Abstract

Gold nanoshells (GNS) are novel metal nanoparticles exhibiting attractive optical properties which make them highly suitable for biophotonics applications. We present a novel investigation using plasmon-enhanced four wave mixing microscopy combined with coherent anti-Stokes Raman scattering (CARS) microscopy to visualize the distribution of 75 nm radius GNS within live cells. During a laser tolerance study we found that cells containing nanoshells could be exposed to < 2.5 mJ each with no photo-thermally induced necrosis detected, while cell death was linearly proportional to the power over this threshold. The majority of the GNS signal detected was from plasmon-enhanced four wave mixing (FWM) that we detected in the epi-direction with the incident lasers tuned to the silent region of the Raman spectrum. The cellular GNS distribution was visualized by combining the epi-detected signal with forwards-detected CARS at the CH2 resonance. The applicability of this technique to real-world nanoparticle dosing problems was demonstrated in a study of the effect of H2S on nanoshell uptake using two donor molecules, NaHS and GYY4137. As GYY4137 concentration was increased from 10 µM to 1 mM, the nanoshell pixel percentage as a function of cell volume (PPCV) increased from 2.15% to 3.77%. As NaHS concentration was increased over the same range, the nanoshell PPCV decreased from 12.67% to 11.47%. The most important factor affecting uptake in this study was found to be the rate of H2S release, with rapid-release from NaHS resulting in significantly greater uptake.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
    [CrossRef] [PubMed]
  2. S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75(19), 2897–2899 (1999).
    [CrossRef]
  3. J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
    [CrossRef]
  4. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  5. L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
    [CrossRef] [PubMed]
  6. S. E. McNeil, “Nanotechnology for the biologist,” J. Leukoc. Biol. 78(3), 585–594 (2005).
    [CrossRef] [PubMed]
  7. K. Bogunia-Kubik and M. Sugisaka, “From molecular biology to nanotechnology and nanomedicine,” Biosystems 65(2-3), 123–138 (2002).
    [CrossRef] [PubMed]
  8. S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
    [CrossRef] [PubMed]
  9. J. C. Y. Kah, R. C. Y. Wan, K. Y. Wong, S. Mhaisalkar, C. J. R. Sheppard, and M. Olivo, “Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study,” Lasers Surg. Med. 40(8), 584–589 (2008).
    [CrossRef] [PubMed]
  10. X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
    [CrossRef] [PubMed]
  11. C. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
    [CrossRef]
  12. J. Park, A. Estrada, K. Sharp, K. Sang, J. A. Schwartz, D. K. Smith, C. Coleman, J. D. Payne, B. A. Korgel, A. K. Dunn, and J. W. Tunnell, “Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells,” Opt. Express 16(3), 1590–1599 (2008).
    [CrossRef] [PubMed]
  13. J. Park, A. Estrada, J. A. Schwartz, J. D. Payne, A. K. Dunn, and J. W. Tunnell, “3D Microscopy of gold nanoshells in tumors using two-photon-induced photoluminescence,” in Plasmonics in Biology and Medicine V (2008), Vol. 6869, p. L8690.
  14. L. Tong and J.-X. Cheng, “Label-free imaging through nonlinear optical signals,” Mater. Today 14(6), 264–273 (2011).
    [CrossRef]
  15. C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
    [CrossRef] [PubMed]
  16. L. G. Rodriguez, S. J. Lockett, and G. R. Holtom, “Coherent anti-stokes Raman scattering microscopy: a biological review,” Cytometry A 69(8), 779–791 (2006).
    [CrossRef] [PubMed]
  17. A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
    [CrossRef]
  18. J. Moger, B. D. Johnston, and C. R. Tyler, “Imaging metal oxide nanoparticles in biological structures with CARS microscopy,” Opt. Express 16(5), 3408–3419 (2008).
    [CrossRef] [PubMed]
  19. M. Whiteman, L. Li, P. Rose, C.-H. Tan, D. B. Parkinson, and P. K. Moore, “The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages,” Antioxid. Redox Signal. 12(10), 1147–1154 (2010).
    [CrossRef] [PubMed]
  20. L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
    [CrossRef] [PubMed]
  21. G. J. Thomas., “Raman spectroscopy of protein and nucleic acid assemblies,” Annu. Rev. Biophys. Biomol. Struct. 28(1), 1–27 (1999).
    [CrossRef] [PubMed]
  22. Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “imaging gold nanorods by plasmon-resonance-enhanced four wave mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
    [CrossRef]
  23. H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8(8), 2373–2377 (2008).
    [CrossRef] [PubMed]
  24. C. Liu and B. Q. Li, “Computational multiscattering of spherical multilayered gold nanoshells,” J. Phys. Chem. C 115(13), 5323–5333 (2011).
    [CrossRef]

2011 (2)

L. Tong and J.-X. Cheng, “Label-free imaging through nonlinear optical signals,” Mater. Today 14(6), 264–273 (2011).
[CrossRef]

C. Liu and B. Q. Li, “Computational multiscattering of spherical multilayered gold nanoshells,” J. Phys. Chem. C 115(13), 5323–5333 (2011).
[CrossRef]

2010 (1)

M. Whiteman, L. Li, P. Rose, C.-H. Tan, D. B. Parkinson, and P. K. Moore, “The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages,” Antioxid. Redox Signal. 12(10), 1147–1154 (2010).
[CrossRef] [PubMed]

2009 (3)

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “imaging gold nanorods by plasmon-resonance-enhanced four wave mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

2008 (6)

J. C. Y. Kah, R. C. Y. Wan, K. Y. Wong, S. Mhaisalkar, C. J. R. Sheppard, and M. Olivo, “Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study,” Lasers Surg. Med. 40(8), 584–589 (2008).
[CrossRef] [PubMed]

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8(8), 2373–2377 (2008).
[CrossRef] [PubMed]

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

J. Park, A. Estrada, K. Sharp, K. Sang, J. A. Schwartz, D. K. Smith, C. Coleman, J. D. Payne, B. A. Korgel, A. K. Dunn, and J. W. Tunnell, “Two-photon-induced photoluminescence imaging of tumors using near-infrared excited gold nanoshells,” Opt. Express 16(3), 1590–1599 (2008).
[CrossRef] [PubMed]

J. Moger, B. D. Johnston, and C. R. Tyler, “Imaging metal oxide nanoparticles in biological structures with CARS microscopy,” Opt. Express 16(5), 3408–3419 (2008).
[CrossRef] [PubMed]

2007 (2)

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

2006 (3)

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

L. G. Rodriguez, S. J. Lockett, and G. R. Holtom, “Coherent anti-stokes Raman scattering microscopy: a biological review,” Cytometry A 69(8), 779–791 (2006).
[CrossRef] [PubMed]

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[CrossRef] [PubMed]

2005 (1)

S. E. McNeil, “Nanotechnology for the biologist,” J. Leukoc. Biol. 78(3), 585–594 (2005).
[CrossRef] [PubMed]

2002 (2)

K. Bogunia-Kubik and M. Sugisaka, “From molecular biology to nanotechnology and nanomedicine,” Biosystems 65(2-3), 123–138 (2002).
[CrossRef] [PubMed]

C. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[CrossRef]

2001 (1)

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

1999 (2)

G. J. Thomas., “Raman spectroscopy of protein and nucleic acid assemblies,” Annu. Rev. Biophys. Biomol. Struct. 28(1), 1–27 (1999).
[CrossRef] [PubMed]

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75(19), 2897–2899 (1999).
[CrossRef]

Baskar, R.

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Bawendi, M. G.

C. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[CrossRef]

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Bishnoi, S. W.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[CrossRef] [PubMed]

Bogunia-Kubik, K.

K. Bogunia-Kubik and M. Sugisaka, “From molecular biology to nanotechnology and nanomedicine,” Biosystems 65(2-3), 123–138 (2002).
[CrossRef] [PubMed]

Chen, H.

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “imaging gold nanorods by plasmon-resonance-enhanced four wave mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

Cheng, J. X.

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “imaging gold nanorods by plasmon-resonance-enhanced four wave mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

Cheng, J.-X.

L. Tong and J.-X. Cheng, “Label-free imaging through nonlinear optical signals,” Mater. Today 14(6), 264–273 (2011).
[CrossRef]

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

Cheng, Y.

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Coleman, C.

Dunn, A. K.

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

Estrada, A.

Evans, C. L.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

Gheith, M. K.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[CrossRef] [PubMed]

Guan, Y. Y.

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Haam, S.

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Hafner, J. H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

Halas, N. J.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[CrossRef] [PubMed]

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75(19), 2897–2899 (1999).
[CrossRef]

Holtom, G. R.

L. G. Rodriguez, S. J. Lockett, and G. R. Holtom, “Coherent anti-stokes Raman scattering microscopy: a biological review,” Cytometry A 69(8), 779–791 (2006).
[CrossRef] [PubMed]

Huang, X.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

Huh, Y.-M.

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Jackson, J. B.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75(19), 2897–2899 (1999).
[CrossRef]

Johnson, B. R.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[CrossRef] [PubMed]

Johnson, D. H.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[CrossRef] [PubMed]

Johnston, B. D.

Jung, Y.

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “imaging gold nanorods by plasmon-resonance-enhanced four wave mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

Kah, J. C. Y.

J. C. Y. Kah, R. C. Y. Wan, K. Y. Wong, S. Mhaisalkar, C. J. R. Sheppard, and M. Olivo, “Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study,” Lasers Surg. Med. 40(8), 584–589 (2008).
[CrossRef] [PubMed]

Kang, J.

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Kim, H.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8(8), 2373–2377 (2008).
[CrossRef] [PubMed]

Ko, H.-J.

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Korgel, B. A.

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Leatherdale, C.

C. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[CrossRef]

Lee, J.

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Lee, K.

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Lee, S. W.

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Levin, C. S.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[CrossRef] [PubMed]

Li, B. Q.

C. Liu and B. Q. Li, “Computational multiscattering of spherical multilayered gold nanoshells,” J. Phys. Chem. C 115(13), 5323–5333 (2011).
[CrossRef]

Li, L.

M. Whiteman, L. Li, P. Rose, C.-H. Tan, D. B. Parkinson, and P. K. Moore, “The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages,” Antioxid. Redox Signal. 12(10), 1147–1154 (2010).
[CrossRef] [PubMed]

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Liao, H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

Liu, C.

C. Liu and B. Q. Li, “Computational multiscattering of spherical multilayered gold nanoshells,” J. Phys. Chem. C 115(13), 5323–5333 (2011).
[CrossRef]

Lockett, S. J.

L. G. Rodriguez, S. J. Lockett, and G. R. Holtom, “Coherent anti-stokes Raman scattering microscopy: a biological review,” Cytometry A 69(8), 779–791 (2006).
[CrossRef] [PubMed]

McNeil, S. E.

S. E. McNeil, “Nanotechnology for the biologist,” J. Leukoc. Biol. 78(3), 585–594 (2005).
[CrossRef] [PubMed]

Mhaisalkar, S.

J. C. Y. Kah, R. C. Y. Wan, K. Y. Wong, S. Mhaisalkar, C. J. R. Sheppard, and M. Olivo, “Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study,” Lasers Surg. Med. 40(8), 584–589 (2008).
[CrossRef] [PubMed]

Mikulec, F. V.

C. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[CrossRef]

Moger, J.

Moore, P. K.

M. Whiteman, L. Li, P. Rose, C.-H. Tan, D. B. Parkinson, and P. K. Moore, “The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages,” Antioxid. Redox Signal. 12(10), 1147–1154 (2010).
[CrossRef] [PubMed]

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Nehl, C. L.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

Neo, K. L.

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Oh, S. J.

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Oldenburg, S. J.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75(19), 2897–2899 (1999).
[CrossRef]

Olivo, M.

J. C. Y. Kah, R. C. Y. Wan, K. Y. Wong, S. Mhaisalkar, C. J. R. Sheppard, and M. Olivo, “Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study,” Lasers Surg. Med. 40(8), 584–589 (2008).
[CrossRef] [PubMed]

Park, J.

Parkinson, D. B.

M. Whiteman, L. Li, P. Rose, C.-H. Tan, D. B. Parkinson, and P. K. Moore, “The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages,” Antioxid. Redox Signal. 12(10), 1147–1154 (2010).
[CrossRef] [PubMed]

Payne, J. D.

Penner, R. M.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8(8), 2373–2377 (2008).
[CrossRef] [PubMed]

Potma, E. O.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8(8), 2373–2377 (2008).
[CrossRef] [PubMed]

Qian, W.

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

Rodriguez, L. G.

L. G. Rodriguez, S. J. Lockett, and G. R. Holtom, “Coherent anti-stokes Raman scattering microscopy: a biological review,” Cytometry A 69(8), 779–791 (2006).
[CrossRef] [PubMed]

Rose, P.

M. Whiteman, L. Li, P. Rose, C.-H. Tan, D. B. Parkinson, and P. K. Moore, “The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages,” Antioxid. Redox Signal. 12(10), 1147–1154 (2010).
[CrossRef] [PubMed]

Rozell, C. J.

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[CrossRef] [PubMed]

Sang, K.

Schwartz, J. A.

Sharp, K.

Sheppard, C. J. R.

J. C. Y. Kah, R. C. Y. Wan, K. Y. Wong, S. Mhaisalkar, C. J. R. Sheppard, and M. Olivo, “Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study,” Lasers Surg. Med. 40(8), 584–589 (2008).
[CrossRef] [PubMed]

Smith, D. K.

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Son, J.-H.

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Sugisaka, M.

K. Bogunia-Kubik and M. Sugisaka, “From molecular biology to nanotechnology and nanomedicine,” Biosystems 65(2-3), 123–138 (2002).
[CrossRef] [PubMed]

Suh, J.-S.

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Taggart, D. K.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8(8), 2373–2377 (2008).
[CrossRef] [PubMed]

Tan, C.-H.

M. Whiteman, L. Li, P. Rose, C.-H. Tan, D. B. Parkinson, and P. K. Moore, “The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages,” Antioxid. Redox Signal. 12(10), 1147–1154 (2010).
[CrossRef] [PubMed]

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Thomas, G. J.

G. J. Thomas., “Raman spectroscopy of protein and nucleic acid assemblies,” Annu. Rev. Biophys. Biomol. Struct. 28(1), 1–27 (1999).
[CrossRef] [PubMed]

Tong, L.

L. Tong and J.-X. Cheng, “Label-free imaging through nonlinear optical signals,” Mater. Today 14(6), 264–273 (2011).
[CrossRef]

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “imaging gold nanorods by plasmon-resonance-enhanced four wave mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

Tunnell, J. W.

Tyler, C. R.

Volkmer, A.

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

Wan, R. C. Y.

J. C. Y. Kah, R. C. Y. Wan, K. Y. Wong, S. Mhaisalkar, C. J. R. Sheppard, and M. Olivo, “Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study,” Lasers Surg. Med. 40(8), 584–589 (2008).
[CrossRef] [PubMed]

Wei, A.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

Wei, Q.

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

Westcott, S. L.

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75(19), 2897–2899 (1999).
[CrossRef]

Whiteman, M.

M. Whiteman, L. Li, P. Rose, C.-H. Tan, D. B. Parkinson, and P. K. Moore, “The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages,” Antioxid. Redox Signal. 12(10), 1147–1154 (2010).
[CrossRef] [PubMed]

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Wong, K. Y.

J. C. Y. Kah, R. C. Y. Wan, K. Y. Wong, S. Mhaisalkar, C. J. R. Sheppard, and M. Olivo, “Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study,” Lasers Surg. Med. 40(8), 584–589 (2008).
[CrossRef] [PubMed]

Woo, W.-K.

C. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[CrossRef]

Xiang, C.

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8(8), 2373–2377 (2008).
[CrossRef] [PubMed]

Xie, X. S.

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

Yang, J.

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Zhao, Y.

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (1)

J. Yang, J. Lee, J. Kang, S. J. Oh, H.-J. Ko, J.-H. Son, K. Lee, J.-S. Suh, Y.-M. Huh, and S. Haam, “Smart drug-loaded polymer gold nanoshells for systemic and localized therapy of human epithelial cancer,” Adv. Mater. (Deerfield Beach Fla.) 21(43), 4339–4342 (2009).
[CrossRef]

Annu Rev Anal Chem (Palo Alto Calif) (1)

C. L. Evans and X. S. Xie, “Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine,” Annu Rev Anal Chem (Palo Alto Calif) 1(1), 883–909 (2008).
[CrossRef] [PubMed]

Annu. Rev. Biophys. Biomol. Struct. (1)

G. J. Thomas., “Raman spectroscopy of protein and nucleic acid assemblies,” Annu. Rev. Biophys. Biomol. Struct. 28(1), 1–27 (1999).
[CrossRef] [PubMed]

Antioxid. Redox Signal. (1)

M. Whiteman, L. Li, P. Rose, C.-H. Tan, D. B. Parkinson, and P. K. Moore, “The effect of hydrogen sulfide donors on lipopolysaccharide-induced formation of inflammatory mediators in macrophages,” Antioxid. Redox Signal. 12(10), 1147–1154 (2010).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

S. J. Oldenburg, J. B. Jackson, S. L. Westcott, and N. J. Halas, “Infrared extinction properties of gold nanoshells,” Appl. Phys. Lett. 75(19), 2897–2899 (1999).
[CrossRef]

Biosystems (1)

K. Bogunia-Kubik and M. Sugisaka, “From molecular biology to nanotechnology and nanomedicine,” Biosystems 65(2-3), 123–138 (2002).
[CrossRef] [PubMed]

Circulation (1)

L. Li, M. Whiteman, Y. Y. Guan, K. L. Neo, Y. Cheng, S. W. Lee, Y. Zhao, R. Baskar, C.-H. Tan, and P. K. Moore, “Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide,” Circulation 117(18), 2351–2360 (2008).
[CrossRef] [PubMed]

Cytometry A (1)

L. G. Rodriguez, S. J. Lockett, and G. R. Holtom, “Coherent anti-stokes Raman scattering microscopy: a biological review,” Cytometry A 69(8), 779–791 (2006).
[CrossRef] [PubMed]

J. Leukoc. Biol. (1)

S. E. McNeil, “Nanotechnology for the biologist,” J. Leukoc. Biol. 78(3), 585–594 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

C. Leatherdale, W.-K. Woo, F. V. Mikulec, and M. G. Bawendi, “On the absorption cross section of CdSe nanocrystal quantum dots,” J. Phys. Chem. B 106, 7619–7622 (2002).
[CrossRef]

J. Phys. Chem. C (2)

Y. Jung, H. Chen, L. Tong, and J. X. Cheng, “imaging gold nanorods by plasmon-resonance-enhanced four wave mixing,” J. Phys. Chem. C 113(7), 2657–2663 (2009).
[CrossRef]

C. Liu and B. Q. Li, “Computational multiscattering of spherical multilayered gold nanoshells,” J. Phys. Chem. C 115(13), 5323–5333 (2011).
[CrossRef]

Lasers Surg. Med. (2)

J. C. Y. Kah, R. C. Y. Wan, K. Y. Wong, S. Mhaisalkar, C. J. R. Sheppard, and M. Olivo, “Combinatorial treatment of photothermal therapy using gold nanoshells with conventional photodynamic therapy to improve treatment efficacy: an in vitro study,” Lasers Surg. Med. 40(8), 584–589 (2008).
[CrossRef] [PubMed]

X. Huang, W. Qian, I. H. El-Sayed, and M. A. El-Sayed, “The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy,” Lasers Surg. Med. 39(9), 747–753 (2007).
[CrossRef] [PubMed]

Mater. Today (1)

L. Tong and J.-X. Cheng, “Label-free imaging through nonlinear optical signals,” Mater. Today 14(6), 264–273 (2011).
[CrossRef]

Nano Lett. (4)

S. W. Bishnoi, C. J. Rozell, C. S. Levin, M. K. Gheith, B. R. Johnson, D. H. Johnson, and N. J. Halas, “All-optical nanoscale pH meter,” Nano Lett. 6(8), 1687–1692 (2006).
[CrossRef] [PubMed]

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

H. Kim, D. K. Taggart, C. Xiang, R. M. Penner, and E. O. Potma, “Spatial control of coherent anti-stokes emission with height-modulated gold zig-zag nanowires,” Nano Lett. 8(8), 2373–2377 (2008).
[CrossRef] [PubMed]

Opt. Express (2)

Photochem. Photobiol. (1)

L. Tong, Q. Wei, A. Wei, and J.-X. Cheng, “Gold nanorods as contrast agents for biological imaging: optical properties, surface conjugation and photothermal effects,” Photochem. Photobiol. 85(1), 21–32 (2009).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

Other (1)

J. Park, A. Estrada, J. A. Schwartz, J. D. Payne, A. K. Dunn, and J. W. Tunnell, “3D Microscopy of gold nanoshells in tumors using two-photon-induced photoluminescence,” in Plasmonics in Biology and Medicine V (2008), Vol. 6869, p. L8690.

Supplementary Material (1)

» Media 1: AVI (4031 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the FWM microscopy optical layout.

Fig. 2
Fig. 2

(A) SEM image of a single gold nanoshell. (B) Luminescence emission spectra of gold nanoshells under excitation from Stokes at 1254 nm and pump at 924 nm simultaneously. (C) UV/vis spectrum of GNS suspended in culture medium.

Fig. 3
Fig. 3

Epi-detected FWM signal from GNS thresholded to show only pixels above the non-resonant cellular contribution, using pump and Stokes beams tuned to 2650 cm−1 (a) and forwards-detected CARS with CH2 contrast (b) in live cultures of RAW 264.7 cells. Panel (c) is a red/green color composite image using (a) as the green channel and (b) as the red channel. Panels (d) – (f) were obtained in the same manner, using control RAW 264.7 cells that were not exposed to GNS.

Fig. 4
Fig. 4

Spatial distribution of GNS in live cultures of RAW 264.7 (left, Media 1) and A431 (right). Red contrast corresponds with forwards-detected CARS signal with pump and Stokes wavelengths tuned to excite the CH2 resonance (red). Green signal corresponds with GNS signal. Both bars are 10 µm.

Fig. 5
Fig. 5

Graph depicting the percentage of non-viable macrophage cells as a function of laser energy per cell (black line). The baseline mortality exhibited by GNS-free cells exposed to CARS up to 8 mJ per cell at the sample is also shown (red line).

Fig. 6
Fig. 6

Effect of H2S donors on macrophage uptake of GNS. Control 1 corresponds with RAW 264.7 cells unexposed to GNS; control 2 corresponds with RAW 264.7 cells exposed to LPS and GNS but not to any H2S donor molecules. Between 50 and 100 cells were used for each data point, error bars arise from the standard deviation.

Metrics