Abstract

Broadband real-time dynamic vibronic coupling in Chl-a were experimentally studied using few cycle laser pulses of 6.8fs duration and a 128-channnel lock-in amplifier. Thanks to the extreme temporal resolution benefitting from the ultrashort laser pulse, the real-time modulation of the electronic transition energy induced by the molecular vibrations were calculated by the time dependent first moments of the bleaching band. The transition energy was found to be modulated periodically with the same frequencies of molecular vibration found in the Fourier amplitude spectrum of the difference absorbance real-time traces. This was interpreted to be due to the difference in the effective transition energy associated with the wavepacket motion induced by the equilibrium positions of potential curves between the ground state and the excited state. Using the values, Huang–Rhys factors for several vibrational modes involved in the spectral modulation at the room-temperature have been determined.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. K. Rebane and R. A. Avarmaa, “Sharp line vibronic spectra of chlorophyll and its derivatives in solid solutions,” Chem. Phys. 68(1–2), 191–200 (1982).
    [CrossRef]
  2. R. J. Platenkamp, H. J. Den Blanken, and A. J. Hoff, “Single-site absorption spectroscopy of pheophytin-a and chlorophyll-a in a n-octane matrix,” Chem. Phys. Lett. 76(1), 35–41 (1980).
    [CrossRef]
  3. M. Rätsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of chlorophyll a,” J. Chem. Phys. 130(19), 194501 (2009).
    [CrossRef] [PubMed]
  4. J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates: effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
    [CrossRef] [PubMed]
  5. C. Zhou, J. R. Diers, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and related complexes: normal mode characteristics of the low-frequency vibrations,” J. Phys. Chem. B 101(46), 9635–9644 (1997).
    [CrossRef]
  6. J. K. Gillie, G. J. Small, and J. H. Golbeck, “Nonphotochemical hole burning of the native antenna complex of photosystem I (PSI-200),” J. Phys. Chem. 93(4), 1620–1627 (1989).
    [CrossRef]
  7. A. Pascal, E. Peterman, C. Gradinaru, H. van Amerongen, R. van Grondelle, and B. Robert, “Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein,” J. Phys. Chem. B 104(39), 9317–9321 (2000).
    [CrossRef]
  8. A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
    [CrossRef] [PubMed]
  9. A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27(5), 306–308 (2002).
    [CrossRef] [PubMed]
  10. K. Okamura and T. Kobayashi, “Octave-spanning carrier-envelope phase stabilized visible pulse with sub-3-fs pulse duration,” Opt. Lett. 36(2), 226–228 (2011).
    [CrossRef] [PubMed]
  11. A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
    [CrossRef] [PubMed]
  12. T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
    [CrossRef] [PubMed]
  13. H. H. Strain and W. A. Svec, “Extraction, separation, estimation and isolation of the chlorophylls,” in The Chlorophylls, L. P. Vernon and G. R. Seeley, eds. (Academic, 1966), pp. 21–26.
  14. J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101(4), 995–1003 (2011).
    [CrossRef] [PubMed]
  15. G. Korn, O. Dühr, and A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81(6), 1215–1218 (1998).
    [CrossRef]
  16. T. Kobayashi and A. Yabushita, “Transition-state spectroscopy using ultrashort laser pulses,” Chem. Rec. 11(2), 99–116 (2011).
    [CrossRef] [PubMed]
  17. T. Kobayashi, J. Zhang, and Z. Wang, “Non-Condon vibronic coupling of coherent molecular vibration in MEH-PPV induced by a visible few-cycle pulse laser,” New J. Phys. 11(1), 013048 (2009).
    [CrossRef]
  18. S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
    [CrossRef]

2011 (3)

K. Okamura and T. Kobayashi, “Octave-spanning carrier-envelope phase stabilized visible pulse with sub-3-fs pulse duration,” Opt. Lett. 36(2), 226–228 (2011).
[CrossRef] [PubMed]

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101(4), 995–1003 (2011).
[CrossRef] [PubMed]

T. Kobayashi and A. Yabushita, “Transition-state spectroscopy using ultrashort laser pulses,” Chem. Rec. 11(2), 99–116 (2011).
[CrossRef] [PubMed]

2009 (2)

T. Kobayashi, J. Zhang, and Z. Wang, “Non-Condon vibronic coupling of coherent molecular vibration in MEH-PPV induced by a visible few-cycle pulse laser,” New J. Phys. 11(1), 013048 (2009).
[CrossRef]

M. Rätsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of chlorophyll a,” J. Chem. Phys. 130(19), 194501 (2009).
[CrossRef] [PubMed]

2006 (1)

S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
[CrossRef]

2002 (1)

2001 (1)

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
[CrossRef] [PubMed]

2000 (1)

A. Pascal, E. Peterman, C. Gradinaru, H. van Amerongen, R. van Grondelle, and B. Robert, “Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein,” J. Phys. Chem. B 104(39), 9317–9321 (2000).
[CrossRef]

1998 (2)

A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
[CrossRef] [PubMed]

G. Korn, O. Dühr, and A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81(6), 1215–1218 (1998).
[CrossRef]

1997 (1)

C. Zhou, J. R. Diers, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and related complexes: normal mode characteristics of the low-frequency vibrations,” J. Phys. Chem. B 101(46), 9635–9644 (1997).
[CrossRef]

1996 (1)

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates: effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[CrossRef] [PubMed]

1989 (1)

J. K. Gillie, G. J. Small, and J. H. Golbeck, “Nonphotochemical hole burning of the native antenna complex of photosystem I (PSI-200),” J. Phys. Chem. 93(4), 1620–1627 (1989).
[CrossRef]

1988 (1)

A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
[CrossRef] [PubMed]

1982 (1)

K. K. Rebane and R. A. Avarmaa, “Sharp line vibronic spectra of chlorophyll and its derivatives in solid solutions,” Chem. Phys. 68(1–2), 191–200 (1982).
[CrossRef]

1980 (1)

R. J. Platenkamp, H. J. Den Blanken, and A. J. Hoff, “Single-site absorption spectroscopy of pheophytin-a and chlorophyll-a in a n-octane matrix,” Chem. Phys. Lett. 76(1), 35–41 (1980).
[CrossRef]

Avarmaa, R. A.

K. K. Rebane and R. A. Avarmaa, “Sharp line vibronic spectra of chlorophyll and its derivatives in solid solutions,” Chem. Phys. 68(1–2), 191–200 (1982).
[CrossRef]

Baltuška, A.

Blankenship, R. E.

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates: effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[CrossRef] [PubMed]

Bocian, D. F.

C. Zhou, J. R. Diers, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and related complexes: normal mode characteristics of the low-frequency vibrations,” J. Phys. Chem. B 101(46), 9635–9644 (1997).
[CrossRef]

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates: effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[CrossRef] [PubMed]

Den Blanken, H. J.

R. J. Platenkamp, H. J. Den Blanken, and A. J. Hoff, “Single-site absorption spectroscopy of pheophytin-a and chlorophyll-a in a n-octane matrix,” Chem. Phys. Lett. 76(1), 35–41 (1980).
[CrossRef]

Diers, J. R.

C. Zhou, J. R. Diers, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and related complexes: normal mode characteristics of the low-frequency vibrations,” J. Phys. Chem. B 101(46), 9635–9644 (1997).
[CrossRef]

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates: effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[CrossRef] [PubMed]

Du, J.

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101(4), 995–1003 (2011).
[CrossRef] [PubMed]

Dühr, O.

G. Korn, O. Dühr, and A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81(6), 1215–1218 (1998).
[CrossRef]

Freiberg, A.

M. Rätsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of chlorophyll a,” J. Chem. Phys. 130(19), 194501 (2009).
[CrossRef] [PubMed]

Fuji, T.

Gillie, J. K.

J. K. Gillie, G. J. Small, and J. H. Golbeck, “Nonphotochemical hole burning of the native antenna complex of photosystem I (PSI-200),” J. Phys. Chem. 93(4), 1620–1627 (1989).
[CrossRef]

Golbeck, J. H.

J. K. Gillie, G. J. Small, and J. H. Golbeck, “Nonphotochemical hole burning of the native antenna complex of photosystem I (PSI-200),” J. Phys. Chem. 93(4), 1620–1627 (1989).
[CrossRef]

Gradinaru, C.

A. Pascal, E. Peterman, C. Gradinaru, H. van Amerongen, R. van Grondelle, and B. Robert, “Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein,” J. Phys. Chem. B 104(39), 9317–9321 (2000).
[CrossRef]

Hoff, A. J.

R. J. Platenkamp, H. J. Den Blanken, and A. J. Hoff, “Single-site absorption spectroscopy of pheophytin-a and chlorophyll-a in a n-octane matrix,” Chem. Phys. Lett. 76(1), 35–41 (1980).
[CrossRef]

Hou, Y.

S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
[CrossRef]

Kobayashi, T.

T. Kobayashi and A. Yabushita, “Transition-state spectroscopy using ultrashort laser pulses,” Chem. Rec. 11(2), 99–116 (2011).
[CrossRef] [PubMed]

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101(4), 995–1003 (2011).
[CrossRef] [PubMed]

K. Okamura and T. Kobayashi, “Octave-spanning carrier-envelope phase stabilized visible pulse with sub-3-fs pulse duration,” Opt. Lett. 36(2), 226–228 (2011).
[CrossRef] [PubMed]

T. Kobayashi, J. Zhang, and Z. Wang, “Non-Condon vibronic coupling of coherent molecular vibration in MEH-PPV induced by a visible few-cycle pulse laser,” New J. Phys. 11(1), 013048 (2009).
[CrossRef]

A. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control,” Opt. Lett. 27(5), 306–308 (2002).
[CrossRef] [PubMed]

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
[CrossRef] [PubMed]

A. Shirakawa, I. Sakane, and T. Kobayashi, “Pulse-front-matched optical parametric amplification for sub-10-fs pulse generation tunable in the visible and near infrared,” Opt. Lett. 23(16), 1292–1294 (1998).
[CrossRef] [PubMed]

Korn, G.

G. Korn, O. Dühr, and A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81(6), 1215–1218 (1998).
[CrossRef]

Linnanto, J.

M. Rätsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of chlorophyll a,” J. Chem. Phys. 130(19), 194501 (2009).
[CrossRef] [PubMed]

Liu, D.

S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
[CrossRef]

Nakata, K.

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101(4), 995–1003 (2011).
[CrossRef] [PubMed]

Nazarkin, A.

G. Korn, O. Dühr, and A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81(6), 1215–1218 (1998).
[CrossRef]

Ohtani, H.

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
[CrossRef] [PubMed]

Okamura, K.

Pascal, A.

A. Pascal, E. Peterman, C. Gradinaru, H. van Amerongen, R. van Grondelle, and B. Robert, “Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein,” J. Phys. Chem. B 104(39), 9317–9321 (2000).
[CrossRef]

Peterman, E.

A. Pascal, E. Peterman, C. Gradinaru, H. van Amerongen, R. van Grondelle, and B. Robert, “Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein,” J. Phys. Chem. B 104(39), 9317–9321 (2000).
[CrossRef]

Platenkamp, R. J.

R. J. Platenkamp, H. J. Den Blanken, and A. J. Hoff, “Single-site absorption spectroscopy of pheophytin-a and chlorophyll-a in a n-octane matrix,” Chem. Phys. Lett. 76(1), 35–41 (1980).
[CrossRef]

Qian, L.

S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
[CrossRef]

Quan, S.

S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
[CrossRef]

Rätsep, M.

M. Rätsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of chlorophyll a,” J. Chem. Phys. 130(19), 194501 (2009).
[CrossRef] [PubMed]

Rebane, K. K.

K. K. Rebane and R. A. Avarmaa, “Sharp line vibronic spectra of chlorophyll and its derivatives in solid solutions,” Chem. Phys. 68(1–2), 191–200 (1982).
[CrossRef]

Robert, B.

A. Pascal, E. Peterman, C. Gradinaru, H. van Amerongen, R. van Grondelle, and B. Robert, “Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein,” J. Phys. Chem. B 104(39), 9317–9321 (2000).
[CrossRef]

Saito, T.

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
[CrossRef] [PubMed]

Sakane, I.

Shirakawa, A.

Small, G. J.

J. K. Gillie, G. J. Small, and J. H. Golbeck, “Nonphotochemical hole burning of the native antenna complex of photosystem I (PSI-200),” J. Phys. Chem. 93(4), 1620–1627 (1989).
[CrossRef]

Teng, F.

S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
[CrossRef]

Teramoto, T.

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101(4), 995–1003 (2011).
[CrossRef] [PubMed]

Tokunaga, E.

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101(4), 995–1003 (2011).
[CrossRef] [PubMed]

van Amerongen, H.

A. Pascal, E. Peterman, C. Gradinaru, H. van Amerongen, R. van Grondelle, and B. Robert, “Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein,” J. Phys. Chem. B 104(39), 9317–9321 (2000).
[CrossRef]

van Grondelle, R.

A. Pascal, E. Peterman, C. Gradinaru, H. van Amerongen, R. van Grondelle, and B. Robert, “Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein,” J. Phys. Chem. B 104(39), 9317–9321 (2000).
[CrossRef]

Wang, Y.

S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
[CrossRef]

Wang, Z.

T. Kobayashi, J. Zhang, and Z. Wang, “Non-Condon vibronic coupling of coherent molecular vibration in MEH-PPV induced by a visible few-cycle pulse laser,” New J. Phys. 11(1), 013048 (2009).
[CrossRef]

Xu, Z.

S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
[CrossRef]

Yabushita, A.

T. Kobayashi and A. Yabushita, “Transition-state spectroscopy using ultrashort laser pulses,” Chem. Rec. 11(2), 99–116 (2011).
[CrossRef] [PubMed]

Zewail, A. H.

A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
[CrossRef] [PubMed]

Zhang, J.

T. Kobayashi, J. Zhang, and Z. Wang, “Non-Condon vibronic coupling of coherent molecular vibration in MEH-PPV induced by a visible few-cycle pulse laser,” New J. Phys. 11(1), 013048 (2009).
[CrossRef]

Zhang, T.

S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
[CrossRef]

Zhou, C.

C. Zhou, J. R. Diers, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and related complexes: normal mode characteristics of the low-frequency vibrations,” J. Phys. Chem. B 101(46), 9635–9644 (1997).
[CrossRef]

Zhu, Y.

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates: effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[CrossRef] [PubMed]

Biophys. J. (1)

J. Du, T. Teramoto, K. Nakata, E. Tokunaga, and T. Kobayashi, “Real-time vibrational dynamics in chlorophyll a studied with a few-cycle pulse laser,” Biophys. J. 101(4), 995–1003 (2011).
[CrossRef] [PubMed]

Chem. Phys. (1)

K. K. Rebane and R. A. Avarmaa, “Sharp line vibronic spectra of chlorophyll and its derivatives in solid solutions,” Chem. Phys. 68(1–2), 191–200 (1982).
[CrossRef]

Chem. Phys. Lett. (1)

R. J. Platenkamp, H. J. Den Blanken, and A. J. Hoff, “Single-site absorption spectroscopy of pheophytin-a and chlorophyll-a in a n-octane matrix,” Chem. Phys. Lett. 76(1), 35–41 (1980).
[CrossRef]

Chem. Rec. (1)

T. Kobayashi and A. Yabushita, “Transition-state spectroscopy using ultrashort laser pulses,” Chem. Rec. 11(2), 99–116 (2011).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

M. Rätsep, J. Linnanto, and A. Freiberg, “Mirror symmetry and vibrational structure in optical spectra of chlorophyll a,” J. Chem. Phys. 130(19), 194501 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. (2)

J. R. Diers, Y. Zhu, R. E. Blankenship, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and bacteriochlorophyll c/d aggregates: effects of peripheral substituents on the low-frequency vibrational characteristics,” J. Phys. Chem. 100(20), 8573–8579 (1996).
[CrossRef] [PubMed]

J. K. Gillie, G. J. Small, and J. H. Golbeck, “Nonphotochemical hole burning of the native antenna complex of photosystem I (PSI-200),” J. Phys. Chem. 93(4), 1620–1627 (1989).
[CrossRef]

J. Phys. Chem. B (2)

A. Pascal, E. Peterman, C. Gradinaru, H. van Amerongen, R. van Grondelle, and B. Robert, “Structure and interactions of the chlorophyll a molecules in the higher plant Lhcb4 antenna protein,” J. Phys. Chem. B 104(39), 9317–9321 (2000).
[CrossRef]

C. Zhou, J. R. Diers, and D. F. Bocian, “Qy-excitation resonance Raman spectra of chlorophyll a and related complexes: normal mode characteristics of the low-frequency vibrations,” J. Phys. Chem. B 101(46), 9635–9644 (1997).
[CrossRef]

Mater. Lett. (1)

S. Quan, F. Teng, Z. Xu, T. Zhang, L. Qian, D. Liu, Y. Hou, and Y. Wang, “Temperature effects on photoluminescence of poly[2-methoxy-5-(20-ethyl-hexyloxy)-1,4-phenylene vinylene],” Mater. Lett. 60(9–10), 1134–1136 (2006).
[CrossRef]

Nature (1)

T. Kobayashi, T. Saito, and H. Ohtani, “Real-time spectroscopy of transition states in bacteriorhodopsin during retinal isomerization,” Nature 414(6863), 531–534 (2001).
[CrossRef] [PubMed]

New J. Phys. (1)

T. Kobayashi, J. Zhang, and Z. Wang, “Non-Condon vibronic coupling of coherent molecular vibration in MEH-PPV induced by a visible few-cycle pulse laser,” New J. Phys. 11(1), 013048 (2009).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

G. Korn, O. Dühr, and A. Nazarkin, “Observation of Raman self-conversion of fs-pulse frequency due to impulsive excitation of molecular vibrations,” Phys. Rev. Lett. 81(6), 1215–1218 (1998).
[CrossRef]

Science (1)

A. H. Zewail, “Laser femtochemistry,” Science 242(4886), 1645–1653 (1988).
[CrossRef] [PubMed]

Other (1)

H. H. Strain and W. A. Svec, “Extraction, separation, estimation and isolation of the chlorophylls,” in The Chlorophylls, L. P. Vernon and G. R. Seeley, eds. (Academic, 1966), pp. 21–26.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The absorption spectrum(1), fluorescence spectrum (2) of Chl a, and the NOPA laser spectrum (3).

Fig. 2
Fig. 2

(a) Birds-eye view of the time-resolved difference absorption spectra of Chl-a. (b) Real-time traces at seven typical wavelengths. The dashed lines represent ΔA = 0.

Fig. 3
Fig. 3

Three-dimensional plot of FT amplitude spectra of the pump-probe signal.

Fig. 4
Fig. 4

Probe delay time dependence of the integrated ΔA signal intensity in the Q band (a), the electronic transition energy (c), and their corresponding FT power spectra (b) and (d), respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϖ(t)= Q ΔA(ω,t)·ω dω/ Q ΔA(ω,t) dω
δ ω simu (t)= i δ ω vi exp(t/ τ vi )cos( ω v i t+ φ i ), (i=1,2,...,5)
δΔA(ω,t)=ΔA(ω,t) ΔA(ω,t) ¯ ( δ( μ QG 2 (t)) μ QG 2 (t) ΔA(ω,t)+δω(t) dΔA(ω,t) dω +δΔω(t) d 2 ΔA(ω,t) d ω 2 )cos( ω v t+ϕ)

Metrics