Abstract

We studied the long-term optical performance of an adaptive optics scanning laser ophthalmoscope that uses a liquid crystal on silicon spatial light modulator to correct ocular aberrations. The system achieved good compensation of aberrations while acquiring images of fine retinal structures, excepting during sudden eye movements. The residual wavefront aberrations collected over several minutes in several situations were statistically analyzed. The mean values of the root-mean-square residual wavefront errors were 23-30 nm, and for around 91-94% of the effective time the errors were below the Marechal criterion for diffraction limited imaging. The ability to axially shift the imaging plane to different retinal depths was also demonstrated.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14(11), 2884–2892 (1997).
    [CrossRef]
  2. J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4552 .
    [CrossRef] [PubMed]
  3. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059 .
    [CrossRef] [PubMed]
  4. A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-405 .
    [PubMed]
  5. S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
    [CrossRef] [PubMed]
  6. D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3354 .
    [CrossRef] [PubMed]
  7. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
    [CrossRef] [PubMed]
  8. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4792 .
    [CrossRef] [PubMed]
  9. E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
    [CrossRef] [PubMed]
  10. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
    [CrossRef] [PubMed]
  11. D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008).
    [CrossRef] [PubMed]
  12. S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
    [CrossRef] [PubMed]
  13. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, “Use of a microelectromechanical mirror for adaptive optics in the human eye,” Opt. Lett. 27(17), 1537–1539 (2002).
    [CrossRef] [PubMed]
  14. Y. Zhang, S. Poonja, and A. Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31(9), 1268–1270 (2006).
    [CrossRef] [PubMed]
  15. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal image,” J. Opt. Soc. Am. A 24(5), 1327–1336 (2007).
    [CrossRef]
  16. E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900 .
    [CrossRef] [PubMed]
  17. M. Mujat, R. D. Ferguson, N. Iftimia, and D. X. Hammer, “Compact adaptive optics line scanning ophthalmoscope,” Opt. Express 17(12), 10242–10258 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10242 .
    [CrossRef] [PubMed]
  18. N. Doble, D. T. Miller, G. Yoon, and D. R. Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46(20), 4501–4514 (2007).
    [CrossRef] [PubMed]
  19. D. C. Chen, S. M. Jones, D. A. Silva, and S. S. Olivier, “High-resolution adaptive optics scanning laser ophthalmoscope with dual deformable mirrors,” J. Opt. Soc. Am. A 24(5), 1305–1312 (2007).
    [CrossRef] [PubMed]
  20. M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 11607–11621 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11607 .
    [CrossRef] [PubMed]
  21. W. Zou and S. A. Burns, “High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics,” Opt. Express 17(22), 20167–20177 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20167 .
    [CrossRef] [PubMed]
  22. W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33(22), 2602–2604 (2008).
    [CrossRef] [PubMed]
  23. J. W. Evans, R. J. Zawadzki, S. M. Jones, S. S. Olivier, and J. S. Werner, “Error budget analysis for an adaptive optics optical coherence tomography system,” Opt. Express 17(16), 13768–13784 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13768 .
    [CrossRef] [PubMed]
  24. C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16671 .
    [CrossRef] [PubMed]
  25. G. D. Love, “Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,” Appl. Opt. 36(7), 1517–1520 (1997).
    [CrossRef] [PubMed]
  26. F. Vargas-Martín, P. M. Prieto, and P. Artal, “Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance,” J. Opt. Soc. Am. A 15(9), 2552–2562 (1998).
    [CrossRef] [PubMed]
  27. H. Huang, T. Inoue, and T. Hara, “An adaptive wavefront control system using a high-resolution liquid crystal spatial light modulator,” Proc. SPIE 5639, 129–137 (2004).
    [CrossRef]
  28. T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008).
    [CrossRef]
  29. T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
    [CrossRef]
  30. http://jp.hamamatsu.com/products/other/1013/X10468/index_en.html .
  31. T. Shirai, K. Takeno, H. Arimoto, and H. Furukawa, “Adaptive optics with a liquid crystal on silicon spatial light modulator and its behavior in retinal imaging,” Jpn. J. Appl. Phys. 48(7), 070213 (2009).
    [CrossRef]
  32. M. Hanebuchi, J. Sasaki, N. Shibata, Y. Fujisaka, Y. Yamada, H. Mukai, and S. Oshima, “Adaptive optics scanning laser ophthalmoscopy for imaging retina using a single liquid crystal spatial light modulator,” In ARVO 2010 Annual meeting, Poster A557, Program NO 2307, Fort Lauderdale, Florida, May 2–6 (2010).
  33. S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
    [CrossRef] [PubMed]
  34. M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University Press, 2001), p. 528.
  35. H. Huang, T. Inoue, and T. Hara, “Adaptive aberration compensation system using a high-resolution liquid crystal on silicon spatial light modulator,” Proc. SPIE 7156, 71560F (2009).
  36. T. Toyoda, N. Mukohzaka, S. Mizuno, Y. Nakabo, and M. Ishikawa, “Column parallel vision system (CPV) for high-speed 2D-image analysis,” Proc. SPIE 4416, 256–259 (2001).
    [CrossRef]
  37. American National Standards Institute, American National Standard for the Safe Use of Lasers, ANSI Z136.1–2000, (American National Standards Institute, 2000).
  38. G. Dai, Wavefront Optics for Vision Correction (SPIE Press, 2008), p. 221.
  39. D. Landau, E. M. Schneidman, T. Jacobovitz, and Y. Rozenman, “Quantitative in vivo retinal thickness measurements in healthy subjects,” Ophthalmology 104(4), 639–642 (1997).
    [PubMed]

2011 (1)

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
[CrossRef] [PubMed]

2010 (3)

2009 (5)

2008 (3)

T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008).
[CrossRef]

W. Zou, X. Qi, and S. A. Burns, “Wavefront-aberration sorting and correction for a dual-deformable-mirror adaptive-optics system,” Opt. Lett. 33(22), 2602–2604 (2008).
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

2007 (5)

2006 (4)

2005 (2)

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4792 .
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[CrossRef] [PubMed]

2004 (3)

2002 (2)

2001 (1)

T. Toyoda, N. Mukohzaka, S. Mizuno, Y. Nakabo, and M. Ishikawa, “Column parallel vision system (CPV) for high-speed 2D-image analysis,” Proc. SPIE 4416, 256–259 (2001).
[CrossRef]

1999 (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

1998 (1)

1997 (3)

Ahnelt, P.

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[CrossRef] [PubMed]

Arimoto, H.

T. Shirai, K. Takeno, H. Arimoto, and H. Furukawa, “Adaptive optics with a liquid crystal on silicon spatial light modulator and its behavior in retinal imaging,” Jpn. J. Appl. Phys. 48(7), 070213 (2009).
[CrossRef]

Artal, P.

Barnaby, A. M.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Bessho, K.

T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008).
[CrossRef]

Bierden, P.

Bigelow, C. E.

Bloom, B.

Burns, S. A.

Campbell, M. C. W.

Chen, D. C.

Chen, L.

Doble, N.

Donnelly Iii, W.

Drexler, W.

Elsner, A. E.

Evans, J. W.

Fercher, A. F.

Ferguson, D.

Ferguson, R. D.

Fernandez, E. J.

Fernández, E. J.

Fujikado, T.

T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008).
[CrossRef]

Fukuchi, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
[CrossRef]

Fulton, A. B.

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

Furukawa, H.

T. Shirai, K. Takeno, H. Arimoto, and H. Furukawa, “Adaptive optics with a liquid crystal on silicon spatial light modulator and its behavior in retinal imaging,” Jpn. J. Appl. Phys. 48(7), 070213 (2009).
[CrossRef]

Hammer, D. X.

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 11607–11621 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11607 .
[CrossRef] [PubMed]

M. Mujat, R. D. Ferguson, N. Iftimia, and D. X. Hammer, “Compact adaptive optics line scanning ophthalmoscope,” Opt. Express 17(12), 10242–10258 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10242 .
[CrossRef] [PubMed]

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

S. A. Burns, R. Tumbar, A. E. Elsner, D. Ferguson, and D. X. Hammer, “Large-field-of-view, modular, stabilized, adaptive-optics-based scanning laser ophthalmoscope,” J. Opt. Soc. Am. A 24(5), 1313–1326 (2007).
[CrossRef] [PubMed]

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, “Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal image,” J. Opt. Soc. Am. A 24(5), 1327–1336 (2007).
[CrossRef]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3354 .
[CrossRef] [PubMed]

Hangai, M.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
[CrossRef] [PubMed]

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Hara, T.

H. Huang, T. Inoue, and T. Hara, “Adaptive aberration compensation system using a high-resolution liquid crystal on silicon spatial light modulator,” Proc. SPIE 7156, 71560F (2009).

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
[CrossRef]

H. Huang, T. Inoue, and T. Hara, “An adaptive wavefront control system using a high-resolution liquid crystal spatial light modulator,” Proc. SPIE 5639, 129–137 (2004).
[CrossRef]

Hebert, T. J.

Hermann, B.

Huang, H.

H. Huang, T. Inoue, and T. Hara, “Adaptive aberration compensation system using a high-resolution liquid crystal on silicon spatial light modulator,” Proc. SPIE 7156, 71560F (2009).

H. Huang, T. Inoue, and T. Hara, “An adaptive wavefront control system using a high-resolution liquid crystal spatial light modulator,” Proc. SPIE 5639, 129–137 (2004).
[CrossRef]

Iftimia, N.

Iftimia, N. V.

Igasaki, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
[CrossRef]

Inoue, T.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
[CrossRef] [PubMed]

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

H. Huang, T. Inoue, and T. Hara, “Adaptive aberration compensation system using a high-resolution liquid crystal on silicon spatial light modulator,” Proc. SPIE 7156, 71560F (2009).

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
[CrossRef]

H. Huang, T. Inoue, and T. Hara, “An adaptive wavefront control system using a high-resolution liquid crystal spatial light modulator,” Proc. SPIE 5639, 129–137 (2004).
[CrossRef]

Ishikawa, M.

T. Toyoda, N. Mukohzaka, S. Mizuno, Y. Nakabo, and M. Ishikawa, “Column parallel vision system (CPV) for high-speed 2D-image analysis,” Proc. SPIE 4416, 256–259 (2001).
[CrossRef]

Ivers, K. M.

Jacobovitz, T.

D. Landau, E. M. Schneidman, T. Jacobovitz, and Y. Rozenman, “Quantitative in vivo retinal thickness measurements in healthy subjects,” Ophthalmology 104(4), 639–642 (1997).
[PubMed]

Jones, S. M.

Jonnal, R.

Jonnal, R. S.

Kitaguchi, Y.

T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008).
[CrossRef]

Kobayashi, Y.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
[CrossRef]

Landau, D.

D. Landau, E. M. Schneidman, T. Jacobovitz, and Y. Rozenman, “Quantitative in vivo retinal thickness measurements in healthy subjects,” Ophthalmology 104(4), 639–642 (1997).
[PubMed]

Leitgeb, R.

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[CrossRef] [PubMed]

Li, C.

Liang, J.

Love, G. D.

Lue, N.

Maeda, N.

T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008).
[CrossRef]

Manzanera, S.

Matsumoto, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
[CrossRef]

Mihashi, T.

T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008).
[CrossRef]

Miller, D.

Miller, D. T.

Mizuno, S.

T. Toyoda, N. Mukohzaka, S. Mizuno, Y. Nakabo, and M. Ishikawa, “Column parallel vision system (CPV) for high-speed 2D-image analysis,” Proc. SPIE 4416, 256–259 (2001).
[CrossRef]

Mujat, M.

Mukai, H.

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Mukohzaka, N.

T. Toyoda, N. Mukohzaka, S. Mizuno, Y. Nakabo, and M. Ishikawa, “Column parallel vision system (CPV) for high-speed 2D-image analysis,” Proc. SPIE 4416, 256–259 (2001).
[CrossRef]

Nakabo, Y.

T. Toyoda, N. Mukohzaka, S. Mizuno, Y. Nakabo, and M. Ishikawa, “Column parallel vision system (CPV) for high-speed 2D-image analysis,” Proc. SPIE 4416, 256–259 (2001).
[CrossRef]

Nakazawa, N.

T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008).
[CrossRef]

Ojima, Y.

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Olivier, S.

Olivier, S. S.

Ooto, S.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
[CrossRef] [PubMed]

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Oshima, S.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
[CrossRef] [PubMed]

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Patel, A. H.

Poonja, S.

Porter, J.

Povazay, B.

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900 .
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[CrossRef] [PubMed]

Prieto, P. M.

Qi, X.

Qu, J.

Queener, H.

Rha, J.

Romero-Borja, F.

Roorda, A.

Rozenman, Y.

D. Landau, E. M. Schneidman, T. Jacobovitz, and Y. Rozenman, “Quantitative in vivo retinal thickness measurements in healthy subjects,” Ophthalmology 104(4), 639–642 (1997).
[PubMed]

Sakamoto, A.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
[CrossRef] [PubMed]

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Sattmann, H.

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29(18), 2142–2144 (2004).
[CrossRef] [PubMed]

Schneidman, E. M.

D. Landau, E. M. Schneidman, T. Jacobovitz, and Y. Rozenman, “Quantitative in vivo retinal thickness measurements in healthy subjects,” Ophthalmology 104(4), 639–642 (1997).
[PubMed]

Shirai, T.

T. Shirai, K. Takeno, H. Arimoto, and H. Furukawa, “Adaptive optics with a liquid crystal on silicon spatial light modulator and its behavior in retinal imaging,” Jpn. J. Appl. Phys. 48(7), 070213 (2009).
[CrossRef]

Silva, D. A.

Singer, B.

Sredar, N.

Takayama, K.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
[CrossRef] [PubMed]

Takeno, K.

T. Shirai, K. Takeno, H. Arimoto, and H. Furukawa, “Adaptive optics with a liquid crystal on silicon spatial light modulator and its behavior in retinal imaging,” Jpn. J. Appl. Phys. 48(7), 070213 (2009).
[CrossRef]

Takumi, M.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
[CrossRef]

Tanaka, H.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
[CrossRef]

Thorn, K. E.

Toyoda, T.

T. Toyoda, N. Mukohzaka, S. Mizuno, Y. Nakabo, and M. Ishikawa, “Column parallel vision system (CPV) for high-speed 2D-image analysis,” Proc. SPIE 4416, 256–259 (2001).
[CrossRef]

Tsujikawa, A.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
[CrossRef] [PubMed]

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Tumbar, R.

Unterhuber, A.

Ustun, T. E.

Vabre, L.

Vargas-Martín, F.

Werner, J. S.

Williams, D. R.

Yamada, Y.

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Yamaguchi, T.

T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008).
[CrossRef]

Yamashiro, K.

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Yoon, G.

Yoshida, N.

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
[CrossRef]

Yoshimura, N.

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
[CrossRef] [PubMed]

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Zawadzki, R. J.

Zhang, Y.

Zou, W.

Appl. Opt. (2)

Invest. Ophthalmol. Vis. Sci. (1)

D. X. Hammer, N. V. Iftimia, R. D. Ferguson, C. E. Bigelow, T. E. Ustun, A. M. Barnaby, and A. B. Fulton, “Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study,” Invest. Ophthalmol. Vis. Sci. 49(5), 2061–2070 (2008).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (5)

Jpn. J. Appl. Phys. (1)

T. Shirai, K. Takeno, H. Arimoto, and H. Furukawa, “Adaptive optics with a liquid crystal on silicon spatial light modulator and its behavior in retinal imaging,” Jpn. J. Appl. Phys. 48(7), 070213 (2009).
[CrossRef]

Nature (1)

A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397(6719), 520–522 (1999).
[CrossRef] [PubMed]

Ophthalmology (3)

D. Landau, E. M. Schneidman, T. Jacobovitz, and Y. Rozenman, “Quantitative in vivo retinal thickness measurements in healthy subjects,” Ophthalmology 104(4), 639–642 (1997).
[PubMed]

S. Ooto, M. Hangai, K. Takayama, A. Sakamoto, A. Tsujikawa, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution retinal imaging of the photoreceptor layer in epiretinal membrane visualized with adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 118(5), 873–881 (2011).
[CrossRef] [PubMed]

S. Ooto, M. Hangai, A. Sakamoto, A. Tsujikawa, K. Yamashiro, Y. Ojima, Y. Yamada, H. Mukai, S. Oshima, T. Inoue, and N. Yoshimura, “High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy,” Ophthalmology 117(9), 1800–1809 (2010).
[CrossRef] [PubMed]

Opt. Express (11)

M. Mujat, R. D. Ferguson, A. H. Patel, N. Iftimia, N. Lue, and D. X. Hammer, “High resolution multimodal clinical ophthalmic imaging system,” Opt. Express 18(11), 11607–11621 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-11-11607 .
[CrossRef] [PubMed]

W. Zou and S. A. Burns, “High-accuracy wavefront control for retinal imaging with Adaptive-Influence-Matrix Adaptive Optics,” Opt. Express 17(22), 20167–20177 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-22-20167 .
[CrossRef] [PubMed]

D. X. Hammer, R. D. Ferguson, C. E. Bigelow, N. V. Iftimia, T. E. Ustun, and S. A. Burns, “Adaptive optics scanning laser ophthalmoscope for stabilized retinal imaging,” Opt. Express 14(8), 3354–3367 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-8-3354 .
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13(12), 4792–4811 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-12-4792 .
[CrossRef] [PubMed]

J. Rha, R. S. Jonnal, K. E. Thorn, J. Qu, Y. Zhang, and D. T. Miller, “Adaptive optics flood-illumination camera for high speed retinal imaging,” Opt. Express 14(10), 4552–4569 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4552 .
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12(17), 4059–4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059 .
[CrossRef] [PubMed]

A. Roorda, F. Romero-Borja, W. Donnelly Iii, H. Queener, T. J. Hebert, and M. C. W. Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10(9), 405–412 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-9-405 .
[PubMed]

E. J. Fernandez, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, “Adaptive optics with a magnetic deformable mirror: applications in the human eye,” Opt. Express 14(20), 8900–8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900 .
[CrossRef] [PubMed]

M. Mujat, R. D. Ferguson, N. Iftimia, and D. X. Hammer, “Compact adaptive optics line scanning ophthalmoscope,” Opt. Express 17(12), 10242–10258 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-12-10242 .
[CrossRef] [PubMed]

J. W. Evans, R. J. Zawadzki, S. M. Jones, S. S. Olivier, and J. S. Werner, “Error budget analysis for an adaptive optics optical coherence tomography system,” Opt. Express 17(16), 13768–13784 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13768 .
[CrossRef] [PubMed]

C. Li, N. Sredar, K. M. Ivers, H. Queener, and J. Porter, “A correction algorithm to simultaneously control dual deformable mirrors in a woofer-tweeter adaptive optics system,” Opt. Express 18(16), 16671–16684 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16671 .
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt. Rev. (1)

T. Yamaguchi, N. Nakazawa, K. Bessho, Y. Kitaguchi, N. Maeda, T. Fujikado, and T. Mihashi, “Adaptive optics fundus camera using a liquid crystal phase modulator,” Opt. Rev. 15(3), 173–180 (2008).
[CrossRef]

Proc. SPIE (4)

T. Inoue, H. Tanaka, N. Fukuchi, M. Takumi, N. Matsumoto, T. Hara, N. Yoshida, Y. Igasaki, and Y. Kobayashi, “LCOS spatial light modulator controlled by 12-bit signals for optical phase-only modulator,” Proc. SPIE 6487, 64870Y, 64870Y-11 (2007).
[CrossRef]

H. Huang, T. Inoue, and T. Hara, “An adaptive wavefront control system using a high-resolution liquid crystal spatial light modulator,” Proc. SPIE 5639, 129–137 (2004).
[CrossRef]

H. Huang, T. Inoue, and T. Hara, “Adaptive aberration compensation system using a high-resolution liquid crystal on silicon spatial light modulator,” Proc. SPIE 7156, 71560F (2009).

T. Toyoda, N. Mukohzaka, S. Mizuno, Y. Nakabo, and M. Ishikawa, “Column parallel vision system (CPV) for high-speed 2D-image analysis,” Proc. SPIE 4416, 256–259 (2001).
[CrossRef]

Vision Res. (1)

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vision Res. 45(28), 3432–3444 (2005).
[CrossRef] [PubMed]

Other (5)

American National Standards Institute, American National Standard for the Safe Use of Lasers, ANSI Z136.1–2000, (American National Standards Institute, 2000).

G. Dai, Wavefront Optics for Vision Correction (SPIE Press, 2008), p. 221.

M. Born and E. Wolf, Principles of Optics, 7th Ed. (Cambridge University Press, 2001), p. 528.

M. Hanebuchi, J. Sasaki, N. Shibata, Y. Fujisaka, Y. Yamada, H. Mukai, and S. Oshima, “Adaptive optics scanning laser ophthalmoscopy for imaging retina using a single liquid crystal spatial light modulator,” In ARVO 2010 Annual meeting, Poster A557, Program NO 2307, Fort Lauderdale, Florida, May 2–6 (2010).

http://jp.hamamatsu.com/products/other/1013/X10468/index_en.html .

Supplementary Material (1)

» Media 1: AVI (4105 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of an AO-SLO using an LCOS-SLM. LCOS-SLM: liquid crystal on silicon spatial light modulator, WFS: wavefront sensor, LD: laser diode, SLD: superluminescent diode, APD: avalanche photodiode, HS: horizontal scanner, VS: vertical scanner, BS1, BS2, BS3: dichroic beam splitter, WFV: Wide-field view imager.

Fig. 2
Fig. 2

(a) Photograph of LCOS-SLM and its driver, and (b) phase modulation characteristic of LCOS-SLM.

Fig. 3
Fig. 3

Examples of retinal images: (a), (c) and (e) without AO correction, and (b), (d) and (f) with AO correction. All images are single frames of videos. Scale bar represents 100 μm.

Fig. 4
Fig. 4

Examples of wavefront maps: (a), (c) and (e) without AO corrections, (b), (d) and (f) with AO correction. (a) and (b) for subject HH, (c) and (d) for subject IT, and (e) and (f) for subject OT.

Fig. 5
Fig. 5

Plots of coefficients of aberrations versus Zernike mode. The horizontal axis is the index of the Zernike mode. Index 3 is defocus, 4 and 5 are astigmatism, 6 and 7 are coma, 8 and 9 are trefoil, 10 is spherical aberration, 11 and 12 are secondary astigmatism, 13 and 14 are quadrafoil, and 15–20 are the 5-th order aberrations. The magnitude with AO correction is magnified 100 times.

Fig. 6
Fig. 6

Time course of the RMS wavefront error.

Fig. 7
Fig. 7

Retinal images acquired (a) before, (b), (c) during, and (d) after eye movement. Note that (b) is completely noise because the eye pupil was closed, and (c) is distorted by a saccade of the eye. The time stamps correspond to the x-axis of Fig. 6. The scale bar is 100 μm.

Fig. 8
Fig. 8

Time courses of residual RMS wavefront error.

Fig. 9
Fig. 9

Distributions of RMS wavefront error measured over 180 seconds for subject IT, showing (a) histogram and (b) cumulative probability curve. The vertical broken line indicates the Marechal criterion for the Rayleigh diffraction limit at a wavelength of 840 nm, and the horizontal broken line shows the corresponding cumulative probability.

Fig. 10
Fig. 10

Distributions of RMS wavefront errors obtained for three subjects IT, HH, and OT, showing (a) normalized histograms and (b) cumulative probability curves. The vertical broken line indicates the Marechal criterion for the Rayleigh diffraction limit at a wavelength of 840 nm.

Fig. 11
Fig. 11

AO-SLO image (video) of retinal vessels (Media 1). The scale bar represents 100 μm. The frame rate of the video is 10 Hz.

Fig. 12
Fig. 12

Time courses of (a) refractive power and (b) the AO-SLO retinal images captured at several times. The focusing operation was performed by moving in steps of 0.0086 D, starting at the photoreceptor layer (panel 1 of (b)) and moving up to the blood vessel layer (panel 3), the nerve fiber layer (panel 4) and beyond the retinal surface where nothing was obtained (panel 5), and then returning back to the nerve fiber layer (panel 6), the blood vessel layer (panel 7), the photoreceptor layer (panel 9), and above the photoreceptor layer. Panels 2 and 8 show intermediate images between the photoreceptor layer and the blood vessel layer where both photoreceptors and blood vessels can be recognized. All images are single frames of video. Light color bars of red, green and blue in (a) represent the positions where the photoreceptors, blood vessels, and nerve fiber can be well resolved, respectively. Transverse shifts from frame to frame were caused by eye movements. The time stamps in the panels of (b) correspond to the x-axis of (a). The scale bar represents 100 μm.

Metrics