Abstract

Optical coherence tomography (OCT) is a widely used morphological imaging modality. Various contrast agents, which change localized optical properties, are used to extend the applicability of OCT, where intrinsic contrast is not sufficient. In this paper we propose the use of a dual-rod gold nano-structure as a polarization sensitive contrast agent. Using numerical simulation, we demonstrated that the proposed structure has tunable chiral response. Enhanced cross-section due to Plasmon resonance in gold nanoparticles, along with the chiral behavior can provide enhanced detection sensitivity. The proposed contrast agents may extend the applicability of OCT to the problems that require the molecular contrast with enhanced sensitivity.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 041208 (2005).
    [CrossRef] [PubMed]
  2. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  3. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
    [CrossRef]
  4. Y. Sun and Y. Xia, “Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003).
    [CrossRef] [PubMed]
  5. C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
    [PubMed]
  6. S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond) 2(5), 657–668 (2007).
    [CrossRef] [PubMed]
  7. T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32(11), 1438–1440 (2007).
    [CrossRef] [PubMed]
  8. C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
    [CrossRef] [PubMed]
  9. J. Aaron, E. de la Rosa, K. Travis, N. Harrison, J. Burt, M. José-Yacamán, and K. Sokolov, “Polarization microscopy with stellated gold nanoparticles for robust monitoring of molecular assemblies and single biomolecules,” Opt. Express 16(3), 2153–2167 (2008).
    [CrossRef] [PubMed]
  10. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  11. V. Tuchin, L. Wang, and D. Zimnyakov, “Tissue structure and optical models,” in Optical Polarization in Biomedical Applications (Springer, 2006), pp. 7–28.
  12. C. Bustamante, M. F. Maestre, and J. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73(9), 4273–4281 (1980).
    [CrossRef]
  13. A. Y. Elezzabi and S. Sederberg, “Chirality and optical activity: a terahertz time-domain spectroscopy investigation,” Proc. SPIE 7214, 72140O (2009).
    [CrossRef]
  14. Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
    [CrossRef]
  15. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
    [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, 2005).
  17. Lumerical Solutions Inc, FDTD Solutions. 2010, http://www.lumerical.com/fdtd.php .
  18. S. J. Orfanidis, Electromagnetic Waves and Antennas (2010), http://www.ece.rutgers.edu/~orfanidi/ewa/ .
  19. “IEEE standard definitions of terms for antennas,” IEEE Trans. Antenn. Propag. , AP-31 (1983).
  20. M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(2), 287–291 (2004).
    [CrossRef] [PubMed]
  21. P. J. Holmes and J. E. Snell, “A vapour etching technique for the photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966).
    [CrossRef]

2009

A. Y. Elezzabi and S. Sederberg, “Chirality and optical activity: a terahertz time-domain spectroscopy investigation,” Proc. SPIE 7214, 72140O (2009).
[CrossRef]

2008

2007

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond) 2(5), 657–668 (2007).
[CrossRef] [PubMed]

T. S. Troutman, J. K. Barton, and M. Romanowski, “Optical coherence tomography with plasmon resonant nanorods of gold,” Opt. Lett. 32(11), 1438–1440 (2007).
[CrossRef] [PubMed]

2006

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

2005

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 041208 (2005).
[CrossRef] [PubMed]

2004

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(2), 287–291 (2004).
[CrossRef] [PubMed]

2003

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Y. Sun and Y. Xia, “Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003).
[CrossRef] [PubMed]

2001

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
[CrossRef]

1998

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

1983

“IEEE standard definitions of terms for antennas,” IEEE Trans. Antenn. Propag. , AP-31 (1983).

1980

C. Bustamante, M. F. Maestre, and J. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73(9), 4273–4281 (1980).
[CrossRef]

1966

P. J. Holmes and J. E. Snell, “A vapour etching technique for the photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966).
[CrossRef]

Aaron, J.

Au, L.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond) 2(5), 657–668 (2007).
[CrossRef] [PubMed]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

Barton, J.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Barton, J. K.

Boppart, S. A.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 041208 (2005).
[CrossRef] [PubMed]

Burt, J.

Bustamante, C.

C. Bustamante, M. F. Maestre, and J. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73(9), 4273–4281 (1980).
[CrossRef]

Cense, B.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(2), 287–291 (2004).
[CrossRef] [PubMed]

Chen, Y.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

De Boer, J. F.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(2), 287–291 (2004).
[CrossRef] [PubMed]

de la Rosa, E.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Drezek, R.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Elezzabi, A. Y.

A. Y. Elezzabi and S. Sederberg, “Chirality and optical activity: a terahertz time-domain spectroscopy investigation,” Proc. SPIE 7214, 72140O (2009).
[CrossRef]

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Fedotov, V. A.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Hafner, J. H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

Halas, N.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Halas, N. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

Harrison, N.

Hirsch, L.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Holmes, P. J.

P. J. Holmes and J. E. Snell, “A vapour etching technique for the photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966).
[CrossRef]

Hyle Park, B.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(2), 287–291 (2004).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

José-Yacamán, M.

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lee, M. H.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Li, X.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond) 2(5), 657–668 (2007).
[CrossRef] [PubMed]

Liao, H.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

Lin, A.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Loo, C.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Lu, X.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond) 2(5), 657–668 (2007).
[CrossRef] [PubMed]

Maestre, M. F.

C. Bustamante, M. F. Maestre, and J. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73(9), 4273–4281 (1980).
[CrossRef]

Marks, D. L.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 041208 (2005).
[CrossRef] [PubMed]

Nehl, C. L.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

Oldenburg, A. L.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 041208 (2005).
[CrossRef] [PubMed]

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

Osipov, M.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
[CrossRef]

Pierce, M. C.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(2), 287–291 (2004).
[CrossRef] [PubMed]

Plum, E.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

Romanowski, M.

Schwanecke, A. S.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

Sederberg, S.

A. Y. Elezzabi and S. Sederberg, “Chirality and optical activity: a terahertz time-domain spectroscopy investigation,” Proc. SPIE 7214, 72140O (2009).
[CrossRef]

Skrabalak, S. E.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond) 2(5), 657–668 (2007).
[CrossRef] [PubMed]

Snell, J. E.

P. J. Holmes and J. E. Snell, “A vapour etching technique for the photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966).
[CrossRef]

Sokolov, K.

Strasswimmer, J.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(2), 287–291 (2004).
[CrossRef] [PubMed]

Sun, Y.

Y. Sun and Y. Xia, “Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003).
[CrossRef] [PubMed]

Svirko, Y.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
[CrossRef]

Tinoco, J.

C. Bustamante, M. F. Maestre, and J. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73(9), 4273–4281 (1980).
[CrossRef]

Travis, K.

Troutman, T. S.

West, J.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Westcott, S. L.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

Xia, Y.

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond) 2(5), 657–668 (2007).
[CrossRef] [PubMed]

Y. Sun and Y. Xia, “Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003).
[CrossRef] [PubMed]

Xu, C.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 041208 (2005).
[CrossRef] [PubMed]

Zheludev, N.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
[CrossRef]

Zheludev, N. I.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

Analyst (Lond.)

Y. Sun and Y. Xia, “Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm,” Analyst (Lond.) 128(6), 686–691 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. Svirko, N. Zheludev, and M. Osipov, “Layered chiral metallic microstructures with inductive coupling,” Appl. Phys. Lett. 78(4), 498–500 (2001).
[CrossRef]

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007).
[CrossRef]

Chem. Phys. Lett.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288(2-4), 243–247 (1998).
[CrossRef]

IEEE Trans. Antenn. Propag.

“IEEE standard definitions of terms for antennas,” IEEE Trans. Antenn. Propag. , AP-31 (1983).

J. Biomed. Opt.

M. C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, and J. F. De Boer, “Birefringence measurements in human skin using polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 9(2), 287–291 (2004).
[CrossRef] [PubMed]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, “Optical probes and techniques for molecular contrast enhancement in coherence imaging,” J. Biomed. Opt. 10(4), 041208 (2005).
[CrossRef] [PubMed]

J. Chem. Phys.

C. Bustamante, M. F. Maestre, and J. Tinoco, “Circular intensity differential scattering of light by helical structures. I. Theory,” J. Chem. Phys. 73(9), 4273–4281 (1980).
[CrossRef]

J. Phys. Chem. B

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Microelectron. Reliab.

P. J. Holmes and J. E. Snell, “A vapour etching technique for the photolithography of silicon dioxide,” Microelectron. Reliab. 5(4), 337–341 (1966).
[CrossRef]

Nano Lett.

C. L. Nehl, H. Liao, and J. H. Hafner, “Optical properties of star-shaped gold nanoparticles,” Nano Lett. 6(4), 683–688 (2006).
[CrossRef] [PubMed]

Nanomedicine (Lond)

S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia, “Gold nanocages for cancer detection and treatment,” Nanomedicine (Lond) 2(5), 657–668 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Proc. SPIE

A. Y. Elezzabi and S. Sederberg, “Chirality and optical activity: a terahertz time-domain spectroscopy investigation,” Proc. SPIE 7214, 72140O (2009).
[CrossRef]

Rep. Prog. Phys.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography - principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Technol. Cancer Res. Treat.

C. Loo, A. Lin, L. Hirsch, M. H. Lee, J. Barton, N. Halas, J. West, and R. Drezek, “Nanoshell-enabled photonics-based imaging and therapy of cancer,” Technol. Cancer Res. Treat. 3(1), 33–40 (2004).
[PubMed]

Other

V. Tuchin, L. Wang, and D. Zimnyakov, “Tissue structure and optical models,” in Optical Polarization in Biomedical Applications (Springer, 2006), pp. 7–28.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Publishers, 2005).

Lumerical Solutions Inc, FDTD Solutions. 2010, http://www.lumerical.com/fdtd.php .

S. J. Orfanidis, Electromagnetic Waves and Antennas (2010), http://www.ece.rutgers.edu/~orfanidi/ewa/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A Three dimensional chiral structure, Dimensions of gold nanorods ( L , W ) determines resonance wavelength, Dand θ r controls chirality.

Fig. 2
Fig. 2

Differential Scattering Cross section for the particle for LCP and RCP incident lights for single particle Dimensions of the particle used in the simulation are: (a) L = 70 nm, W = 30 nm, D = 68 nm, θr = 45° (b) L = 175 nm, W = 30 nm, D = 81 nm, θr = 45°, NA = 0.35.

Fig. 3
Fig. 3

(a), (c) Averaged differential scattering cross section obtained by rotating the particles at finite steps ( 0 0 to 180 o ) (b), (d) CIDS calculated using the averaged backscattered field intensities for LCP and RCP lights. Dimensions for (a) and (b): L = 70 nm, W = 30 nm, D = 68 nm, θr = 45°, Dimensions for (c) and (d): L = 175 nm, W = 30 nm, D = 81 nm, θr = 45°, NA = 0.35.

Fig. 4
Fig. 4

Effect of Phase retradation of media (Birefringence induced) on Normalized difference in reflectivity, Dimensions for (a): L = 70 nm, W = 30 nm, D = 68 nm, θr = 45°, Dimensions for (b): L = 175 nm, W = 30 nm, D = 81 nm, θr = 45°, NA = 0.35.

Fig. 5
Fig. 5

Effect of dielectric layer width change on normalized difference in reflectivity (a): L = 70 nm, W = 30 nm, D = 68 nm, θr = 45°, Dimensions for (b): L = 175 nm, W = 30 nm, D = 81 nm, θr = 45°, NA = 0.35.

Fig. 6
Fig. 6

Chirality tuning by changing θr CIDS obtained for θr = 0°, 45°, 90° and θr = 135°.

Fig. 7
Fig. 7

Single detector Circular polarization sensitive OCT, PC: Manual fiber polarization controller, C1, C2: Fiber collimator, QWP1, QWP2: Quarter wave plates, RM: Reference mirror, I: Free space Isolator.

Fig. 8
Fig. 8

Overview of nanoparticles fabrication method.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

C I D S ( ω ) = I L C P ( ω ) I R C P ( ω ) I L C P ( ω ) + I R C P ( ω )
I ( ω ) = | ϕ = 0 2 π θ = 180 α 2 180 + α 2 E ( ω , θ , ϕ ) sin ( θ ) d ϕ d θ | 2
R ω [ ϕ = 0 2 π θ = 180 α 2 180 + α 2 I ( ω , θ , ϕ ) sin ( θ ) d ϕ d θ ] . P S D ( ω ) d ω
Δ R = R L R R R L + R R
σ d s c ( ω ) = ϕ = 0 2 π θ = 180 α 2 180 + α 2 P b a c k s c a t t e r d ( ω , θ , ϕ ) sin ( θ ) d ϕ d θ I i n c ( ω )

Metrics