Abstract

We report on strong plasmonic coupling from silver nanoparticles covered by hydrogen-terminated chemically vapor deposited single-layer graphene, and its effects on the detection and identification of adenine molecules through surface-enhanced Raman spectroscopy (SERS). The high resistivity of the graphene after subjecting to remote plasma hydrogenation allows plasmonic coupling induced strong local electromagnetic fields among the silver nanoparticles to penetrate the graphene, and thus enhances the SERS efficiency of adenine molecules adsorbed on the film. The graphene layer protects the nanoparticles from reactive and harsh environments and provides a chemically inert and biocompatible carbon surface for SERS applications.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128(49), 15580–15581 (2006).
    [CrossRef] [PubMed]
  2. F. Ortmann, W. G. Schmidt, and F. Bechstedt, “Attracted by long-range electron correlation: adenine on graphite,” Phys. Rev. Lett. 95(18), 186101 (2005).
    [CrossRef] [PubMed]
  3. H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
    [CrossRef]
  4. T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
    [CrossRef] [PubMed]
  5. C.-H. Huang, H.-Y. Lin, B.-C. Lau, C.-Y. Liu, H.-C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
    [CrossRef] [PubMed]
  6. T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
    [CrossRef]
  7. C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
    [CrossRef] [PubMed]
  8. C. H. Huang, H.-Y. Lin, S. Chen, C.-Y. Liu, H.-C. Chui, and Y. Tzeng, “Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors,” Opt. Express 19(12), 11441–11450 (2011).
    [CrossRef] [PubMed]
  9. C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010).
    [CrossRef]
  10. L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
    [CrossRef] [PubMed]
  11. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
    [CrossRef] [PubMed]
  12. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
    [CrossRef] [PubMed]
  13. A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6(12), 2667–2673 (2006).
    [CrossRef] [PubMed]
  14. M. E. Kompan and D. S. Krylov, “Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by Raman spectroscopy,” Tech. Phys. Lett. 36(12), 1140–1142 (2010).
    [CrossRef]
  15. C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, and J. Greve, “Surface-enhanced Raman spectroscopy of DNA bases,” J. Raman Spectrosc. 17(3), 289–298 (1986).
    [CrossRef]
  16. H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule,” Phys. Rev. B 69(15), 155418 (2004).
    [CrossRef]
  17. N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
    [CrossRef] [PubMed]
  18. J. E. Freund, M. Edelwirth, P. Kröbel, and W. M. Heckl, “Structure determination of two-dimensional adenine crystals on graphite,” Phys. Rev. B 55(8), 5394–5397 (1997).
    [CrossRef]
  19. K. Berland, S. D. Chakarova-Käck, V. R. Cooper, D. C. Langreth, and E. Schröder, “A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding,” J. Phys. Condens. Matter 23(13), 135001 (2011).
    [CrossRef] [PubMed]
  20. Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
    [CrossRef] [PubMed]
  21. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
    [CrossRef] [PubMed]
  22. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
    [CrossRef] [PubMed]
  23. N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
    [CrossRef]
  24. K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
    [CrossRef] [PubMed]

2011 (2)

C. H. Huang, H.-Y. Lin, S. Chen, C.-Y. Liu, H.-C. Chui, and Y. Tzeng, “Electrochemically fabricated self-aligned 2-D silver/alumina arrays as reliable SERS sensors,” Opt. Express 19(12), 11441–11450 (2011).
[CrossRef] [PubMed]

K. Berland, S. D. Chakarova-Käck, V. R. Cooper, D. C. Langreth, and E. Schröder, “A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding,” J. Phys. Condens. Matter 23(13), 135001 (2011).
[CrossRef] [PubMed]

2010 (6)

H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18(1), 165–172 (2010).
[CrossRef] [PubMed]

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010).
[CrossRef]

C.-H. Huang, H.-Y. Lin, B.-C. Lau, C.-Y. Liu, H.-C. Chui, and Y. Tzeng, “Plasmon-induced optical switching of electrical conductivity in porous anodic aluminum oxide films encapsulated with silver nanoparticle arrays,” Opt. Express 18(26), 27891–27899 (2010).
[CrossRef] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

M. E. Kompan and D. S. Krylov, “Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by Raman spectroscopy,” Tech. Phys. Lett. 36(12), 1140–1142 (2010).
[CrossRef]

2009 (3)

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[CrossRef] [PubMed]

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

2008 (2)

C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[CrossRef] [PubMed]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

2006 (5)

I. Romero, J. Aizpurua, G. W. Bryant, and F. J. García De Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers,” Opt. Express 14(21), 9988–9999 (2006).
[CrossRef] [PubMed]

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128(49), 15580–15581 (2006).
[CrossRef] [PubMed]

2005 (2)

F. Ortmann, W. G. Schmidt, and F. Bechstedt, “Attracted by long-range electron correlation: adenine on graphite,” Phys. Rev. Lett. 95(18), 186101 (2005).
[CrossRef] [PubMed]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

2004 (2)

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule,” Phys. Rev. B 69(15), 155418 (2004).
[CrossRef]

1997 (1)

J. E. Freund, M. Edelwirth, P. Kröbel, and W. M. Heckl, “Structure determination of two-dimensional adenine crystals on graphite,” Phys. Rev. B 55(8), 5394–5397 (1997).
[CrossRef]

1986 (1)

C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, and J. Greve, “Surface-enhanced Raman spectroscopy of DNA bases,” J. Raman Spectrosc. 17(3), 289–298 (1986).
[CrossRef]

Aizpurua, J.

Atay, T.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Bechstedt, F.

F. Ortmann, W. G. Schmidt, and F. Bechstedt, “Attracted by long-range electron correlation: adenine on graphite,” Phys. Rev. Lett. 95(18), 186101 (2005).
[CrossRef] [PubMed]

Bell, S. E. J.

S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128(49), 15580–15581 (2006).
[CrossRef] [PubMed]

Berland, K.

K. Berland, S. D. Chakarova-Käck, V. R. Cooper, D. C. Langreth, and E. Schröder, “A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding,” J. Phys. Condens. Matter 23(13), 135001 (2011).
[CrossRef] [PubMed]

Blake, P.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Boukhvalov, D. W.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Bryant, G. W.

Chakarova-Käck, S. D.

K. Berland, S. D. Chakarova-Käck, V. R. Cooper, D. C. Langreth, and E. Schröder, “A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding,” J. Phys. Condens. Matter 23(13), 135001 (2011).
[CrossRef] [PubMed]

Chan, T. H.

C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Chang, C. H.

Chen, G.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

Chen, S.

Chen, Y.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Chu, S. W.

Chuang, T. H.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

Chui, H. C.

Chui, H.-C.

Cooper, V. R.

K. Berland, S. D. Chakarova-Käck, V. R. Cooper, D. C. Langreth, and E. Schröder, “A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding,” J. Phys. Condens. Matter 23(13), 135001 (2011).
[CrossRef] [PubMed]

de Mul, F. F. M.

C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, and J. Greve, “Surface-enhanced Raman spectroscopy of DNA bases,” J. Raman Spectrosc. 17(3), 289–298 (1986).
[CrossRef]

Dresselhaus, M. S.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

Dvoynenko, M. M.

C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010).
[CrossRef]

Edelwirth, M.

J. E. Freund, M. Edelwirth, P. Kröbel, and W. M. Heckl, “Structure determination of two-dimensional adenine crystals on graphite,” Phys. Rev. B 55(8), 5394–5397 (1997).
[CrossRef]

Eklund, P. C.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

Elias, D. C.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Fang, Y.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[CrossRef] [PubMed]

Ferrari, A. C.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Freund, J. E.

J. E. Freund, M. Edelwirth, P. Kröbel, and W. M. Heckl, “Structure determination of two-dimensional adenine crystals on graphite,” Phys. Rev. B 55(8), 5394–5397 (1997).
[CrossRef]

García De Abajo, F. J.

Geim, A. K.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Greve, J.

C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, and J. Greve, “Surface-enhanced Raman spectroscopy of DNA bases,” J. Raman Spectrosc. 17(3), 289–298 (1986).
[CrossRef]

Gupta, A.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

Halsall, M. P.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Hayazawa, N.

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule,” Phys. Rev. B 69(15), 155418 (2004).
[CrossRef]

He, J. H.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

Heckl, W. M.

J. E. Freund, M. Edelwirth, P. Kröbel, and W. M. Heckl, “Structure determination of two-dimensional adenine crystals on graphite,” Phys. Rev. B 55(8), 5394–5397 (1997).
[CrossRef]

Hsu, C. F.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Huang, C. H.

Huang, C.-H.

Huang, Y. C.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Huang, Y. R.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

Hung, C. S.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Inouye, Y.

H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule,” Phys. Rev. B 69(15), 155418 (2004).
[CrossRef]

Ishida, Y.

H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule,” Phys. Rev. B 69(15), 155418 (2004).
[CrossRef]

Joshi, P.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

Katsnelson, M. I.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Kawata, S.

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule,” Phys. Rev. B 69(15), 155418 (2004).
[CrossRef]

Kompan, M. E.

M. E. Kompan and D. S. Krylov, “Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by Raman spectroscopy,” Tech. Phys. Lett. 36(12), 1140–1142 (2010).
[CrossRef]

Kong, J.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

Kröbel, P.

J. E. Freund, M. Edelwirth, P. Kröbel, and W. M. Heckl, “Structure determination of two-dimensional adenine crystals on graphite,” Phys. Rev. B 55(8), 5394–5397 (1997).
[CrossRef]

Krylov, D. S.

M. E. Kompan and D. S. Krylov, “Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by Raman spectroscopy,” Tech. Phys. Lett. 36(12), 1140–1142 (2010).
[CrossRef]

Lai, M. Y.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010).
[CrossRef]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

Lan, Y. C.

Langreth, D. C.

K. Berland, S. D. Chakarova-Käck, V. R. Cooper, D. C. Langreth, and E. Schröder, “A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding,” J. Phys. Condens. Matter 23(13), 135001 (2011).
[CrossRef] [PubMed]

Lau, B.-C.

Lee, Y. R.

C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010).
[CrossRef]

Lin, C. H.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

C. H. Huang, H. Y. Lin, C. H. Lin, H. C. Chui, Y. C. Lan, and S. W. Chu, “The phase-response effect of size-dependent optical enhancement in a single nanoparticle,” Opt. Express 16(13), 9580–9586 (2008).
[CrossRef] [PubMed]

Lin, H. Y.

Lin, H.-Y.

Lin, Y. H.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Ling, X.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[CrossRef] [PubMed]

Liu, C. Y.

C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010).
[CrossRef]

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Liu, C.-Y.

Liu, N. W.

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Liu, T. J.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, T. T.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Liu, Z.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[CrossRef] [PubMed]

Mohiuddin, T. M. G.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Morozov, S. V.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Nair, R. R.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Novoselov, K. S.

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Nurmikko, A. V.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Ortmann, F.

F. Ortmann, W. G. Schmidt, and F. Bechstedt, “Attracted by long-range electron correlation: adenine on graphite,” Phys. Rev. Lett. 95(18), 186101 (2005).
[CrossRef] [PubMed]

Otto, C.

C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, and J. Greve, “Surface-enhanced Raman spectroscopy of DNA bases,” J. Raman Spectrosc. 17(3), 289–298 (1986).
[CrossRef]

Peng, C. Y.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Romero, I.

Saito, Y.

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

Schmidt, W. G.

F. Ortmann, W. G. Schmidt, and F. Bechstedt, “Attracted by long-range electron correlation: adenine on graphite,” Phys. Rev. Lett. 95(18), 186101 (2005).
[CrossRef] [PubMed]

Schröder, E.

K. Berland, S. D. Chakarova-Käck, V. R. Cooper, D. C. Langreth, and E. Schröder, “A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding,” J. Phys. Condens. Matter 23(13), 135001 (2011).
[CrossRef] [PubMed]

Sirimuthu, N. M. S.

S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128(49), 15580–15581 (2006).
[CrossRef] [PubMed]

Song, J.-H.

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

Tadigadapa, S.

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

Tatsuma, T.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

Tian, Y.

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

Tsai, K. T.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

Tsai, T. H.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Tzeng, Y.

van den Tweel, T. J. J.

C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, and J. Greve, “Surface-enhanced Raman spectroscopy of DNA bases,” J. Raman Spectrosc. 17(3), 289–298 (1986).
[CrossRef]

Wang, D. W.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Wang, H. H.

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Wang, J. K.

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Wang, J.-K.

C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010).
[CrossRef]

Wang, Y. L.

C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010).
[CrossRef]

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Watanabe, H.

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule,” Phys. Rev. B 69(15), 155418 (2004).
[CrossRef]

Wu, S. B.

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

Xie, L.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[CrossRef] [PubMed]

Xu, H.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

Zhang, H.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

Zhang, J.

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[CrossRef] [PubMed]

Adv. Mater. (Deerfield Beach Fla.) (2)

H. H. Wang, C. Y. Liu, S. B. Wu, N. W. Liu, C. Y. Peng, T. H. Chan, C. F. Hsu, J. K. Wang, and Y. L. Wang, “Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps,” Adv. Mater. (Deerfield Beach Fla.) 18(4), 491–495 (2006).
[CrossRef]

N. W. Liu, C. Y. Liu, H. H. Wang, C. F. Hsu, M. Y. Lai, T. H. Chuang, and Y. L. Wang, “Focused-ion-beam-based selective closing and opening of anodic alumina nanochannels for the growth of nanowire arrays comprising multiple elements,” Adv. Mater. (Deerfield Beach Fla.) 20(13), 2547–2551 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

C. Y. Liu, M. M. Dvoynenko, M. Y. Lai, T. H. Chan, Y. R. Lee, J.-K. Wang, and Y. L. Wang, “Anomalously enhanced Raman scattering from longitudinal optical phonons on Ag-nanoparticle-covered GaN and ZnO,” Appl. Phys. Lett. 96(3), 033109 (2010).
[CrossRef]

J. Am. Chem. Soc. (3)

L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, “Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy,” J. Am. Chem. Soc. 131(29), 9890–9891 (2009).
[CrossRef] [PubMed]

S. E. J. Bell and N. M. S. Sirimuthu, “Surface-enhanced Raman spectroscopy (SERS) for sub-micromolar detection of DNA/RNA mononucleotides,” J. Am. Chem. Soc. 128(49), 15580–15581 (2006).
[CrossRef] [PubMed]

Y. Tian and T. Tatsuma, “Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles,” J. Am. Chem. Soc. 127(20), 7632–7637 (2005).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

N. Hayazawa, H. Watanabe, Y. Saito, and S. Kawata, “Towards atomic site-selective sensitivity in tip-enhanced Raman spectroscopy,” J. Chem. Phys. 125(24), 244706 (2006).
[CrossRef] [PubMed]

J. Nanosci. Nanotechnol. (1)

K. T. Tsai, Y. R. Huang, M. Y. Lai, C. Y. Liu, H. H. Wang, J. H. He, and Y. L. Wang, “Identical-length nanowire arrays in anodic alumina templates,” J. Nanosci. Nanotechnol. 10(12), 8293–8297 (2010).
[CrossRef] [PubMed]

J. Phys. Condens. Matter (1)

K. Berland, S. D. Chakarova-Käck, V. R. Cooper, D. C. Langreth, and E. Schröder, “A van der Waals density functional study of adenine on graphene: single-molecular adsorption and overlayer binding,” J. Phys. Condens. Matter 23(13), 135001 (2011).
[CrossRef] [PubMed]

J. Raman Spectrosc. (1)

C. Otto, T. J. J. van den Tweel, F. F. M. de Mul, and J. Greve, “Surface-enhanced Raman spectroscopy of DNA bases,” J. Raman Spectrosc. 17(3), 289–298 (1986).
[CrossRef]

Nano Lett. (3)

T. Atay, J.-H. Song, and A. V. Nurmikko, “Strongly interacting plasmon nanoparticle pairs: from dipole−dipole interaction to conductively coupled regime,” Nano Lett. 4(9), 1627–1631 (2004).
[CrossRef]

A. Gupta, G. Chen, P. Joshi, S. Tadigadapa, and P. C. Eklund, “Raman scattering from high-frequency phonons in supported n-graphene layer films,” Nano Lett. 6(12), 2667–2673 (2006).
[CrossRef] [PubMed]

X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, “Can graphene be used as a substrate for Raman enhancement?” Nano Lett. 10(2), 553–561 (2010).
[CrossRef] [PubMed]

Opt. Express (5)

Phys. Rev. B (2)

H. Watanabe, Y. Ishida, N. Hayazawa, Y. Inouye, and S. Kawata, “Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule,” Phys. Rev. B 69(15), 155418 (2004).
[CrossRef]

J. E. Freund, M. Edelwirth, P. Kröbel, and W. M. Heckl, “Structure determination of two-dimensional adenine crystals on graphite,” Phys. Rev. B 55(8), 5394–5397 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

F. Ortmann, W. G. Schmidt, and F. Bechstedt, “Attracted by long-range electron correlation: adenine on graphite,” Phys. Rev. Lett. 95(18), 186101 (2005).
[CrossRef] [PubMed]

PLoS ONE (1)

T. T. Liu, Y. H. Lin, C. S. Hung, T. J. Liu, Y. Chen, Y. C. Huang, T. H. Tsai, H. H. Wang, D. W. Wang, J. K. Wang, Y. L. Wang, and C. H. Lin, “A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall,” PLoS ONE 4(5), e5470 (2009).
[CrossRef] [PubMed]

Science (1)

D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake, M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K. Geim, and K. S. Novoselov, “Control of graphene’s properties by reversible hydrogenation: evidence for graphane,” Science 323(5914), 610–613 (2009).
[CrossRef] [PubMed]

Tech. Phys. Lett. (1)

M. E. Kompan and D. S. Krylov, “Detecting graphene-graphane reconstruction in hydrogenated nanoporous carbon by Raman spectroscopy,” Tech. Phys. Lett. 36(12), 1140–1142 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Optical, (b) large-scale and (c) small-scale SEM micrographs showing the boundaries between pristine and H-terminated graphenes covering silver nanoparticles. The shown H-terminated area has been subjected to the remote hydrogen plasma treatment for 65 minutes.

Fig. 2
Fig. 2

(a) Electrical resistance of a graphene/Ag/silicon-dioxide/silicon substrate after exposure to remote plasma in hydrogen for up to 65 minutes. Resistance is measured between two gold contacts on two sides of a rectangular graphene sheet with a 1cm x 1cm exposed graphene. (b) Typical Raman spectra of a substrate before (middle red) and after (top blue) plasma treatment. The black curve (bottom) shows the Raman spectrum from a silicon dioxide/Si substrate. The star marks indicate the peaks from silicon-dioxide/silicon substrate. (c) SERS spectra of adenine molecules displaying the ring-breathing mode of adenine on H-terminated (top blue) and pristine (bottom red) substrates. (d) SERS spectra of adenine molecules measured in five different areas on a H-terminated substrate. The plasma treatment time period is 65 minutes for (b), (c), and (d). The inset in (c) schematically depicts molecular structure of adenine. The spectra are shifted vertically by different degrees for clearance.

Fig. 3
Fig. 3

(a) SERS spectra from an H-terminated substrate that was soaked in 10−4 M adenine (blue), then cleaned by 10% alcohol (black) and finally re-soaked in the solution (red). (b) SERS spectra corresponding to H-terminated substrates soaked in solutions with different adenine concentrations. The spectra are shifted vertically with different degrees for clearance.

Metrics