Abstract

A Monte-Carlo-based phase retardation estimator is developed to correct the systematic error in phase retardation measurement by polarization sensitive optical coherence tomography (PS-OCT). Recent research has revealed that the phase retardation measured by PS-OCT has a distribution that is neither symmetric nor centered at the true value. Hence, a standard mean estimator gives us erroneous estimations of phase retardation, and it degrades the performance of PS-OCT for quantitative assessment. In this paper, the noise property in phase retardation is investigated in detail by Monte-Carlo simulation and experiments. A distribution transform function is designed to eliminate the systematic error by using the result of the Monte-Carlo simulation. This distribution transformation is followed by a mean estimator. This process provides a significantly better estimation of phase retardation than a standard mean estimator. This method is validated both by numerical simulations and experiments. The application of this method to in vitro and in vivo biological samples is also demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [CrossRef]
  3. M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
    [CrossRef] [PubMed]
  4. J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: Introduction,” Opt. Express 17, 3978–3979 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3980 .
    [CrossRef]
  5. J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Tech. 7, 1–9 (2001).
    [CrossRef]
  6. L. Otis, M. Everett, U. Sathyam, and B. Colston, “Optical coherence tomography: A new imaging technology for dentistry,” J. Am. Dent. Assoc. 131, 511+ (2000).
    [PubMed]
  7. I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
    [CrossRef] [PubMed]
  8. M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992), http://www.opticsinfobase.org/abstract.cfm?URI=josab-9-6-903 .
    [CrossRef]
  9. J. de Boer, T. Milner, and J. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-5-300 .
    [CrossRef]
  10. G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-8-537 .
    [CrossRef]
  11. S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
    [CrossRef] [PubMed]
  12. B. Park, C. Saxer, S. Srinivas, J. Nelson, and J. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
    [CrossRef] [PubMed]
  13. Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862 .
    [CrossRef] [PubMed]
  14. S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
    [CrossRef] [PubMed]
  15. S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14, 044032 (2009).
    [CrossRef] [PubMed]
  16. W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
    [PubMed]
  17. A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
    [CrossRef]
  18. Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17, 3980–3996 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-3980 .
    [CrossRef] [PubMed]
  19. F. Fanjul-Velez, M. Pircher, B. Baumann, E. Goetzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15 (2010).
    [CrossRef] [PubMed]
  20. Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
    [CrossRef]
  21. B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
    [CrossRef] [PubMed]
  22. E. Götzinger, M. Pircher, and C.K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-25-10217 .
    [CrossRef]
  23. M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
    [CrossRef] [PubMed]
  24. M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
    [CrossRef] [PubMed]
  25. M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
    [CrossRef] [PubMed]
  26. M. Everett, K. Schoenenberger, B. Colston, and L. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-23-3-228 .
    [CrossRef]
  27. S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-854 .
    [CrossRef] [PubMed]
  28. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a monte carlo model,” Opt. Lett. 26, 1191–1193 (2001), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-15-1191 .
    [CrossRef]
  29. G. Yao and L. V. Wang, “Propagation of polarized light in turbid media: simulated animation sequences,” Opt. Express 7, 198–203 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-5-198 .
    [CrossRef]
  30. S.-P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997), http://ao.osa.org/abstract.cfm?URI=ao-36-1-136 .
    [CrossRef] [PubMed]
  31. Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified monte carlo convolution method,” Appl. Opt. 48, 3204–3211 (2009), http://ao.osa.org/abstract.cfm?URI=ao-48-17-3204 .
    [CrossRef] [PubMed]
  32. D. Smithies, T. Lindmo, Z. Chen, J. Nelson, and T. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
    [CrossRef] [PubMed]
  33. S. Jiao, W. Yu, G. Stoica, and L. Wang, “Optical-fiber-based mueller optical coherence tomography,” Opt. Lett. 28, 1206–1208 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-14-1206 .
    [CrossRef] [PubMed]
  34. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherencetomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-21-2512 .
    [CrossRef] [PubMed]
  35. M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502 .
    [CrossRef] [PubMed]
  36. M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-8-5892 .
    [CrossRef] [PubMed]
  37. S.-Y. Lu and R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994), http://josaa.osa.org/abstract.cfm?URI=josaa-11-2-766 .
    [CrossRef]
  38. Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O (2010).
    [CrossRef]
  39. M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-sourceoptical coherence tomography with 1-μm probe,” Opt. Express 17, 12385–12396 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-15-12385 .
    [CrossRef] [PubMed]
  40. W.-C. Kuo, N.-K. Chou, C. Chou, C.-M. Lai, H.-J. Huang, S.-S. Wang, and J.-J. Shyu, “Polarization-sensitive optical coherence tomography for imaging human atherosclerosis,” Appl. Opt. 46, 2520–2527 (2007), http: //ao.osa.org/abstract.cfm?URI=ao-46-13-2520 .
    [CrossRef] [PubMed]

2010 (3)

F. Fanjul-Velez, M. Pircher, B. Baumann, E. Goetzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15 (2010).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O (2010).
[CrossRef]

2009 (1)

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14, 044032 (2009).
[CrossRef] [PubMed]

2008 (3)

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

2007 (1)

2006 (1)

M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

2004 (1)

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

2002 (2)

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

2001 (3)

B. Park, C. Saxer, S. Srinivas, J. Nelson, and J. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Tech. 7, 1–9 (2001).
[CrossRef]

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

2000 (2)

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

L. Otis, M. Everett, U. Sathyam, and B. Colston, “Optical coherence tomography: A new imaging technology for dentistry,” J. Am. Dent. Assoc. 131, 511+ (2000).
[PubMed]

1998 (1)

D. Smithies, T. Lindmo, Z. Chen, J. Nelson, and T. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[CrossRef] [PubMed]

1995 (1)

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Arce-Diego, J. L.

F. Fanjul-Velez, M. Pircher, B. Baumann, E. Goetzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15 (2010).
[CrossRef] [PubMed]

Aretz, H.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Baumann, B.

F. Fanjul-Velez, M. Pircher, B. Baumann, E. Goetzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15 (2010).
[CrossRef] [PubMed]

Baumgartner, A.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Bouma, B.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Brezinski, M.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

Cense, B.

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, T.

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

Chen, Z.

D. Smithies, T. Lindmo, Z. Chen, J. Nelson, and T. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[CrossRef] [PubMed]

Choi, K.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Chou, C.

Chou, N.-K.

Colston, B.

L. Otis, M. Everett, U. Sathyam, and B. Colston, “Optical coherence tomography: A new imaging technology for dentistry,” J. Am. Dent. Assoc. 131, 511+ (2000).
[PubMed]

de Boer, J.

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

B. Park, C. Saxer, S. Srinivas, J. Nelson, and J. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

Dichtl, S.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Drexler, W.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

Elsner, A. E.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Everett, M.

L. Otis, M. Everett, U. Sathyam, and B. Colston, “Optical coherence tomography: A new imaging technology for dentistry,” J. Am. Dent. Assoc. 131, 511+ (2000).
[PubMed]

Fanjul-Velez, F.

F. Fanjul-Velez, M. Pircher, B. Baumann, E. Goetzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15 (2010).
[CrossRef] [PubMed]

Fercher, A.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Fercher, Z.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Findl, O.

M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fukuda, S.

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

Geitzenauer, W.

M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Goetzinger, E.

F. Fanjul-Velez, M. Pircher, B. Baumann, E. Goetzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15 (2010).
[CrossRef] [PubMed]

M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Hitzenberger, C. K.

F. Fanjul-Velez, M. Pircher, B. Baumann, E. Goetzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15 (2010).
[CrossRef] [PubMed]

M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Houser, S.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Huang, D.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, H.-J.

Iwasaki, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Izatt, J.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

Jang, I.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Jesser, C.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

Jiao, S.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

Kang, D.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Kawabata, K.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

Kawana, K.

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

Kuo, W.-C.

Lai, C.-M.

Lasser, T.

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Leydolt, C.

M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Li, X.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

Lim, Y.

Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O (2010).
[CrossRef]

Lin, C.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lindmo, T.

D. Smithies, T. Lindmo, Z. Chen, J. Nelson, and T. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[CrossRef] [PubMed]

Lodge, M.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

Makita, S.

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Martin, S.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

Matsumoto, M.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14, 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

Michels, S.

M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Milner, T.

D. Smithies, T. Lindmo, Z. Chen, J. Nelson, and T. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[CrossRef] [PubMed]

Miura, M.

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Miyazawa, A.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14, 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

Moritz, A.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Nakagawa, N.

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14, 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

Nelson, J.

B. Park, C. Saxer, S. Srinivas, J. Nelson, and J. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

D. Smithies, T. Lindmo, Z. Chen, J. Nelson, and T. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[CrossRef] [PubMed]

Oshika, T.

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

Otis, L.

L. Otis, M. Everett, U. Sathyam, and B. Colston, “Optical coherence tomography: A new imaging technology for dentistry,” J. Am. Dent. Assoc. 131, 511+ (2000).
[PubMed]

Park, B.

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

B. Park, C. Saxer, S. Srinivas, J. Nelson, and J. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

Park, S.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Pierce, M.

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

Pircher, M.

F. Fanjul-Velez, M. Pircher, B. Baumann, E. Goetzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15 (2010).
[CrossRef] [PubMed]

M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Pitris, C.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

Pomerantsev, E.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Puliafito, C.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Robl, B.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Sakai, S.

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14, 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

Sathyam, U.

L. Otis, M. Everett, U. Sathyam, and B. Colston, “Optical coherence tomography: A new imaging technology for dentistry,” J. Am. Dent. Assoc. 131, 511+ (2000).
[PubMed]

Sattmann, H.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Saunders, K.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

Saxer, C.

B. Park, C. Saxer, S. Srinivas, J. Nelson, and J. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

Schlendorf, K.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Schmidt-Erfurth, U.

M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

Schuman, J.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seung, K.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Shishkov, M.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Shyu, J.-J.

Smithies, D.

D. Smithies, T. Lindmo, Z. Chen, J. Nelson, and T. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[CrossRef] [PubMed]

Sperr, W.

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Srinivas, S.

B. Park, C. Saxer, S. Srinivas, J. Nelson, and J. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

Stamper, D.

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

Stinson, W.

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sugawara, T.

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

Swanson, E.

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G.

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

Wang, L. V.

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

Wang, S.-S.

Welzel, J.

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Tech. 7, 1–9 (2001).
[CrossRef]

Yamanari, M.

Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O (2010).
[CrossRef]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14, 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

Yasuno, Y.

Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O (2010).
[CrossRef]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14, 044032 (2009).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

Yatagai, T.

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

Appl. Opt. (1)

Arch. Ophthalmol. (1)

M. Hee, J. Izatt, E. Swanson, D. Huang, J. Schuman, C. Lin, C. Puliafito, and J. Fujimoto, “Optical coherence tomography of the human retina,” Arch. Ophthalmol. 113, 325–332 (1995).
[CrossRef] [PubMed]

Caries Res. (1)

A. Baumgartner, S. Dichtl, C. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z. Fercher, and W. Sperr, “Polarization-sensitive optical coherence tomography of dental structures,” Caries Res. 34, 59–69 (2000).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (3)

B. Cense, T. Chen, B. Park, M. Pierce, and J. de Boer, “Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004).
[CrossRef] [PubMed]

M. Miura, M. Yamanari, T. Iwasaki, A. E. Elsner, S. Makita, T. Yatagai, and Y. Yasuno, “Imaging polarimetry in age-related macular degeneration,” Invest. Ophthalmol. Vis. Sci. 49, 2661–2667 (2008).
[CrossRef] [PubMed]

M. Pircher, E. Goetzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, and C. K. Hitzenberger, “Human macula investigated in vivo with polarization-sensitive optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006).
[CrossRef] [PubMed]

J. Am. Coll. Cardiol. (1)

I. Jang, B. Bouma, D. Kang, S. Park, S. Park, K. Seung, K. Choi, M. Shishkov, K. Schlendorf, E. Pomerantsev, S. Houser, H. Aretz, and G. Tearney, “Visualization of coronary atherosclerotic plaques in patients using optical coherence tomography: Comparison with intravascular ultrasound,” J. Am. Coll. Cardiol. 39, 604–609 (2002).
[CrossRef] [PubMed]

J. Am. Dent. Assoc. (1)

L. Otis, M. Everett, U. Sathyam, and B. Colston, “Optical coherence tomography: A new imaging technology for dentistry,” J. Am. Dent. Assoc. 131, 511+ (2000).
[PubMed]

J. Biomed. Opt. (6)

S. Jiao and L. V. Wang, “Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography,” J. Biomed. Opt. 7, 350–358 (2002).
[CrossRef] [PubMed]

B. Park, C. Saxer, S. Srinivas, J. Nelson, and J. de Boer, “In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography,” J. Biomed. Opt. 6, 474–479 (2001).
[CrossRef] [PubMed]

S. Sakai, N. Nakagawa, M. Yamanari, A. Miyazawa, Y. Yasuno, and M. Matsumoto, “Relationship between dermal birefringence and the skin surface roughness of photoaged human skin,” J. Biomed. Opt. 14, 044032 (2009).
[CrossRef] [PubMed]

M. Yamanari, M. Miura, S. Makita, T. Yatagai, and Y. Yasuno, “Phase retardation measurement of retinal nerve fiber layer by polarization-sensitive spectral-domain optical coherence tomography and scanning laser polarimetry,” J. Biomed. Opt. 13, 014013 (2008).
[CrossRef] [PubMed]

F. Fanjul-Velez, M. Pircher, B. Baumann, E. Goetzinger, C. K. Hitzenberger, and J. L. Arce-Diego, “Polarimetric analysis of the human cornea measured by polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15 (2010).
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, M. Miura, S. Fukuda, S. Makita, S. Sakai, and T. Oshika, “Visibility of trabecular meshwork by standard and polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 15, 061705 (2010).
[CrossRef]

J. Invest. Dermatol. (1)

S. Sakai, M. Yamanari, A. Miyazawa, M. Matsumoto, N. Nakagawa, T. Sugawara, K. Kawabata, T. Yatagai, and Y. Yasuno, “In vivo three-dimensional birefringence analysis shows collagen differences between young and old photo-aged human skin,” J. Invest. Dermatol. 128, 1641–1647 (2008).
[CrossRef] [PubMed]

J. Rheumatol. (1)

W. Drexler, D. Stamper, C. Jesser, X. Li, C. Pitris, K. Saunders, S. Martin, M. Lodge, J. Fujimoto, and M. Brezinski, “Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis,” J. Rheumatol. 28, 1311–1318 (2001).
[PubMed]

Phys. Med. Biol. (1)

D. Smithies, T. Lindmo, Z. Chen, J. Nelson, and T. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025–3044 (1998).
[CrossRef] [PubMed]

Proc. SPIE (1)

Y. Lim, M. Yamanari, and Y. Yasuno, “Polarization sensitive corneal and anterior segment swept-source optical coherence tomography,” Proc. SPIE 7550, 75500O (2010).
[CrossRef]

Rep. Prog. Phys. (1)

A. Fercher, W. Drexler, C. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[CrossRef]

Science (1)

D. Huang, E. Swanson, C. Lin, J. Schuman, W. Stinson, W. Chang, M. Hee, T. Flotte, K. Gregory, C. Puliafito, and J. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Skin Res. Tech. (1)

J. Welzel, “Optical coherence tomography in dermatology: a review,” Skin Res. Tech. 7, 1–9 (2001).
[CrossRef]

Other (19)

Y. Hori, Y. Yasuno, S. Sakai, M. Matsumoto, T. Sugawara, V. Madjarova, M. Yamanari, S. Makita, T. Yasui, T. Araki, M. Itoh, and T. Yatagai, “Automatic characterization and segmentation of human skin using three-dimensional optical coherence tomography,” Opt. Express 14, 1862–1877 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-5-1862 .
[CrossRef] [PubMed]

Y. Yasuno, M. Yamanari, K. Kawana, T. Oshika, and M. Miura, “Investigation of post-glaucoma-surgery structures by three-dimensional and polarization sensitive anterior eye segment optical coherence tomography,” Opt. Express 17, 3980–3996 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-5-3980 .
[CrossRef] [PubMed]

J. G. Fujimoto, W. Drexler, J. S. Schuman, and C. K. Hitzenberger, “Optical coherence tomography (OCT) in ophthalmology: Introduction,” Opt. Express 17, 3978–3979 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3980 .
[CrossRef]

M. Hee, D. Huang, E. Swanson, and J. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9, 903–908 (1992), http://www.opticsinfobase.org/abstract.cfm?URI=josab-9-6-903 .
[CrossRef]

J. de Boer, T. Milner, and J. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24, 300–302 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-5-300 .
[CrossRef]

G. Yao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography,” Opt. Lett. 24, 537–539 (1999), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-24-8-537 .
[CrossRef]

M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-sourceoptical coherence tomography with 1-μm probe,” Opt. Express 17, 12385–12396 (2009), http://www.opticsexpress.org/abstract.cfm?URI=oe-17-15-12385 .
[CrossRef] [PubMed]

S. Jiao, W. Yu, G. Stoica, and L. Wang, “Optical-fiber-based mueller optical coherence tomography,” Opt. Lett. 28, 1206–1208 (2003), http://ol.osa.org/abstract.cfm?URI=ol-28-14-1206 .
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Jones matrix analysis for a polarization-sensitive optical coherencetomography system using fiber-optic components,” Opt. Lett. 29, 2512–2514 (2004), http://ol.osa.org/abstract.cfm?URI=ol-29-21-2512 .
[CrossRef] [PubMed]

M. Yamanari, S. Makita, V. D. Madjarova, T. Yatagai, and Y. Yasuno, “Fiber-based polarization-sensitive fourier domain optical coherence tomography using b-scan-oriented polarization modulation method,” Opt. Express 14, 6502–6515 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502 .
[CrossRef] [PubMed]

M. Yamanari, S. Makita, and Y. Yasuno, “Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation,” Opt. Express 16, 5892–5906 (2008), http://www.opticsexpress.org/abstract.cfm?URI=oe-16-8-5892 .
[CrossRef] [PubMed]

S.-Y. Lu and R. A. Chipman, “Homogeneous and inhomogeneous Jones matrices,” J. Opt. Soc. Am. A 11, 766–773 (1994), http://josaa.osa.org/abstract.cfm?URI=josaa-11-2-766 .
[CrossRef]

E. Götzinger, M. Pircher, and C.K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13, 10217–10229 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-25-10217 .
[CrossRef]

M. Everett, K. Schoenenberger, B. Colston, and L. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23, 228–230 (1998), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-23-3-228 .
[CrossRef]

S. Makita, M. Yamanari, and Y. Yasuno, “Generalized Jones matrix optical coherence tomography: performance and local birefringence imaging,” Opt. Express 18, 854–876 (2010), http://www.opticsexpress.org/abstract.cfm?URI=oe-18-2-854 .
[CrossRef] [PubMed]

L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: a monte carlo model,” Opt. Lett. 26, 1191–1193 (2001), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-26-15-1191 .
[CrossRef]

G. Yao and L. V. Wang, “Propagation of polarized light in turbid media: simulated animation sequences,” Opt. Express 7, 198–203 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-5-198 .
[CrossRef]

S.-P. Lin, L. Wang, S. L. Jacques, and F. K. Tittel, “Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry,” Appl. Opt. 36, 136–143 (1997), http://ao.osa.org/abstract.cfm?URI=ao-36-1-136 .
[CrossRef] [PubMed]

Z. Xie, L. V. Wang, and H. F. Zhang, “Optical fluence distribution study in tissue in dark-field confocal photoacoustic microscopy using a modified monte carlo convolution method,” Appl. Opt. 48, 3204–3211 (2009), http://ao.osa.org/abstract.cfm?URI=ao-48-17-3204 .
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Comparison of the measured phase retardation distribution with different ESNR in the simulation and experiment. The sample is an eighth-waveplate in (a)–(d) and a quarter-waveplate in (e)–(h). (a),(c),(e), and (g) show the results of numerical simulation and (b),(d),(f), and (h) are the experimental results. The marked ESNR values denote the mean ESNR in each experiment or simulation.

Fig. 2
Fig. 2

Skewness of the distribution of phase retardation (δM ) obtained by Monte-Carlo simulation for several true phase retardations.

Fig. 3
Fig. 3

Estimations of several set true phase retardations using 216 trials of the measured phase retardation. The red and green solidlines denote the estimation results using mean and 4th order MCB estimators, respectively. The black dashed lines denote the true values.

Fig. 4
Fig. 4

Contour plots of systematic error in mean estimator (a) and 4th order MCB estimator (b).

Fig. 5
Fig. 5

Simulated precision of mean and MCB estimator for 216 trials. The red, green, and blue curves represent the mean error energy corresponding to a mean estimator, 4th order MCB estimator, and 6th order MCB estimator, respectively.

Fig. 6
Fig. 6

Contour plots of RMSE in mean (a), 4th order MCB (b), and 6th order MCB estimator (c).

Fig. 7
Fig. 7

Estimation result in simulation and experiment. The true values are denoted by black dashed lines, and the mean and MCB estimation results are denoted by red and green lines, respectively. The solid lines denote the mean of a 65536-trial estimation, and the squares, circles, and crosses denote 64-measurement estimations of a quarter wave-plate, one eighth wave-plate, and glass in the experiment.

Fig. 8
Fig. 8

B-scan images of in vitro chicken breast muscle. (a) is an intensity image, and (b) is a log-scaled ESNR image. (c) is a single raw phase retardation image. (d) and (e) are phase retardation images obtained from mean and MCB estimators based on 128 B-scans. The white dashed lines denote the positions of the depth signal shown in Fig. 9.

Fig. 9
Fig. 9

Plots of A-line signals versus penetration depth. The red dots represent phase retardation values of raw phase retardation (a), obtained by mean estimator (b), and obtained by 4th order MCB estimator (c). Dashed curves represents corresponding ESNR values. The ESNR of (a) is a raw and non-averaged ESNR signal, while the ESNR of (b) and (c) are averaged ESNR of A-lines which have been taken at the same location on the sample and been utilized for the estimation.

Fig. 10
Fig. 10

Intensity (a) and ESNR (b) images of an in vivo posterior eye. The second row shows corresponding raw (c) and distribution-transformed (d) phase retardation images, respectively. (e) and (f) are magnified images of the area indicated by the rectangles in (c) and (d).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

J s ( z ) = J r ( z ) J i n 1 ,
J r ( z ) = [ I 0 , H ( z ) I 1 , H ( z ) I 0 , V ( z ) I 1 , V ( z ) ] ,
J i n = [ I 0 , H ( z 0 ) I 1 , H ( z 0 ) I 0 , V ( z 0 ) I 1 , V ( z 0 ) ] ,
δ M ( z ) = 2 cos 1 | tr J s ( z ) + det J s ( Z ) | det J s ( Z ) | t r J s ( z ) | 2 [ tr ( J s ( z ) J s ( z ) ) + 2 | det J s ( z ) | ] 1 / 2 ,
[ I 0 , H ( z ) I 1 , H ( z ) I 0 , V ( z ) I 1 , V ( z ) ] = [ S 0 , H ( z ) S 1 , H ( z ) S 0 , V ( z ) S 1 , V ( z ) ] + [ N 0 , H ( z ) N 1 , H ( z ) N 0 , V ( z ) N 1 , V ( z ) ] ,
1 γ = 1 4 ( 1 SNR s , 0 + 1 SNR s , 1 + 1 SNR r , 0 + 1 SNR r , 1 ) .
δ T δ E f ( δ M ) ,
f ' ( δ M ; γ ) = i = 0 n b i ( γ ) δ M i ,
δ T δ E = i = 0 n b i ( γ ) δ M i .
{ 0 b 0 ( γ ) + b 1 ( γ ) δ M , 0 + b n ( γ ) δ M , 0 n π / 60 b 0 ( γ ) + b 1 ( γ ) δ M , π / 60 + b n ( γ ) δ M , π / 60 n π b 0 ( γ ) + b 1 ( γ ) δ M , π + b n ( γ ) δ M , π n ,
D T D M B
D M = [ δ M , 0 0 δ M , 0 1 δ M , 0 n δ M , δ T 0 δ M , δ T 1 δ M , δ T n δ M , π 0 δ M , π 1 δ M , π n ] .
B  D M + D T
R = k = 0 60 [ δ T , k ( b 0 + b 1 δ M , k + + b n δ M , k n ) ] 2
ɛ 2 = [ i = 0 6 ( δ T , i δ M / E , i ) 2 ] / 7 ,
σ = ( δ T δ E ) 2 .

Metrics