Abstract

The fluctuations in the elastic light scattering spectra of normal and dysplastic human cervical tissues analyzed through wavelet transform based techniques reveal clear signatures of self-similar behavior in the spectral fluctuations. The values of the scaling exponent observed for these tissues indicate the differences in the self-similarity for dysplastic tissues and their normal counterparts. The strong dependence of the elastic light scattering on the size distribution of the scatterers manifests in the angular variation of the scaling exponent. Interestingly, the spectral fluctuations in both these tissues showed multi-fractality (non-stationarity in fluctuations), the degree of multi-fractality being marginally higher in the case of dysplastic tissues. These findings using the multi-resolution analysis capability of the discrete wavelet transform can contribute to the recent surge in the exploration for non-invasive optical tools for pre-cancer detection.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
    [CrossRef] [PubMed]
  2. R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
    [CrossRef] [PubMed]
  3. R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
    [CrossRef]
  4. N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
    [CrossRef] [PubMed]
  5. N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
    [CrossRef] [PubMed]
  6. N. Ghosh, S. K. Majumder, and P. K. Gupta, “Polarized fluorescence spectroscopy of human tissues,” Opt. Lett. 27, 2007–2009 (2002).
    [CrossRef]
  7. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
    [CrossRef]
  8. N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
    [CrossRef] [PubMed]
  9. J. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
    [CrossRef] [PubMed]
  10. J. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
    [CrossRef]
  11. J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
    [CrossRef] [PubMed]
  12. N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011).
    [CrossRef]
  13. S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
    [CrossRef] [PubMed]
  14. W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
    [CrossRef] [PubMed]
  15. R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
    [CrossRef] [PubMed]
  16. M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
    [CrossRef] [PubMed]
  17. W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
    [CrossRef] [PubMed]
  18. R. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13, 4693–4698 (2005).
    [CrossRef]
  19. A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003).
    [CrossRef] [PubMed]
  20. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
    [CrossRef]
  21. N. Ghosh, M. Wood, and A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), Medical Physics and Biomedical Engineering, pp. 253–282.
    [CrossRef]
  22. V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).
  23. N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
    [CrossRef]
  24. N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001).
    [CrossRef]
  25. Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
    [CrossRef] [PubMed]
  26. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
    [CrossRef] [PubMed]
  27. C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
    [CrossRef] [PubMed]
  28. İ. R. Çapoğlu, J. D. Rogers, A. Taflove, and V. Backman, “Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media,” Opt. Lett. 34, 2679–2681 (2009).
    [CrossRef] [PubMed]
  29. M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
    [CrossRef] [PubMed]
  30. M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051–3053 (2005).
    [CrossRef] [PubMed]
  31. C. J. R. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett. 32, 142–144 (2007).
    [CrossRef]
  32. T. T. Wu, J. Y. Qu, and M. Xu, “Unified Mie and fractal scattering by biological cells and subcellular structures,” Opt. Lett. 32, 2324–2326 (2007).
    [CrossRef] [PubMed]
  33. W. Gao, “Square law between spatial frequency of spatial correlation function of scattering potential of tissue and spectrum of scattered light,” J. Biomed. Opt. 15, 030502 (2010).
    [CrossRef] [PubMed]
  34. A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
    [PubMed]
  35. J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996).
    [CrossRef] [PubMed]
  36. L. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3, 787–803 (2006).
    [CrossRef]
  37. H. Hurst, “Long-term storage capacity of reservoirs,” Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951).
  38. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, 1982).
  39. J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
    [CrossRef]
  40. P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005).
    [CrossRef]
  41. P. Manimaran, P. Panigrahi, and J. Parikh, “Multiresolution analysis of fluctuations in non-stationary time series through discrete wavelets,” Physica A 388, 2306–2314 (2009).
    [CrossRef]
  42. S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
    [CrossRef] [PubMed]
  43. N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
    [CrossRef]
  44. A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
    [CrossRef] [PubMed]
  45. A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
    [CrossRef]
  46. A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
    [CrossRef] [PubMed]
  47. I. Daubechies, Ten Lectures on Wavelets, 1st ed., CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM: Society for Industrial and Applied Mathematics, 1992).
    [CrossRef]
  48. M. Farge, “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech. 24, 395–458 (1992).
    [CrossRef]
  49. C. Torrence and G. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
    [CrossRef]
  50. S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell.11, 674–693 (1989).
    [CrossRef]
  51. S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011).
    [CrossRef]
  52. A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
    [CrossRef] [PubMed]
  53. H. E. Stanley and P. Meakin, “Multifractal phenomena in physics and chemistry,” Nature 335, 405–409 (1988).
    [CrossRef]
  54. P. Šeba, “Random matrix analysis of human EEG data,” Phys. Rev. Lett. 91, 198104 (2003).
  55. J. D. Bancroft and M. Gamble, Theory and Practice of Histopathological Techniques, 5th ed. (Churchill Livingstone, 2002).

2011 (3)

N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011).
[CrossRef]

A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[CrossRef] [PubMed]

S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011).
[CrossRef]

2010 (3)

W. Gao, “Square law between spatial frequency of spatial correlation function of scattering potential of tissue and spectrum of scattered light,” J. Biomed. Opt. 15, 030502 (2010).
[CrossRef] [PubMed]

A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[CrossRef]

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[CrossRef] [PubMed]

2009 (3)

2008 (3)

2007 (3)

2006 (4)

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

L. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3, 787–803 (2006).
[CrossRef]

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[CrossRef]

2005 (6)

P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005).
[CrossRef]

S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[CrossRef] [PubMed]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[CrossRef]

N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
[CrossRef] [PubMed]

R. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13, 4693–4698 (2005).
[CrossRef]

M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051–3053 (2005).
[CrossRef] [PubMed]

2003 (6)

A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003).
[CrossRef] [PubMed]

N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

J. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[CrossRef]

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

2002 (4)

N. Ghosh, S. K. Majumder, and P. K. Gupta, “Polarized fluorescence spectroscopy of human tissues,” Opt. Lett. 27, 2007–2009 (2002).
[CrossRef]

A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[CrossRef] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef] [PubMed]

J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[CrossRef]

2001 (2)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef] [PubMed]

N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001).
[CrossRef]

2000 (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

1999 (1)

J. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

1998 (2)

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

C. Torrence and G. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[CrossRef]

1997 (1)

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

1996 (2)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996).
[CrossRef] [PubMed]

1992 (1)

M. Farge, “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech. 24, 395–458 (1992).
[CrossRef]

1988 (1)

H. E. Stanley and P. Meakin, “Multifractal phenomena in physics and chemistry,” Nature 335, 405–409 (1988).
[CrossRef]

1987 (1)

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

1951 (1)

H. Hurst, “Long-term storage capacity of reservoirs,” Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951).

Agarwal, A.

S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[CrossRef] [PubMed]

Agarwal, N.

S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[CrossRef] [PubMed]

N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[CrossRef]

Alfano, R.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Alfano, R. R.

Arora, S.

A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[CrossRef] [PubMed]

A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[CrossRef]

A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[CrossRef] [PubMed]

Arridge, S. R.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Backman, V.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[CrossRef] [PubMed]

İ. R. Çapoğlu, J. D. Rogers, A. Taflove, and V. Backman, “Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media,” Opt. Lett. 34, 2679–2681 (2009).
[CrossRef] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Badizadegan, K.

M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[CrossRef] [PubMed]

W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[CrossRef] [PubMed]

C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef] [PubMed]

Bancroft, J. D.

J. D. Bancroft and M. Gamble, Theory and Practice of Histopathological Techniques, 5th ed. (Churchill Livingstone, 2002).

Banerjee, A.

N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011).
[CrossRef]

Biswal, N.

S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[CrossRef] [PubMed]

N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
[CrossRef] [PubMed]

Boiko, I.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Boone, C. W.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

Boppart, S. A.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[CrossRef] [PubMed]

Boustany, N. N.

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[CrossRef] [PubMed]

Buddhiwant, P.

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[CrossRef]

Bunde, A.

J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[CrossRef]

Çapoglu, I. R.

Choi, W.

Choy, D.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Collier, T.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Compo, G.

C. Torrence and G. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[CrossRef]

Crawford, J. M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[CrossRef]

Dasari, R. R.

M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[CrossRef] [PubMed]

W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[CrossRef] [PubMed]

C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef] [PubMed]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[CrossRef]

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef] [PubMed]

Daubechies, I.

I. Daubechies, Ten Lectures on Wavelets, 1st ed., CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM: Society for Industrial and Applied Mathematics, 1992).
[CrossRef]

Delpy, D. T.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Drezek, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Eke, A.

A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[CrossRef] [PubMed]

Elackattu, A.

Fang-Yen, C.

W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef] [PubMed]

Farge, M.

M. Farge, “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech. 24, 395–458 (1992).
[CrossRef]

Feld, M. S.

M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[CrossRef] [PubMed]

W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[CrossRef] [PubMed]

C.-C. Yu, C. Lau, G. O’Donoghue, J. Mirkovic, S. McGee, L. Galindo, A. Elackattu, E. Stier, G. Grillone, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Quantitative spectroscopic imaging for non-invasive early cancer detection,” Opt. Express 16, 16227–16239 (2008).
[CrossRef] [PubMed]

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[CrossRef]

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Fitzmaurice, M.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[CrossRef]

Follen, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Fujimoto, J.

J. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

Galindo, L.

Gamble, M.

J. D. Bancroft and M. Gamble, Theory and Practice of Histopathological Techniques, 5th ed. (Churchill Livingstone, 2002).

Gao, W.

W. Gao, “Square law between spatial frequency of spatial correlation function of scattering potential of tissue and spectrum of scattered light,” J. Biomed. Opt. 15, 030502 (2010).
[CrossRef] [PubMed]

Georgakoudi, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef] [PubMed]

Gharekhan, A.

A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[CrossRef]

A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[CrossRef] [PubMed]

Gharekhan, A. H.

A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[CrossRef] [PubMed]

Ghosh, N.

N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011).
[CrossRef]

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[CrossRef]

N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
[CrossRef] [PubMed]

N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
[CrossRef] [PubMed]

N. Ghosh, S. K. Majumder, and P. K. Gupta, “Polarized fluorescence spectroscopy of human tissues,” Opt. Lett. 27, 2007–2009 (2002).
[CrossRef]

N. Ghosh, S. K. Mohanty, S. K. Majumder, and P. K. Gupta, “Measurement of optical transport properties of normal and malignant human breast tissue,” Appl. Opt. 40, 176–184 (2001).
[CrossRef]

N. Ghosh, M. Wood, and A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), Medical Physics and Biomedical Engineering, pp. 253–282.
[CrossRef]

Ghosh, S.

S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011).
[CrossRef]

Gopal, V.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

Graf, R.

Grillone, G.

Guillaud, M.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Gupta, P. K.

Gupta, S.

S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[CrossRef] [PubMed]

N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[CrossRef]

N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
[CrossRef] [PubMed]

Gurjar, R. S.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef] [PubMed]

Haka, A. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[CrossRef]

Hamano, T.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Havlin, S.

J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[CrossRef]

Hebden, J. C.

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Herman, P.

A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[CrossRef] [PubMed]

Hunter, M.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

Hurst, H.

H. Hurst, “Long-term storage capacity of reservoirs,” Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951).

Itzkan, I.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Izatt, J. A.

Jacques, S. L.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef] [PubMed]

Kalashnikov, M.

M. Kalashnikov, W. Choi, C.-C. Yu, Y. Sung, R. R. Dasari, K. Badizadegan, and M. S. Feld, “Assessing light scattering of intracellular organelles in single intact living cells,” Opt. Express 17, 19674–19681 (2009).
[CrossRef] [PubMed]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

Kantelhardt, J. W.

J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[CrossRef]

Kim, Y. L.

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef] [PubMed]

Kocsis, L.

A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[CrossRef] [PubMed]

Koscielny-Bunde, E.

J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[CrossRef]

Kozak, L. R.

A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[CrossRef] [PubMed]

Kumar, G.

Lam, W.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Lau, C.

Lee, K.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef] [PubMed]

Lima, C.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Liu, Y.

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef] [PubMed]

Lue, N.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef] [PubMed]

Macaulay, C.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Majumder, S. K.

Mallat, S. G.

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell.11, 674–693 (1989).
[CrossRef]

Malpica, A.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

Mandelbrot, B.

B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, 1982).

Manimaran, P.

S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011).
[CrossRef]

P. Manimaran, P. Panigrahi, and J. Parikh, “Multiresolution analysis of fluctuations in non-stationary time series through discrete wavelets,” Physica A 388, 2306–2314 (2009).
[CrossRef]

P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005).
[CrossRef]

Manoharan, R.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Mayya, K.

A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[CrossRef] [PubMed]

McGee, S.

Meakin, P.

H. E. Stanley and P. Meakin, “Multifractal phenomena in physics and chemistry,” Nature 335, 405–409 (1988).
[CrossRef]

Mirkovic, J.

Mller, M. G.

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

Mohanty, S. K.

Nair, M.

S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[CrossRef] [PubMed]

Nines, R.

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

Nusrat, A.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

O’Donoghue, G.

Oh, S.

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef] [PubMed]

Opher, E.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Oza, A. N.

A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[CrossRef] [PubMed]

Panigrahi, P.

A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[CrossRef]

P. Manimaran, P. Panigrahi, and J. Parikh, “Multiresolution analysis of fluctuations in non-stationary time series through discrete wavelets,” Physica A 388, 2306–2314 (2009).
[CrossRef]

A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[CrossRef] [PubMed]

S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[CrossRef] [PubMed]

N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[CrossRef]

Panigrahi, P. K.

A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[CrossRef] [PubMed]

S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011).
[CrossRef]

P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005).
[CrossRef]

Parikh, J.

P. Manimaran, P. Panigrahi, and J. Parikh, “Multiresolution analysis of fluctuations in non-stationary time series through discrete wavelets,” Physica A 388, 2306–2314 (2009).
[CrossRef]

Parikh, J. C.

P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005).
[CrossRef]

Patel, H. S.

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[CrossRef]

N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
[CrossRef] [PubMed]

Perelman, L.

L. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3, 787–803 (2006).
[CrossRef]

Perelman, L. T.

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef] [PubMed]

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Popescu, G.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

Pradhan, A.

A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[CrossRef] [PubMed]

A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[CrossRef]

A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[CrossRef] [PubMed]

S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[CrossRef] [PubMed]

N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[CrossRef]

N. Biswal, S. Gupta, N. Ghosh, and A. Pradhan, “Recovery of turbidity free fluorescence from measured fluorescence: an experimental approach,” Opt. Express 11, 3320–3331 (2003).
[CrossRef] [PubMed]

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Pradhan, P.

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef] [PubMed]

Qu, J. Y.

Ramanujam, N.

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

Ramella-Roman, J. C.

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef] [PubMed]

Richards-Kortum, R.

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Rogers, J. D.

Schmitt, J.

J. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

Schmitt, J. M.

Šeba, P.

P. Šeba, “Random matrix analysis of human EEG data,” Phys. Rev. Lett. 91, 198104 (2003).

Seiler, M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Sevick-Muraca, E.

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Shafer-Peltier, K. E.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[CrossRef]

Sheppard, C. J. R.

Shields, S.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Soni, J.

N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011).
[CrossRef]

Stanley, H. E.

J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[CrossRef]

H. E. Stanley and P. Meakin, “Multifractal phenomena in physics and chemistry,” Nature 335, 405–409 (1988).
[CrossRef]

Steele, V. E.

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

Stier, E.

Stoner, G. D.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

Subramanian, H.

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef] [PubMed]

Sung, Y.

Sureshkumar, M.

A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[CrossRef] [PubMed]

Sureshkumar, M. B.

A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[CrossRef] [PubMed]

Taflove, A.

Tang, G.

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

Torrence, C.

C. Torrence and G. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[CrossRef]

Tuchin, V. V.

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).

Turzhitsky, V. M.

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef] [PubMed]

Uppal, A.

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[CrossRef]

Van Dam, J.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Vishwanathan, K.

N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[CrossRef]

Vitkin, A.

N. Ghosh, M. Wood, and A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), Medical Physics and Biomedical Engineering, pp. 253–282.
[CrossRef]

Wallace, M.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Wang, L.

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).

Wax, A.

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

R. Graf and A. Wax, “Nuclear morphology measurements using Fourier domain low coherence interferometry,” Opt. Express 13, 4693–4698 (2005).
[CrossRef]

A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003).
[CrossRef] [PubMed]

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

Wood, M.

N. Ghosh, M. Wood, and A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), Medical Physics and Biomedical Engineering, pp. 253–282.
[CrossRef]

Wu, T. T.

Xu, M.

Yang, C.

A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003).
[CrossRef] [PubMed]

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

Yu, C.-C.

Zimnyakov, D. A.

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).

Zonios, G.

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

Zschiegner, S. A.

J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[CrossRef]

Annu. Rev. Biomed. Eng. (1)

N. N. Boustany, S. A. Boppart, and V. Backman, “Microscopic imaging and spectroscopy with scattered light,” Annu. Rev. Biomed. Eng. 12, 285–314 (2010).
[CrossRef] [PubMed]

Annu. Rev. Fluid Mech. (1)

M. Farge, “Wavelet transforms and their applications to turbulence,” Annu. Rev. Fluid Mech. 24, 395–458 (1992).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

R. Richards-Kortum and E. Sevick-Muraca, “Quantitative optical spectroscopy for tissue diagnosis,” Annu. Rev. Phys. Chem. 47, 555–606 (1996).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

N. Ghosh, P. Buddhiwant, A. Uppal, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Simultaneous determination of size and refractive index of red blood cells by light scattering measurements,” Appl. Phys. Lett. 88, 084101 (2006).
[CrossRef]

Bull. Am. Meteorol. Soc. (1)

C. Torrence and G. Compo, “A practical guide to wavelet analysis,” Bull. Am. Meteorol. Soc. 79, 61–78 (1998).
[CrossRef]

Cancer Res. (1)

A. Wax, C. Yang, M. G. Mller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556–3559 (2003).
[PubMed]

Eur. Phys. J. Appl. Phys. (1)

N. Ghosh, A. Banerjee, and J. Soni, “Turbid medium polarimetry in biomedical imaging and diagnosis,” Eur. Phys. J. Appl. Phys. 54, 30001 (2011).
[CrossRef]

Expert Rev. Med. Devices (1)

L. Perelman, “Optical diagnostic technology based on light scattering spectroscopy for early cancer detection,” Expert Rev. Med. Devices 3, 787–803 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Alfano, G. Tang, A. Pradhan, W. Lam, D. Choy, and E. Opher, “Fluorescence spectra from cancerous and normal human breast and lung tissues,” IEEE J. Quantum Electron. 23, 1806–1811 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

J. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999).
[CrossRef]

N. Agarwal, S. Gupta, A. Pradhan, K. Vishwanathan, and P. Panigrahi, “Wavelet transform of breast tissue fluorescence spectra: a technique for diagnosis of tumors,” IEEE J. Sel. Top. Quantum Electron. 9, 154–161 (2003).
[CrossRef]

A. Gharekhan, S. Arora, P. Panigrahi, and A. Pradhan, “Distinguishing cancer and normal breast tissue autofluorescence using continuous wavelet transform,” IEEE J. Sel. Top. Quantum Electron. 16, 893–899 (2010).
[CrossRef]

J. Biomed. Opt. (7)

A. H. Gharekhan, S. Arora, A. N. Oza, M. B. Sureshkumar, A. Pradhan, and P. K. Panigrahi, “Distinguishing autofluorescence of normal, benign, and cancerous breast tissues through wavelet domain correlation studies,” J. Biomed. Opt. 16, 087003 (2011).
[CrossRef] [PubMed]

A. Gharekhan, S. Arora, K. Mayya, P. Panigrahi, M. Sureshkumar, and A. Pradhan, “Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence,” J. Biomed. Opt. 13, 054063 (2008).
[CrossRef] [PubMed]

Y. L. Kim, V. M. Turzhitsky, Y. Liu, H. Subramanian, and P. Pradhan, “Low-coherence enhanced backscattering: review of principles and applications for colon cancer screening,” J. Biomed. Opt. 11, 041125 (2006).
[CrossRef] [PubMed]

R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7–16 (2003).
[CrossRef] [PubMed]

S. L. Jacques, J. C. Ramella-Roman, and K. Lee, “Imaging skin pathology with polarized light,” J. Biomed. Opt. 7, 329–340 (2002).
[CrossRef] [PubMed]

S. Gupta, M. Nair, A. Pradhan, N. Biswal, N. Agarwal, A. Agarwal, and P. Panigrahi, “Wavelet-based characterization of spectral fluctuations in normal, benign, and cancerous human breast tissues,” J. Biomed. Opt. 10, 054012 (2005).
[CrossRef] [PubMed]

W. Gao, “Square law between spatial frequency of spatial correlation function of scattering potential of tissue and spectrum of scattered light,” J. Biomed. Opt. 15, 030502 (2010).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

J. Fujimoto, “Optical coherence tomography for ultrahigh resolution in vivo imaging,” Nat. Biotechnol. 21, 1361–1367 (2003).
[CrossRef] [PubMed]

Nat. Med. (1)

R. S. Gurjar, V. Backman, L. T. Perelman, I. Georgakoudi, K. Badizadegan, I. Itzkan, R. R. Dasari, and M. S. Feld, “Imaging human epithelial properties with polarized light-scattering spectroscopy,” Nat. Med. 7, 1245–1248 (2001).
[CrossRef] [PubMed]

Nat. Methods (1)

W. Choi, C. Fang-Yen, K. Badizadegan, S. Oh, N. Lue, R. R. Dasari, and M. S. Feld, “Tomographic phase microscopy,” Nat. Methods 4, 717–719 (2007).
[CrossRef] [PubMed]

Nature (1)

H. E. Stanley and P. Meakin, “Multifractal phenomena in physics and chemistry,” Nature 335, 405–409 (1988).
[CrossRef]

Neoplasia (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2, 89–117 (2000).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (9)

İ. R. Çapoğlu, J. D. Rogers, A. Taflove, and V. Backman, “Accuracy of the Born approximation in calculating the scattering coefficient of biological continuous random media,” Opt. Lett. 34, 2679–2681 (2009).
[CrossRef] [PubMed]

M. Xu and R. R. Alfano, “Fractal mechanisms of light scattering in biological tissue and cells,” Opt. Lett. 30, 3051–3053 (2005).
[CrossRef] [PubMed]

C. J. R. Sheppard, “Fractal model of light scattering in biological tissue and cells,” Opt. Lett. 32, 142–144 (2007).
[CrossRef]

T. T. Wu, J. Y. Qu, and M. Xu, “Unified Mie and fractal scattering by biological cells and subcellular structures,” Opt. Lett. 32, 2324–2326 (2007).
[CrossRef] [PubMed]

W. Choi, C.-C. Yu, C. Fang-Yen, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Field-based angle-resolved light-scattering study of single live cells,” Opt. Lett. 33, 1596–1598 (2008).
[CrossRef] [PubMed]

N. Ghosh, S. K. Majumder, H. S. Patel, and P. K. Gupta, “Depth-resolved fluorescence measurement in a layered turbid mediumby polarized fluorescence spectroscopy,” Opt. Lett. 30, 162–164 (2005).
[CrossRef] [PubMed]

N. Ghosh, S. K. Majumder, and P. K. Gupta, “Polarized fluorescence spectroscopy of human tissues,” Opt. Lett. 27, 2007–2009 (2002).
[CrossRef]

A. Wax, C. Yang, and J. A. Izatt, “Fourier-domain low-coherence interferometry for light-scattering spectroscopy,” Opt. Lett. 28, 1230–1232 (2003).
[CrossRef] [PubMed]

J. M. Schmitt and G. Kumar, “Turbulent nature of refractive-index variations in biological tissue,” Opt. Lett. 21, 1310–1312 (1996).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

J. C. Hebden, S. R. Arridge, and D. T. Delpy, “Optical imaging in medicine: I. Experimental techniques,” Phys. Med. Biol. 42, 825–840 (1997).
[CrossRef] [PubMed]

Phys. Rev. E (1)

P. Manimaran, P. K. Panigrahi, and J. C. Parikh, “Wavelet analysis and scaling properties of time series,” Phys. Rev. E 72, 046120 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

P. Šeba, “Random matrix analysis of human EEG data,” Phys. Rev. Lett. 91, 198104 (2003).

L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: a new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627–630 (1998).
[CrossRef]

M. Hunter, V. Backman, G. Popescu, M. Kalashnikov, C. W. Boone, A. Wax, V. Gopal, K. Badizadegan, G. D. Stoner, and M. S. Feld, “Tissue self-affinity and polarized light scattering in the born approximation: a new model for precancer detection,” Phys. Rev. Lett. 97, 138102 (2006).
[CrossRef] [PubMed]

Physica A (3)

S. Ghosh, P. Manimaran, and P. K. Panigrahi, “Characterizing multi-scale self-similar behavior and non-statistical properties of financial time series,” Physica A 390, 4304–4316 (2011).
[CrossRef]

P. Manimaran, P. Panigrahi, and J. Parikh, “Multiresolution analysis of fluctuations in non-stationary time series through discrete wavelets,” Physica A 388, 2306–2314 (2009).
[CrossRef]

J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, and H. E. Stanley, “Multifractal detrended fluctuation analysis of nonstationary time series,” Physica A 316, 87–114 (2002).
[CrossRef]

Physiol. Meas. (1)

A. Eke, P. Herman, L. Kocsis, and L. R. Kozak, “Fractal characterization of complexity in temporal physiological signals,” Physiol. Meas. 23, R1–R38 (2002).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. (USA) (1)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. (USA) 102, 12371–12376 (2005).
[CrossRef]

Trans. Am. Soc. Civ. Eng. (1)

H. Hurst, “Long-term storage capacity of reservoirs,” Trans. Am. Soc. Civ. Eng. 116, 770–808 (1951).

Other (6)

B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, 1982).

S. G. Mallat, “A theory for multiresolution signal decomposition: the wavelet representation,” IEEE Trans. Pattern Anal. Mach. Intell.11, 674–693 (1989).
[CrossRef]

I. Daubechies, Ten Lectures on Wavelets, 1st ed., CBMS-NSF Regional Conference Series in Applied Mathematics (SIAM: Society for Industrial and Applied Mathematics, 1992).
[CrossRef]

N. Ghosh, M. Wood, and A. Vitkin, “Polarized light assessment of complex turbid media such as biological tissues using mueller matrix decomposition,” in Handbook of Photonics for Biomedical Science, V. V. Tuchin, ed. (CRC Press, 2010), Medical Physics and Biomedical Engineering, pp. 253–282.
[CrossRef]

V. V. Tuchin, L. Wang, and D. A. Zimnyakov, Optical Polarization in Biomedical Applications (Springer-Verlag, 2006).

J. D. Bancroft and M. Gamble, Theory and Practice of Histopathological Techniques, 5th ed. (Churchill Livingstone, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic representation of the fluctuation extraction algorithm (adapted from [51]).

Fig. 2
Fig. 2

(Color Online) Schematic representation of the experimental set-up for the light scattering measurement. The sample mounted on a goniometer is illuminated by a white light collimated from a Xe-source and the scattered light is then collimated using two lenses (L 2 and L 3) and recorded using a Fiber-Optic Spectrometer. The θf represents the forward scattering angle, while θb is the backward scattering angle. The forward and backward scattering process are represented by red and blue lines respectively while the Fiber-Optic Spectrometer set-up is shown in green. 0 ≤ θ ≤ 180° is the scattering angle at which the spectra were recorded. Note that the rectangular shape of the glass slides prevented acquiring spectra in the angular range 80° – 110°.

Fig. 3
Fig. 3

Typical peak normalized elastic light scattering spectra recorded from normal and dysplastic tissues at scattering angles (a) θ = 10° and (b) θ = 150°.

Fig. 4
Fig. 4

The variation of the mean values of the scaling exponent α(θ) as a function of scattering angle θ for normal and dysplastic tissues, as determined from Fourier analysis. The error bars represent standard deviations.

Fig. 5
Fig. 5

The variation of the mean values of the power law exponent α with the wavelet scale s at representative forward and backward scattering angles θ for (a) normal and (b) dysplastic tissues. The error bars represent standard deviations.

Fig. 6
Fig. 6

The variation of the mean values for the Hurst parameter, H = h(q = 2) as a function of the scattering angle θ for normal and dysplastic tissues, as determined from WB-MFDFA analysis. The error bars represent standard deviations.

Fig. 8
Fig. 8

The singularity spectrum f(β) plotted against β at all scattering angles θ for (a) typical normal tissue and (b) typical dysplastic tissue.

Fig. 7
Fig. 7

The scaling function h(q) at different forward and backward scattering angles for (a) typical normal tissue and (b) typical dysplastic tissue. The weaker q dependence of h(q) for normal samples in the forward scattering angles (50° – 70°) is indicative of a trend towards mono-fractality, while the stronger dependence of the scaling function on the order of moments for dysplastic sample is indicative of a multi-fractal trend.

Fig. 9
Fig. 9

(Color Online) The correlation matrices in the wavelength domain for (a) typical normal tissue and (b) typical dysplastic tissue. The results are shown for the same tissues whose results were presented in Figs. 7 and 8.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

x ( k ) = n = 0 N 1 x ( n ) exp ( 2 π ι N kn ) , k [ 0 , N 1 ]
P ( k ) = | n = 0 N 1 x ( n ) exp ( 2 π ι N kn ) | 2
P ( k ) k α .
ψ s , m ( n ) = 2 s / 2 ψ ( 2 s n m ) , m , s + ,
f ( t ) = m = a m ϕ m ( t ) + m = s 0 l d s , m ψ s , m ( t ) ,
F q ( s ) = [ 1 M s m = 1 2 M s { F 2 ( m , s ) } q 2 ] 1 q , q 0
and , F q = 0 ( s ) = exp [ 1 M s m = 1 2 M s log { F 2 ( m , s ) } q 2 ] 1 q , q = 0 .
f ( β ) = q [ β h ( q ) ] + 1 .
C i j = x i y j x i y j ( x i 2 x i 2 ) ( y j 2 y j 2 )

Metrics