Wade, Ph.D. thesis (Victoria University, Melbourne, Australia, 1999).
  10. S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
    [CrossRef]
  11. M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4756 (2004).
    [CrossRef]
  12. A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of Applications of Whispering-Gallery Mode Resonators in Photonics and Nonlinear Optics,” IPN Progress Report 42-162 (2005), pp. 1–51.
  13. G. Schweiger and M. Horn, “Effect of changes in size and index of refraction on the resonance wavelength of microspheres,” J. Opt. Soc. Am. B 23(2), 212–217 (2006).
    [CrossRef]
  14. Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
    [CrossRef]
  15. G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comp. Inf. Commun. 5(10), 409–424 (2009).
  16. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [CrossRef] [PubMed]
  17. Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310–025317 (2010).
    [CrossRef]
  18. N. Maruyama, T. Honma, and T. Komatsu, “Enhanced quantum yield of yellow photoluminescence of Dy3+ ions in nonlinear optical Ba2TiSi2O8 nanocrystals formed in glass,” J. Solid State Chem. 182(2), 246–252 (2009).
    [CrossRef]
  19. L. L. Martin, P. Haro-González, and I. R. Martín, “Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic,” Opt. Mater. 33(5), 738–741 (2011).
    [CrossRef]
  20. P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
    [CrossRef]
  21. V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater. 11(2-3), 153–165 (1999).
    [CrossRef]
  22. G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007).
    [CrossRef] [PubMed]
  23. L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615–617 (2011).
    [CrossRef] [PubMed]
  24. M. M. Mann and L. G. DeShazer, “Energy levels and spectral broadening of neodymium ions in laser glass,” J. Appl. Phys. 41(7), 2951–2957 (1970).
    [CrossRef]
  25. A. A. Kaminskii, Laser Crystals: Their Physics and Applications (Springer, 1981), pp. 121–147.
  26. P. W. France, in Fluoride Glass Optical Fibers, P. W. France, ed. (Blackie, 1990), pp. 165–167.
  27. C. V. I. Melles Griot, “Technical Guide: Material Properties” (2009), Vol. 4.9, Iss. 9.
  28. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [CrossRef] [PubMed]

2011 (3)

L. L. Martin, P. Haro-González, and I. R. Martín, “Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic,” Opt. Mater. 33(5), 738–741 (2011).
[CrossRef]

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615–617 (2011).
[CrossRef] [PubMed]

2010 (1)

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310–025317 (2010).
[CrossRef]

2009 (2)

N. Maruyama, T. Honma, and T. Komatsu, “Enhanced quantum yield of yellow photoluminescence of Dy3+ ions in nonlinear optical Ba2TiSi2O8 nanocrystals formed in glass,” J. Solid State Chem. 182(2), 246–252 (2009).
[CrossRef]

G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comp. Inf. Commun. 5(10), 409–424 (2009).

2008 (2)

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (1)

2004 (2)

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[CrossRef] [PubMed]

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4756 (2004).
[CrossRef]

2003 (1)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[CrossRef]

1999 (1)

V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater. 11(2-3), 153–165 (1999).
[CrossRef]

1998 (2)

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–581 (1998).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4655 (1998).
[CrossRef]

1994 (1)

1990 (1)

1976 (1)

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line Shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

1970 (1)

M. M. Mann and L. G. DeShazer, “Energy levels and spectral broadening of neodymium ions in laser glass,” J. Appl. Phys. 41(7), 2951–2957 (1970).
[CrossRef]

Adamovsky, G.

G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comp. Inf. Commun. 5(10), 409–424 (2009).

Alencar, M. A. R. C.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4756 (2004).
[CrossRef]

Alonso, D.

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Baxter, G. W.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4655 (1998).
[CrossRef]

E. Maurice, G. Monnom, B. Dussardier, A. Saïssy, D. B. Ostrowsky, and G. W. Baxter, “Thermalization effects between upper levels of green fluorescence in Er-doped silica fibers,” Opt. Lett. 19(13), 990–992 (1994).
[CrossRef] [PubMed]

Berthou, H.

Capuj, N. E.

Carmon, T.

Collins, S. F.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4655 (1998).
[CrossRef]

de Araujo, C. B.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4756 (2004).
[CrossRef]

de Araujo, M. T.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–581 (1998).
[CrossRef]

DeShazer, L. G.

M. M. Mann and L. G. DeShazer, “Energy levels and spectral broadening of neodymium ions in laser glass,” J. Appl. Phys. 41(7), 2951–2957 (1970).
[CrossRef]

dos Santos, P. V.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–581 (1998).
[CrossRef]

Dussardier, B.

Elliott, G. R.

Gouveia-Neto, A. S.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–581 (1998).
[CrossRef]

Grattan, K. T. V.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4655 (1998).
[CrossRef]

Guo, Z.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310–025317 (2010).
[CrossRef]

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
[CrossRef]

Haro-González, P.

L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615–617 (2011).
[CrossRef] [PubMed]

L. L. Martin, P. Haro-González, and I. R. Martín, “Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic,” Opt. Mater. 33(5), 738–741 (2011).
[CrossRef]

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

Hewak, D. W.

Honma, T.

N. Maruyama, T. Honma, and T. Komatsu, “Enhanced quantum yield of yellow photoluminescence of Dy3+ ions in nonlinear optical Ba2TiSi2O8 nanocrystals formed in glass,” J. Solid State Chem. 182(2), 246–252 (2009).
[CrossRef]

Horn, M.

Jaque, D.

Jörgensen, C. K.

Komatsu, T.

N. Maruyama, T. Honma, and T. Komatsu, “Enhanced quantum yield of yellow photoluminescence of Dy3+ ions in nonlinear optical Ba2TiSi2O8 nanocrystals formed in glass,” J. Solid State Chem. 182(2), 246–252 (2009).
[CrossRef]

Kusama, H.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line Shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Lavín, V.

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

Lefèvre-Seguin, V.

V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater. 11(2-3), 153–165 (1999).
[CrossRef]

León-Luis, S. F.

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

Ma, Q.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310–025317 (2010).
[CrossRef]

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
[CrossRef]

Maciel, G. S.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4756 (2004).
[CrossRef]

Mann, M. M.

M. M. Mann and L. G. DeShazer, “Energy levels and spectral broadening of neodymium ions in laser glass,” J. Appl. Phys. 41(7), 2951–2957 (1970).
[CrossRef]

Martin, L. L.

L. L. Martin, P. Haro-González, and I. R. Martín, “Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic,” Opt. Mater. 33(5), 738–741 (2011).
[CrossRef]

Martín, I. R.

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

L. L. Martin, P. Haro-González, and I. R. Martín, “Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic,” Opt. Mater. 33(5), 738–741 (2011).
[CrossRef]

L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615–617 (2011).
[CrossRef] [PubMed]

Martín, L. L.

L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615–617 (2011).
[CrossRef] [PubMed]

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

Maruyama, N.

N. Maruyama, T. Honma, and T. Komatsu, “Enhanced quantum yield of yellow photoluminescence of Dy3+ ions in nonlinear optical Ba2TiSi2O8 nanocrystals formed in glass,” J. Solid State Chem. 182(2), 246–252 (2009).
[CrossRef]

Maurice, E.

Medeiros Neto, J. A.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–581 (1998).
[CrossRef]

Monnom, G.

Murugan, G. S.

Navarro-Urrios, D.

Ostrowsky, D. B.

Otugen, M. V.

G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comp. Inf. Commun. 5(10), 409–424 (2009).

Palmer, A. W.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4655 (1998).
[CrossRef]

Patra, A.

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4756 (2004).
[CrossRef]

Pérez-Rodríguez, C.

L. L. Martín, P. Haro-González, I. R. Martín, D. Navarro-Urrios, D. Alonso, C. Pérez-Rodríguez, D. Jaque, and N. E. Capuj, “Whispering-gallery modes in glass microspheres: optimization of pumping in a modified confocal microscope,” Opt. Lett. 36(5), 615–617 (2011).
[CrossRef] [PubMed]

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

Rai, V. K.

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[CrossRef]

Rossmann, T.

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310–025317 (2010).
[CrossRef]

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
[CrossRef]

Saïssy, A.

Schweiger, G.

Sombra, A. S. B.

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–581 (1998).
[CrossRef]

Sovers, O. J.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line Shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Sun, T.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4655 (1998).
[CrossRef]

Vahala, K. J.

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Wade, S. A.

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4655 (1998).
[CrossRef]

Wilkinson, J. S.

Yang, L.

Yoshioka, T.

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line Shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Zhang, Z. Y.

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4655 (1998).
[CrossRef]

Appl. Phys. B (1)

V. K. Rai, “Temperature sensors and optical sensors,” Appl. Phys. B 88(2), 297–303 (2007).
[CrossRef]

Appl. Phys. Lett. (2)

P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, “Optical temperature sensing using upconversion fluorescence emission in Er3+/Yb3+-codoped chalcogenide glass,” Appl. Phys. Lett. 73(5), 578–581 (1998).
[CrossRef]

M. A. R. C. Alencar, G. S. Maciel, C. B. de Araujo, and A. Patra, “Er3+-doped BaTiO3 nanocrystals for thermometry: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor,” Appl. Phys. Lett. 84(23), 4753–4756 (2004).
[CrossRef]

J. Aerosp. Comp. Inf. Commun. (1)

G. Adamovsky and M. V. Otugen, “Morphology-dependent resonances and their applications to sensing in aerospace environments,” J. Aerosp. Comp. Inf. Commun. 5(10), 409–424 (2009).

J. Appl. Phys. (3)

S. A. Wade, S. F. Collins, and G. W. Baxter, “Fluorescence intensity ratio technique for optical fiber point temperature sensing,” J. Appl. Phys. 94(8), 4743–4756 (2003).
[CrossRef]

S. F. Collins, G. W. Baxter, S. A. Wade, T. Sun, K. T. V. Grattan, Z. Y. Zhang, and A. W. Palmer, “Comparison of fluorescence-based temperature sensor schemes: Theoretical analysis and experimental validation,” J. Appl. Phys. 84(9), 4649–4655 (1998).
[CrossRef]

M. M. Mann and L. G. DeShazer, “Energy levels and spectral broadening of neodymium ions in laser glass,” J. Appl. Phys. 41(7), 2951–2957 (1970).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. D Appl. Phys. (1)

Q. Ma, T. Rossmann, and Z. Guo, “Temperature sensitivity of silica micro-resonators,” J. Phys. D Appl. Phys. 41(24), 245111 (2008).
[CrossRef]

J. Solid State Chem. (1)

N. Maruyama, T. Honma, and T. Komatsu, “Enhanced quantum yield of yellow photoluminescence of Dy3+ ions in nonlinear optical Ba2TiSi2O8 nanocrystals formed in glass,” J. Solid State Chem. 182(2), 246–252 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

H. Kusama, O. J. Sovers, and T. Yoshioka, “Line Shift method for phosphor temperature measurements,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976).
[CrossRef]

Meas. Sci. Technol. (1)

Q. Ma, T. Rossmann, and Z. Guo, “Whispering-gallery mode silica microsensors for cryogenic to room temperature measurement,” Meas. Sci. Technol. 21(2), 025310–025317 (2010).
[CrossRef]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. (3)

L. L. Martin, P. Haro-González, and I. R. Martín, “Optical properties of transparent Dy3+ doped Ba2TiSi2O8 glass ceramic,” Opt. Mater. 33(5), 738–741 (2011).
[CrossRef]

P. Haro-González, I. R. Martín, L. L. Martín, S. F. León-Luis, C. Pérez-Rodríguez, and V. Lavín, “Characterization of Er3+ and Nd3+ doped Strontium Barium Niobate glass ceramic as temperature sensors,” Opt. Mater. 33(5), 742–745 (2011).
[CrossRef]

V. Lefèvre-Seguin, “Whispering-gallery mode lasers with doped silica microspheres,” Opt. Mater. 11(2-3), 153–165 (1999).
[CrossRef]

Other (7)

A. A. Kaminskii, Laser Crystals: Their Physics and Applications (Springer, 1981), pp. 121–147.

P. W. France, in Fluoride Glass Optical Fibers, P. W. France, ed. (Blackie, 1990), pp. 165–167.

C. V. I. Melles Griot, “Technical Guide: Material Properties” (2009), Vol. 4.9, Iss. 9.

O. Svelto, Principles of Lasers, 3rd ed. (Plenum, 1989), pp. 70–71.

S. A. Wade, Ph.D. thesis (Victoria University, Melbourne, Australia, 1999).

A. B. Matsko, A. A. Savchenkov, D. Strekalov, V. S. Ilchenko, and L. Maleki, “Review of Applications of Whispering-Gallery Mode Resonators in Photonics and Nonlinear Optics,” IPN Progress Report 42-162 (2005), pp. 1–51.

W. J. Miniscalco, in Rare Earth Doped Fiber Lasers and Amplifiers, M. J. F. Digonnet, ed. (Marcel Dekker, 1993), p. 35.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a) Simplified scheme of Nd3+ energy levels involved in the experiment. b) Experimental values for the ratio of the intensities obtained with the emission spectra of the Nd3+:BTS doped sample inside an electrical furnace (squares) and fit curve to Eq. (1) as described in text (red line). The inset in Fig. 1b shows the spectra obtained at RT and 950 K.

Fig. 2
Fig. 2

WGM resonances superimposed to Nd3+: 4F5/24I9/2 (810 nm) and 4F3/24I9/2 (880 nm) transitions at different pump powers (power increases from red to blue spectrum). The inset is a schematic view of pumping and detecting geometry of the experiment.

Fig. 3
Fig. 3

Plot of the wavelength of five resonance peaks related to the surface temperature by the FIR technique.

Fig. 4
Fig. 4

Temperature resolutions for the FIR technique in the glass (solid line), WGM displacements in the measured microsphere (red line) and the calculated ones for a homogeneous heated fused silica microsphere (dashed line).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R= I 31 I 21 = ω 31 R g 3 h ν 3 ω 21 R g 2 h ν 2 exp( E 32 KT )=Cexp( E 32 KT )
λ= 2πnr l
S= 1 MP dMP dT
S FIR = δR RδT = E 32 k T 2
S WGM = δλ λδT =( 1 n δn δT + 1 r δr δT )
ΔT min = ΔMP min MP S

Metrics