Abstract

We study the frequency behavior of coherent random lasers consisting monodisperse scatterers with single-particle resonances. A three-dimensional photon propagation model is employed to compute the wavelength-sensitive path length distribution of fluorescence photons in this system. We observe that a persistence interval of wavelengths exists for the coherent random lasing modes, corresponding to the Mie resonances of the individual resonant scatterer. Within the interval, characteristic pulse to pulse fluctuations continue to be observed from the system. The gain competition in the random laser suppresses likely coherent modes in other regions of the emission band, thereby reducing the wavelength fluctuations in the random laser. We further illustrate the tunability of this persistence interval by varying the size parameter of the resonant scatterers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
    [CrossRef]
  2. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A: Math. Gen. 38, 10497–10535 (2005).
    [CrossRef]
  3. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–839 (1968).
  4. M. Noginov, Solid State Random Lasers, Springer Series in Optical Sciences (Springer, 2005), Vol. 105.
  5. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3, 279–282 (2009).
    [CrossRef]
  6. A. Tulek, R. C. Polson, and Z. V. Vardeny, “Naturally occurring resonators in random lasing of pi-conjugated polymer films,” Nat. Phys. 6, 303–310 (2010).
    [CrossRef]
  7. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
    [CrossRef]
  8. C.-R. Lee, J. De Lin, B.-Y. Huang, S.-H. Lin, T.-S. Mo, S.-Y. Huang, C.-T. Kuo, and H.-C. Yeh, “Electrically controllable liquid crystal random lasers below the Fredericksz transition threshold,” Opt. Express 19, 2391–2400 (2011).
    [CrossRef] [PubMed]
  9. C.-R. Lee, J. De Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18, 25896–25905 (2010).
    [CrossRef] [PubMed]
  10. D. S. Wiersma and S. A. Cavalieri, “A temperature-tunable random laser,” Nature 414, 708–709 (2001).
    [CrossRef] [PubMed]
  11. S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am B 21, 201–207 (2004).
    [CrossRef]
  12. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [CrossRef]
  13. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [CrossRef]
  14. V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
    [CrossRef] [PubMed]
  15. X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
    [CrossRef]
  16. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
    [CrossRef] [PubMed]
  17. S. Mujumdar, V. Tuerck, R. Torre, and D. S. Wiersma, “Chaotic behavior of random lasers with static disorder,” Phys. Rev. A 76, 033807 (2007).
    [CrossRef]
  18. A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001).
    [CrossRef] [PubMed]
  19. R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
    [CrossRef]
  20. S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance driven random lasing,” Nat. Photonics 2, 429–432 (2008).
    [CrossRef]
  21. R. Pierrat and R. Carminati, “Threshold of random lasers in the incoherent transport regime,” Phys. Rev. A 76, 023821 (2007).
    [CrossRef]
  22. F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006).
    [CrossRef]
  23. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
    [CrossRef]
  24. S. Mujumdar, R. Torre, H. Ramachandran, and D. S. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4, 041550 (2010).
    [CrossRef]
  25. R. Uppu and S. Mujumdar, “Statistical fluctuations of coherent and incoherent intensity in random lasers with nonresonant feedback,” Opt. Lett. 35, 2831–2833 (2010).
    [CrossRef] [PubMed]
  26. S. E. Assmann, J. Widoniak, and G. Maret, “Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles,” Chem. Mater. 16, 6–11 (2004).
    [CrossRef]
  27. R. G. S. El-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98, 161106 (2011).
    [CrossRef]

2011 (2)

2010 (5)

R. Uppu and S. Mujumdar, “Statistical fluctuations of coherent and incoherent intensity in random lasers with nonresonant feedback,” Opt. Lett. 35, 2831–2833 (2010).
[CrossRef] [PubMed]

C.-R. Lee, J. De Lin, B.-Y. Huang, T.-S. Mo, and S.-Y. Huang, “All-optically controllable random laser based on a dye-doped liquid crystal added with a photoisomerizable dye,” Opt. Express 18, 25896–25905 (2010).
[CrossRef] [PubMed]

A. Tulek, R. C. Polson, and Z. V. Vardeny, “Naturally occurring resonators in random lasing of pi-conjugated polymer films,” Nat. Phys. 6, 303–310 (2010).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

S. Mujumdar, R. Torre, H. Ramachandran, and D. S. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4, 041550 (2010).
[CrossRef]

2009 (1)

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3, 279–282 (2009).
[CrossRef]

2008 (2)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[CrossRef]

2007 (3)

R. Pierrat and R. Carminati, “Threshold of random lasers in the incoherent transport regime,” Phys. Rev. A 76, 023821 (2007).
[CrossRef]

S. Mujumdar, V. Tuerck, R. Torre, and D. S. Wiersma, “Chaotic behavior of random lasers with static disorder,” Phys. Rev. A 76, 033807 (2007).
[CrossRef]

R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
[CrossRef]

2006 (2)

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006).
[CrossRef]

2005 (2)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A: Math. Gen. 38, 10497–10535 (2005).
[CrossRef]

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[CrossRef] [PubMed]

2004 (3)

S. E. Assmann, J. Widoniak, and G. Maret, “Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles,” Chem. Mater. 16, 6–11 (2004).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am B 21, 201–207 (2004).
[CrossRef]

2001 (2)

D. S. Wiersma and S. A. Cavalieri, “A temperature-tunable random laser,” Nature 414, 708–709 (2001).
[CrossRef] [PubMed]

A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001).
[CrossRef] [PubMed]

1999 (1)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

1996 (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–839 (1968).

Ania-Castanon, J. D.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Asatryan, A. A.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Assmann, S. E.

S. E. Assmann, J. Widoniak, and G. Maret, “Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles,” Chem. Mater. 16, 6–11 (2004).
[CrossRef]

Babin, S. A.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Bertolotti, J.

R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
[CrossRef]

Blanco, A.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[CrossRef]

R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
[CrossRef]

Botten, L. C.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Cao, H.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A: Math. Gen. 38, 10497–10535 (2005).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Carminati, R.

R. Pierrat and R. Carminati, “Threshold of random lasers in the incoherent transport regime,” Phys. Rev. A 76, 023821 (2007).
[CrossRef]

Cavalieri, S.

S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am B 21, 201–207 (2004).
[CrossRef]

Cavalieri, S. A.

D. S. Wiersma and S. A. Cavalieri, “A temperature-tunable random laser,” Nature 414, 708–709 (2001).
[CrossRef] [PubMed]

Chabanov, A. A.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001).
[CrossRef] [PubMed]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Churkin, D. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

De Lin, J.

Dietz, R. J. B.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3, 279–282 (2009).
[CrossRef]

El-Dardiry, R. G. S.

R. G. S. El-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98, 161106 (2011).
[CrossRef]

El-Taher, A. E.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Fallert, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3, 279–282 (2009).
[CrossRef]

Fang, W.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Garcia, P. D.

R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
[CrossRef]

García, P. D.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[CrossRef]

Genack, A. Z.

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[CrossRef] [PubMed]

A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001).
[CrossRef] [PubMed]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Gottardo, S.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[CrossRef]

Harper, P.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Huang, B.-Y.

Huang, S.-Y.

Kablukov, S. I.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Kalt, H.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3, 279–282 (2009).
[CrossRef]

Karalekas, V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Klingshirn, C.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3, 279–282 (2009).
[CrossRef]

Kuo, C.-T.

Lagendijk, A.

R. G. S. El-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98, 161106 (2011).
[CrossRef]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Lee, C.-R.

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–839 (1968).

Lin, S.-H.

Lopez, C.

R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
[CrossRef]

López, C.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[CrossRef]

Maret, G.

S. E. Assmann, J. Widoniak, and G. Maret, “Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles,” Chem. Mater. 16, 6–11 (2004).
[CrossRef]

Martin, M. D.

R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
[CrossRef]

Milner, V.

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[CrossRef] [PubMed]

Mo, T.-S.

Mujumdar, S.

R. Uppu and S. Mujumdar, “Statistical fluctuations of coherent and incoherent intensity in random lasers with nonresonant feedback,” Opt. Lett. 35, 2831–2833 (2010).
[CrossRef] [PubMed]

S. Mujumdar, R. Torre, H. Ramachandran, and D. S. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4, 041550 (2010).
[CrossRef]

S. Mujumdar, V. Tuerck, R. Torre, and D. S. Wiersma, “Chaotic behavior of random lasers with static disorder,” Phys. Rev. A 76, 033807 (2007).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am B 21, 201–207 (2004).
[CrossRef]

Noginov, M.

M. Noginov, Solid State Random Lasers, Springer Series in Optical Sciences (Springer, 2005), Vol. 105.

Pierrat, R.

R. Pierrat and R. Carminati, “Threshold of random lasers in the incoherent transport regime,” Phys. Rev. A 76, 023821 (2007).
[CrossRef]

Pinheiro, F. A.

F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006).
[CrossRef]

Podivilov, E. V.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Polson, R. C.

A. Tulek, R. C. Polson, and Z. V. Vardeny, “Naturally occurring resonators in random lasing of pi-conjugated polymer films,” Nat. Phys. 6, 303–310 (2010).
[CrossRef]

Ramachandran, H.

S. Mujumdar, R. Torre, H. Ramachandran, and D. S. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4, 041550 (2010).
[CrossRef]

Ricci, M.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

Sampaio, L. C.

F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006).
[CrossRef]

Sapienza, R.

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[CrossRef]

R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
[CrossRef]

Sartor, J.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3, 279–282 (2009).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Schneider, D.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3, 279–282 (2009).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Torre, R.

S. Mujumdar, R. Torre, H. Ramachandran, and D. S. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4, 041550 (2010).
[CrossRef]

S. Mujumdar, V. Tuerck, R. Torre, and D. S. Wiersma, “Chaotic behavior of random lasers with static disorder,” Phys. Rev. A 76, 033807 (2007).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

Tuerck, V.

S. Mujumdar, V. Tuerck, R. Torre, and D. S. Wiersma, “Chaotic behavior of random lasers with static disorder,” Phys. Rev. A 76, 033807 (2007).
[CrossRef]

Tulek, A.

A. Tulek, R. C. Polson, and Z. V. Vardeny, “Naturally occurring resonators in random lasing of pi-conjugated polymer films,” Nat. Phys. 6, 303–310 (2010).
[CrossRef]

Turitsyn, S. K.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

Uppu, R.

Vardeny, Z. V.

A. Tulek, R. C. Polson, and Z. V. Vardeny, “Naturally occurring resonators in random lasing of pi-conjugated polymer films,” Nat. Phys. 6, 303–310 (2010).
[CrossRef]

Vina, L.

R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
[CrossRef]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Widoniak, J.

S. E. Assmann, J. Widoniak, and G. Maret, “Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles,” Chem. Mater. 16, 6–11 (2004).
[CrossRef]

Wiersma, D. S.

S. Mujumdar, R. Torre, H. Ramachandran, and D. S. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4, 041550 (2010).
[CrossRef]

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[CrossRef]

R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
[CrossRef]

S. Mujumdar, V. Tuerck, R. Torre, and D. S. Wiersma, “Chaotic behavior of random lasers with static disorder,” Phys. Rev. A 76, 033807 (2007).
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am B 21, 201–207 (2004).
[CrossRef]

D. S. Wiersma and S. A. Cavalieri, “A temperature-tunable random laser,” Nature 414, 708–709 (2001).
[CrossRef] [PubMed]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Wu, X.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Yamilov, A.

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

Yeh, H.-C.

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

R. G. S. El-Dardiry and A. Lagendijk, “Tuning random lasers by engineered absorption,” Appl. Phys. Lett. 98, 161106 (2011).
[CrossRef]

Chem. Mater. (1)

S. E. Assmann, J. Widoniak, and G. Maret, “Synthesis and characterization of porous and nonporous monodisperse colloidal TiO2 particles,” Chem. Mater. 16, 6–11 (2004).
[CrossRef]

J. Nanophotonics (1)

S. Mujumdar, R. Torre, H. Ramachandran, and D. S. Wiersma, “Monte Carlo calculations of spectral features in random lasing,” J. Nanophotonics 4, 041550 (2010).
[CrossRef]

J. Opt. Soc. Am B (1)

S. Mujumdar, S. Cavalieri, and D. S. Wiersma, “Temperature-tunable random lasing: numerical calculations and experiments,” J. Opt. Soc. Am B 21, 201–207 (2004).
[CrossRef]

J. Phys. A: Math. Gen. (1)

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. A: Math. Gen. 38, 10497–10535 (2005).
[CrossRef]

Nat. Photonics (3)

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3, 279–282 (2009).
[CrossRef]

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castanon, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4, 231–235 (2010).
[CrossRef]

S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, and C. López, “Resonance driven random lasing,” Nat. Photonics 2, 429–432 (2008).
[CrossRef]

Nat. Phys. (2)

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4, 359–367 (2008).
[CrossRef]

A. Tulek, R. C. Polson, and Z. V. Vardeny, “Naturally occurring resonators in random lasing of pi-conjugated polymer films,” Nat. Phys. 6, 303–310 (2010).
[CrossRef]

Nature (2)

D. S. Wiersma and S. A. Cavalieri, “A temperature-tunable random laser,” Nature 414, 708–709 (2001).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (4)

R. Pierrat and R. Carminati, “Threshold of random lasers in the incoherent transport regime,” Phys. Rev. A 76, 023821 (2007).
[CrossRef]

F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006).
[CrossRef]

X. Wu, W. Fang, A. Yamilov, A. A. Chabanov, A. A. Asatryan, L. C. Botten, and H. Cao, “Random lasing in weakly scattering systems,” Phys. Rev. A 74, 053812 (2006).
[CrossRef]

S. Mujumdar, V. Tuerck, R. Torre, and D. S. Wiersma, “Chaotic behavior of random lasers with static disorder,” Phys. Rev. A 76, 033807 (2007).
[CrossRef]

Phys. Rev. E (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[CrossRef]

Phys. Rev. Lett. (5)

A. A. Chabanov and A. Z. Genack, “Photon localization in resonant media,” Phys. Rev. Lett. 87, 153901 (2001).
[CrossRef] [PubMed]

R. Sapienza, P. D. Garcia, J. Bertolotti, M. D. Martin, A. Blanco, L. Vina, C. Lopez, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99, 233902 (2007)
[CrossRef]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

V. Milner and A. Z. Genack, “Photon localization laser: low-threshold lasing in a random amplifying layered medium via wave localization,” Phys. Rev. Lett. 94, 073901 (2005).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–839 (1968).

Other (1)

M. Noginov, Solid State Random Lasers, Springer Series in Optical Sciences (Springer, 2005), Vol. 105.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online.) [A]: Two exemplary spectra showing coherent modes from a conventional random laser. Inset: Schematic of the random lasing sample signifying arbitrarily shaped and sized scatterers. [B]: Continuous distribution of the wavelength of the lasing modes observed over 100 spectra. [C] Two spectra calculated from the Monte Carlo simulation, showing coherent modes at random positions. [D] The histogram of the wavelengths of calculated peaks, over 40 spectra.

Fig. 2
Fig. 2

(Color online.) Qsca(λ) for TiO2 microsphere of diameter 1.14 μm immersed in Methanol is shown as the black curves. The broken blue line shows the corresponding transport mean free path of a suspension of these spheres. The normalized gain cross-section (σemm(λ)) of the dye is shown superimposed in red.

Fig. 3
Fig. 3

(Color online.) The pathlength distribution P(l) of photons in the random medium for (a) the NSRL (nonresonant scatterers random laser) and (b) the RSRL (resonant scatterers random laser) system. The black line represents the photons generated at maximum of the fluorescence cross-section (λmax), and the red line indicates the photons at the resonant wavelength λres. (b) shows a mildly weaker decay for the resonant photons, indicating a slower diffusion. (c) and (d) depict the intensity contributed by the photons to the emission spectrum as a function of their pathlengths, for (c) the NSRL system and (d) the RSRL system, with the color-code as earlier. For the NSRL system, the intensity contribution from the photons at λmax dominates, whereas, for the RSRL system, the resonant photons’ contribution is larger over the entire range of pathlengths.

Fig. 4
Fig. 4

(a) and (b) denote the transport mean free path for the NSRL and the RSRL system, respectively. (c) and (d) depict corresponding emission spectra at four different shots at an excitation energy Ep= 7.2 μJ. The black vertical lines highlight the resonance that persistently yields a coherent mode.

Fig. 5
Fig. 5

(a) Variation of the ensemble-averaged ratio (〈r〉 = Ires/Imax) with excitation energy ranging from 1.5 μJ to 8.2 μJ for the NSRL (black squares) and the RSRL system (red circles). (b) and (c) depict the ensemble-averaged spectra from the two systems at the said excitation energies. The persistence interval for the RSRL system is prominent on averaging.

Fig. 6
Fig. 6

Black, red and blue lines represent the ensemble-averaged spectra from the RSRL system for scatterer diameters of 1.09, 1.17 and 1.30 μm respectively. The persistence interval could be tuned over a range of ∼10 nm within this small range of scatterer diameters.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

= 1 1 g ( 2 d 3 Φ Q sca )

Metrics