Abstract

In this paper, we propose and analyze novel ring resonator based bio-chemical sensors on silicon nanowire optical waveguide (SNOW) and show that the sensitivity of the sensors can be increased by an order of magnitude as compared to silicon-on-insulator based ring resonators while maintaining high index contrast and compact devices. The core of the waveguide is hollow and allows for introduction of biomaterial in the center of the mode, thereby increasing the sensitivity of detection. A sensitivity of 243 nm/refractive index unit (RIU) is achieved for a change in bulk refractive index. For surface attachment, the sensor is able to detect monolayer attachments as small as 1 Å on the surface of the silicon nanowires.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
    [CrossRef] [PubMed]
  2. S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
    [CrossRef] [PubMed]
  3. W. E. Moerner, “New directions in single-molecule imaging and analysis,” Proc. Natl. Acad. Sci. U.S.A. 104, 12596–12602 (2007).
    [CrossRef] [PubMed]
  4. W. G. Cox and V. L. Singer, “Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling,” Biotechniques 36, 114–122 (2004).
    [PubMed]
  5. B. J. Luff, R. D. Harris, J. S. Wilkinson, R. Wilson, and D. J. Schiffrin, “Integrated optical directional coupler biosensor,” Opt. Lett. 21, 618–620 (1996).
    [CrossRef] [PubMed]
  6. F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
    [CrossRef]
  7. W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
    [CrossRef]
  8. E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009).
    [CrossRef] [PubMed]
  9. A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
    [CrossRef] [PubMed]
  10. L. Rindorf, J. B. Jenson, M. Dufva, L. H. Pedersen, P. E. Hiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006).
    [CrossRef] [PubMed]
  11. K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
    [CrossRef] [PubMed]
  12. T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
    [CrossRef]
  13. M. Khorasaninejad and S. S. Saini, “Silicon nanowire optical waveguide (SNOW),” Opt. Express 18, 23442–23457 (2010).
    [CrossRef] [PubMed]
  14. M. Khorasaninejad and S. S. Saini, “Bend-waveguides on silicon nanowire optical waveguide (SNOW),” IEEE Photon. J. 3, 696–702 (2011).
    [CrossRef]
  15. M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, “Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars,” Nanotechnology 20, 1–4 (2009).
    [CrossRef]
  16. Y. J. Hung, S. L. Lee, and L. A. Coldren, “Deep and tapered silicon photonic crystals for achieving anti-reflection and enhanced absorption,” Opt. Express 18, 6841–6852 (2010).
    [CrossRef] [PubMed]
  17. S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007).
    [CrossRef]
  18. P. J. Bock, P. Cheben, J. H. Schmid, J. Lapointe, A. Delge, D. X. Xu, S. Janz, A. Densmore, and T. J. Hall, “Subwavelength grating crossings for silicon wire waveguides,” Opt. Express 18, 16146–16155 (2010).
    [CrossRef] [PubMed]
  19. S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
    [CrossRef] [PubMed]
  20. E. S. Larsen, J. R. Meyrowitz, and A. J. C. Wilson, “Measurement of refractive index,” in International Tables for Crystallography (2006), Vol.  C, Chap. 3.3, pp. 160–161.
    [CrossRef]

2011

M. Khorasaninejad and S. S. Saini, “Bend-waveguides on silicon nanowire optical waveguide (SNOW),” IEEE Photon. J. 3, 696–702 (2011).
[CrossRef]

2010

2009

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, “Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars,” Nanotechnology 20, 1–4 (2009).
[CrossRef]

T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, “High quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range,” Opt. Express 17, 14543–14551 (2009).
[CrossRef] [PubMed]

2008

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

2007

W. E. Moerner, “New directions in single-molecule imaging and analysis,” Proc. Natl. Acad. Sci. U.S.A. 104, 12596–12602 (2007).
[CrossRef] [PubMed]

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007).
[CrossRef]

2006

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
[CrossRef] [PubMed]

A. M. Armani and K. J. Vahala, “Heavy water detection using ultra-high-Q microcavities,” Opt. Lett. 31, 1896–1898 (2006).
[CrossRef] [PubMed]

L. Rindorf, J. B. Jenson, M. Dufva, L. H. Pedersen, P. E. Hiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express 14, 8224–8231 (2006).
[CrossRef] [PubMed]

E. S. Larsen, J. R. Meyrowitz, and A. J. C. Wilson, “Measurement of refractive index,” in International Tables for Crystallography (2006), Vol.  C, Chap. 3.3, pp. 160–161.
[CrossRef]

2005

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[CrossRef] [PubMed]

2004

W. G. Cox and V. L. Singer, “Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling,” Biotechniques 36, 114–122 (2004).
[PubMed]

2003

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[CrossRef]

1996

Abad, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[CrossRef]

Adibi, A.

Armani, A. M.

Atabaki, A. H.

Baets, R.

T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

Balslev, S.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
[CrossRef] [PubMed]

Bang, O.

Bartolozzi, I.

Bentley, W. E.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007).
[CrossRef]

Bienstman, P.

T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

Bilenberg, B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
[CrossRef] [PubMed]

Bock, P. J.

Calle, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[CrossRef]

Cheben, P.

Claes, T.

T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

Cloutier, S. G.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[CrossRef] [PubMed]

Coldren, L. A.

Cox, W. G.

W. G. Cox and V. L. Singer, “Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling,” Biotechniques 36, 114–122 (2004).
[PubMed]

Dagenais, M.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007).
[CrossRef]

De La Rue, R. M.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

de Ridder, R. M.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

Delge, A.

Densmore, A.

DeShong, P.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007).
[CrossRef]

Domínguez, C.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[CrossRef]

Driessen, A.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

Dufva, M.

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Geschke, O.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
[CrossRef] [PubMed]

Hall, T. J.

Harris, R. D.

Henry, M. D.

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, “Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars,” Nanotechnology 20, 1–4 (2009).
[CrossRef]

Hiby, P. E.

Hoekstra, H. J. W. M.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

Homyk, A.

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, “Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars,” Nanotechnology 20, 1–4 (2009).
[CrossRef]

Hopman, W. C. L.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

Hosseini, E. S.

Hung, Y. J.

Janz, S.

Jenson, J. B.

Jorgensen, A. M.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
[CrossRef] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad and S. S. Saini, “Bend-waveguides on silicon nanowire optical waveguide (SNOW),” IEEE Photon. J. 3, 696–702 (2011).
[CrossRef]

M. Khorasaninejad and S. S. Saini, “Silicon nanowire optical waveguide (SNOW),” Opt. Express 18, 23442–23457 (2010).
[CrossRef] [PubMed]

Kossyrev, P. A.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[CrossRef] [PubMed]

Kristensen, A.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
[CrossRef] [PubMed]

Kutter, J. P.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
[CrossRef] [PubMed]

Lambeck, P. V.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

Lapointe, J.

Larsen, E. S.

E. S. Larsen, J. R. Meyrowitz, and A. J. C. Wilson, “Measurement of refractive index,” in International Tables for Crystallography (2006), Vol.  C, Chap. 3.3, pp. 160–161.
[CrossRef]

Lechuga, L. M.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[CrossRef]

Lee, S. L.

Lee, S. M.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007).
[CrossRef]

Lith, J. V.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

Llobera, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[CrossRef]

Luff, B. J.

Meyrowitz, J. R.

E. S. Larsen, J. R. Meyrowitz, and A. J. C. Wilson, “Measurement of refractive index,” in International Tables for Crystallography (2006), Vol.  C, Chap. 3.3, pp. 160–161.
[CrossRef]

Moerner, W. E.

W. E. Moerner, “New directions in single-molecule imaging and analysis,” Proc. Natl. Acad. Sci. U.S.A. 104, 12596–12602 (2007).
[CrossRef] [PubMed]

Mogensen, K. B.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
[CrossRef] [PubMed]

Molera, J. G.

T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

Montoya, A.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[CrossRef]

Park, J.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007).
[CrossRef]

Pedersen, L. H.

Pottier, P.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

Prieto, F.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[CrossRef]

Rindorf, L.

Saini, S. S.

M. Khorasaninejad and S. S. Saini, “Bend-waveguides on silicon nanowire optical waveguide (SNOW),” IEEE Photon. J. 3, 696–702 (2011).
[CrossRef]

M. Khorasaninejad and S. S. Saini, “Silicon nanowire optical waveguide (SNOW),” Opt. Express 18, 23442–23457 (2010).
[CrossRef] [PubMed]

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007).
[CrossRef]

Schacht, E.

T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

Scherer, A.

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, “Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars,” Nanotechnology 20, 1–4 (2009).
[CrossRef]

Schiffrin, D. J.

Schmid, J. H.

Sepúlveda, B.

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[CrossRef]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Singer, V. L.

W. G. Cox and V. L. Singer, “Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling,” Biotechniques 36, 114–122 (2004).
[PubMed]

Snakenborg, D.

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
[CrossRef] [PubMed]

Soltani, M.

Stanford, C.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Vahala, K. J.

Vos, K. D.

T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15, 7610–7615 (2007).
[CrossRef] [PubMed]

Walavalkar, S.

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, “Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars,” Nanotechnology 20, 1–4 (2009).
[CrossRef]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Wilkinson, J. S.

Wilson, A. J. C.

E. S. Larsen, J. R. Meyrowitz, and A. J. C. Wilson, “Measurement of refractive index,” in International Tables for Crystallography (2006), Vol.  C, Chap. 3.3, pp. 160–161.
[CrossRef]

Wilson, R.

Xu, D. X.

Xu, J.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[CrossRef] [PubMed]

Yegnanarayanan, S.

Yudistira, D.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620, 8–26 (2008).
[CrossRef] [PubMed]

Biotechniques

W. G. Cox and V. L. Singer, “Fluorescent DNA hybridization probe preparation using amine modification and reactive dye coupling,” Biotechniques 36, 114–122 (2004).
[PubMed]

IEEE J. Sel. Top. Quantum Electron.

W. C. L. Hopman, P. Pottier, D. Yudistira, J. V. Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building-block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005).
[CrossRef]

IEEE Photon. J.

T. Claes, J. G. Molera, K. D. Vos, E. Schacht, R. Baets, and P. Bienstman, “Label-free biosensing with a slot-waveguide based ring resonator in silicon on insulator,” IEEE Photon. J. 1, 197–204 (2009).
[CrossRef]

M. Khorasaninejad and S. S. Saini, “Bend-waveguides on silicon nanowire optical waveguide (SNOW),” IEEE Photon. J. 3, 696–702 (2011).
[CrossRef]

IEEE Photon. Technol. Lett.

S. S. Saini, C. Stanford, S. M. Lee, J. Park, P. DeShong, W. E. Bentley, and M. Dagenais, “Monolayer detection of biochemical agents using etched-core fiber Bragg grating sensors,” IEEE Photon. Technol. Lett. 19, 1341–1343 (2007).
[CrossRef]

International Tables for Crystallography

E. S. Larsen, J. R. Meyrowitz, and A. J. C. Wilson, “Measurement of refractive index,” in International Tables for Crystallography (2006), Vol.  C, Chap. 3.3, pp. 160–161.
[CrossRef]

Lab Chip

S. Balslev, A. M. Jorgensen, B. Bilenberg, K. B. Mogensen, D. Snakenborg, O. Geschke, J. P. Kutter, and A. Kristensen, “Lab-on-a-chip with integrated optical transducers,” Lab Chip 6, 213–217 (2006).
[CrossRef] [PubMed]

Nanotechnology

F. Prieto, B. Sepúlveda, A. Calle, A. Llobera, C. Domínguez, A. Abad, A. Montoya, and L. M. Lechuga, “An integrated optical interferometric nanodevice based on silicon technology for biosensor applications,” Nanotechnology 14, 907–912 (2003).
[CrossRef]

M. D. Henry, S. Walavalkar, A. Homyk, and A. Scherer, “Alumina etch masks for fabrication of high-aspect-ratio silicon micropillars and nanopillars,” Nanotechnology 20, 1–4 (2009).
[CrossRef]

Nat. Mater.

S. G. Cloutier, P. A. Kossyrev, and J. Xu, “Optical gain and stimulated emission in periodic nanopatterned crystalline silicon,” Nat. Mater. 4, 887–891 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. Natl. Acad. Sci. U.S.A.

W. E. Moerner, “New directions in single-molecule imaging and analysis,” Proc. Natl. Acad. Sci. U.S.A. 104, 12596–12602 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Fabricated SNOW consists of 9 rows of 800nm-long SiNWs with diameter of 40 nm.

Fig. 2
Fig. 2

(Color online) Radiation loss for various radii of bend SNOWs over a 360° turn when the electric field is parallel to the length of nanowires at wavelength of 1550 nm.

Fig. 3
Fig. 3

Schematic of (a) the proposed ring resonator with SNOW, (b) conventional Si ring resonator.

Fig. 4
Fig. 4

(Color online) Lateral cut of the FDTD propagation of electric field through the SNOW ring resonator.

Fig. 5
Fig. 5

(Color online) Lateral electric field cuts for the SNOW with width of 650 nm for both bend, with a radius of 5 μm, and straight structures and the silicon waveguide with width of 200 nm at wavelength of 1550 nm.

Fig. 6
Fig. 6

(Color online) Change of effective-index as a percentage for SOI and SNOW ring resonator as the surrounding index is changed.

Fig. 7
Fig. 7

(Color online) (a) Shift of resonance wavelength for SOI ring resonator when the surrounding index is changed from 1 to 1.05. (b) Shift of resonance wavelength for SNOW ring resonator when the surrounding index is changed from 1 to 1.05.

Fig. 8
Fig. 8

(Color online) Change of sensitivity as width of SNOW is changed. Sensitivity for a 200 nm SOI is also shown.

Fig. 9
Fig. 9

(Color online) (a) Wavelength shift as 1 nm of layer is surface attached to the SOI waveguide (b) Wavelength shift as 1 nm of layer is surface attached to the SNOW ring. Wavelength shift due to a layer attachment of 0.1 nm is also shown.

Fig. 10
Fig. 10

(Color online) Change in the percentage of the effective modal index for 1 nm thickness of attached layers as the SNOW width is increased.

Tables (1)

Tables Icon

Table I Device parameters for simulated SNOW and standard SOI ring resonators.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ λ = Δ n e f f λ n g

Metrics