Abstract

The absorption spectrum of indocyanine green (ICG), a nontoxic dye used for medical diagnostics, depends upon its concentration as well as the nature of its environment, i.e., the solvent medium into which it is dissolved. In blood, ICG binds with plasma proteins, thus causing changes in its photoacoustic spectrum. We successfully encapsulated ICG in an ultrasound-triggerable perfluorocarbon double emulsion that prevents ICG from binding with plasma proteins. Photoacoustic spectral measurements on point target as well as 2-D photoacoustic images of blood vessels revealed that the photoacoustic spectrum changes significantly in blood when the ICG-loaded emulsion undergoes acoustic droplet vaporization (ADV), which is the conversion of liquid droplets into gas bubbles using ultrasound. We propose that these changes in the photoacoustic spectrum of the ICG emulsion in blood, coupled with photoacoustic tomography, could be used to spatially and quantitatively monitor ultrasound initiated drug delivery. In addition, we suggest that the photoacoustic spectral change induced by ultrasound exposure could also be used as contrast in photoacoustic imaging to obtain a background free image.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).
  2. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
    [CrossRef]
  3. A. G. Bell, “Production of sound by radiant energy,” J. Franklin Inst. 111(6), 401–428 (1881).
    [CrossRef]
  4. G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
    [CrossRef] [PubMed]
  5. X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
    [CrossRef] [PubMed]
  6. J. R. Rajian, P. L. Carson, and X. Wang, “Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent,” Opt. Express 17(6), 4879–4889 (2009).
    [CrossRef] [PubMed]
  7. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
    [CrossRef] [PubMed]
  8. D. Piras, W. Xia, W. Steenbergen, T. G. V. Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quant. 16(4), 730–739 (2010).
    [CrossRef]
  9. K. M. Stantz, M. Cao, B. Liu, K. D. Miller, and L. Guo, “Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors,” Proc. SPIE 7564, 7564O (2010).
  10. S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
    [CrossRef] [PubMed]
  11. X. Wang, D. L. Chamberland, and D. A. Jamadar, “Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis,” Opt. Lett. 32(20), 3002–3004 (2007).
    [CrossRef] [PubMed]
  12. K. H. Song, C. H. Kim, C. M. Cobley, Y. N. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
    [CrossRef] [PubMed]
  13. L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, D. R. Guyer, and D. A. Orlock, “Digital indocyanine green videoangiography and choroidal neovascularization,” Retina 12(3), 191–223 (1992).
    [CrossRef] [PubMed]
  14. U. M. Schmidt-Erfurth, S. Michels, C. Kusserow, B. Jurklies, and A. J. Augustin, “Photodynamic therapy for symptomatic choroidal hemangioma: visual and anatomic results,” Ophthalmology 109(12), 2284–2294 (2002).
    [CrossRef] [PubMed]
  15. J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
    [CrossRef] [PubMed]
  16. J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
    [CrossRef] [PubMed]
  17. M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
    [PubMed]
  18. X. D. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29(7), 730–732 (2004).
    [CrossRef] [PubMed]
  19. J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, “A study of the formulation design of acoustically active lipospheres as carriers for drug delivery,” Eur. J. Pharm. Biopharm. 67(1), 67–75 (2007).
    [CrossRef] [PubMed]
  20. J. Y. Fang, C. F. Hung, S. C. Hua, and T. L. Hwang, “Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells,” Ultrasonics 49(1), 39–46 (2009).
    [CrossRef] [PubMed]
  21. N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
    [CrossRef] [PubMed]
  22. N. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging,” Mol. Pharm. 7(1), 22–31 (2010).
    [CrossRef] [PubMed]
  23. M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010).
    [CrossRef] [PubMed]
  24. M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
    [CrossRef] [PubMed]
  25. R. E. Apfel, “Activatable infusable dispersions containing drops of a superheated liquid for methods oftherapy and diagnosis,” Apfel Enterprises, Inc., ed. (1998).
  26. O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
    [CrossRef] [PubMed]
  27. T. Giesecke and K. Hynynen, “Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro,” Ultrasound Med. Biol. 29(9), 1359–1365 (2003).
    [CrossRef] [PubMed]
  28. K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S. Umemura, “Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting,” Jpn. J. Appl. Phys. 44(6B), 4548–4552 (2005).
    [CrossRef]
  29. J. G. Riess, “Oxygen carriers (“blood substitutes”) - raison d’etre, chemistry, and some physiology,” Chem. Rev. 101(9), 2797–2920 (2001).
    [CrossRef] [PubMed]
  30. J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
    [CrossRef] [PubMed]
  31. N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
    [CrossRef] [PubMed]
  32. M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
    [CrossRef] [PubMed]

2010

D. Piras, W. Xia, W. Steenbergen, T. G. V. Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quant. 16(4), 730–739 (2010).
[CrossRef]

K. M. Stantz, M. Cao, B. Liu, K. D. Miller, and L. Guo, “Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors,” Proc. SPIE 7564, 7564O (2010).

N. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging,” Mol. Pharm. 7(1), 22–31 (2010).
[CrossRef] [PubMed]

M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010).
[CrossRef] [PubMed]

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[CrossRef] [PubMed]

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[CrossRef] [PubMed]

M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
[CrossRef] [PubMed]

2009

K. H. Song, C. H. Kim, C. M. Cobley, Y. N. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[CrossRef] [PubMed]

J. R. Rajian, P. L. Carson, and X. Wang, “Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent,” Opt. Express 17(6), 4879–4889 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

J. Y. Fang, C. F. Hung, S. C. Hua, and T. L. Hwang, “Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells,” Ultrasonics 49(1), 39–46 (2009).
[CrossRef] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

2007

J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, “A study of the formulation design of acoustically active lipospheres as carriers for drug delivery,” Eur. J. Pharm. Biopharm. 67(1), 67–75 (2007).
[CrossRef] [PubMed]

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
[CrossRef] [PubMed]

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

X. Wang, D. L. Chamberland, and D. A. Jamadar, “Noninvasive photoacoustic tomography of human peripheral joints toward diagnosis of inflammatory arthritis,” Opt. Lett. 32(20), 3002–3004 (2007).
[CrossRef] [PubMed]

2006

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

2005

K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S. Umemura, “Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting,” Jpn. J. Appl. Phys. 44(6B), 4548–4552 (2005).
[CrossRef]

2004

2003

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[CrossRef] [PubMed]

T. Giesecke and K. Hynynen, “Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro,” Ultrasound Med. Biol. 29(9), 1359–1365 (2003).
[CrossRef] [PubMed]

2002

U. M. Schmidt-Erfurth, S. Michels, C. Kusserow, B. Jurklies, and A. J. Augustin, “Photodynamic therapy for symptomatic choroidal hemangioma: visual and anatomic results,” Ophthalmology 109(12), 2284–2294 (2002).
[CrossRef] [PubMed]

2001

J. G. Riess, “Oxygen carriers (“blood substitutes”) - raison d’etre, chemistry, and some physiology,” Chem. Rev. 101(9), 2797–2920 (2001).
[CrossRef] [PubMed]

2000

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

1999

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
[CrossRef] [PubMed]

1994

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

1992

L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, D. R. Guyer, and D. A. Orlock, “Digital indocyanine green videoangiography and choroidal neovascularization,” Retina 12(3), 191–223 (1992).
[CrossRef] [PubMed]

1976

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

1881

A. G. Bell, “Production of sound by radiant energy,” J. Franklin Inst. 111(6), 401–428 (1881).
[CrossRef]

Agayan, R. R.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
[CrossRef] [PubMed]

Ashkenazi, S.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
[CrossRef] [PubMed]

Augustin, A. J.

U. M. Schmidt-Erfurth, S. Michels, C. Kusserow, B. Jurklies, and A. J. Augustin, “Photodynamic therapy for symptomatic choroidal hemangioma: visual and anatomic results,” Ophthalmology 109(12), 2284–2294 (2002).
[CrossRef] [PubMed]

Azuma, T.

K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S. Umemura, “Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting,” Jpn. J. Appl. Phys. 44(6B), 4548–4552 (2005).
[CrossRef]

Bell, A. G.

A. G. Bell, “Production of sound by radiant energy,” J. Franklin Inst. 111(6), 401–428 (1881).
[CrossRef]

Bornhop, D. J.

Cain, C. A.

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
[CrossRef] [PubMed]

Cao, M.

K. M. Stantz, M. Cao, B. Liu, K. D. Miller, and L. Guo, “Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors,” Proc. SPIE 7564, 7564O (2010).

Carson, P. L.

M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
[CrossRef] [PubMed]

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[CrossRef] [PubMed]

M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010).
[CrossRef] [PubMed]

J. R. Rajian, P. L. Carson, and X. Wang, “Quantitative photoacoustic measurement of tissue optical absorption spectrum aided by an optical contrast agent,” Opt. Express 17(6), 4879–4889 (2009).
[CrossRef] [PubMed]

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Chamberland, D. L.

Chien, C. C.

J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, “A study of the formulation design of acoustically active lipospheres as carriers for drug delivery,” Eur. J. Pharm. Biopharm. 67(1), 67–75 (2007).
[CrossRef] [PubMed]

Christensen, D. A.

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[CrossRef] [PubMed]

Cobley, C. M.

K. H. Song, C. H. Kim, C. M. Cobley, Y. N. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[CrossRef] [PubMed]

Conjusteau, A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Cornell, K. K.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
[CrossRef] [PubMed]

Day, K. C.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
[CrossRef] [PubMed]

Day, M. A.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
[CrossRef] [PubMed]

Eldevik, O. P.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Ermilov, S. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Esenaliev, R. O.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Fabiilli, M. L.

M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010).
[CrossRef] [PubMed]

M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
[CrossRef] [PubMed]

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[CrossRef] [PubMed]

Fang, J. Y.

J. Y. Fang, C. F. Hung, S. C. Hua, and T. L. Hwang, “Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells,” Ultrasonics 49(1), 39–46 (2009).
[CrossRef] [PubMed]

J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, “A study of the formulation design of acoustically active lipospheres as carriers for drug delivery,” Eur. J. Pharm. Biopharm. 67(1), 67–75 (2007).
[CrossRef] [PubMed]

Fowlkes, J. B.

M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010).
[CrossRef] [PubMed]

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[CrossRef] [PubMed]

M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
[CrossRef] [PubMed]

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
[CrossRef] [PubMed]

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Frangioni, J. V.

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[CrossRef] [PubMed]

Giesecke, T.

T. Giesecke and K. Hynynen, “Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro,” Ultrasound Med. Biol. 29(9), 1359–1365 (2003).
[CrossRef] [PubMed]

Guo, L.

K. M. Stantz, M. Cao, B. Liu, K. D. Miller, and L. Guo, “Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors,” Proc. SPIE 7564, 7564O (2010).

Guyer, D. R.

L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, D. R. Guyer, and D. A. Orlock, “Digital indocyanine green videoangiography and choroidal neovascularization,” Retina 12(3), 191–223 (1992).
[CrossRef] [PubMed]

Haworth, K. J.

M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
[CrossRef] [PubMed]

M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010).
[CrossRef] [PubMed]

Hua, S. C.

J. Y. Fang, C. F. Hung, S. C. Hua, and T. L. Hwang, “Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells,” Ultrasonics 49(1), 39–46 (2009).
[CrossRef] [PubMed]

Huang, S. W.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
[CrossRef] [PubMed]

Hung, C. F.

J. Y. Fang, C. F. Hung, S. C. Hua, and T. L. Hwang, “Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells,” Ultrasonics 49(1), 39–46 (2009).
[CrossRef] [PubMed]

J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, “A study of the formulation design of acoustically active lipospheres as carriers for drug delivery,” Eur. J. Pharm. Biopharm. 67(1), 67–75 (2007).
[CrossRef] [PubMed]

Hwang, T. L.

J. Y. Fang, C. F. Hung, S. C. Hua, and T. L. Hwang, “Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells,” Ultrasonics 49(1), 39–46 (2009).
[CrossRef] [PubMed]

Hynynen, K.

T. Giesecke and K. Hynynen, “Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro,” Ultrasound Med. Biol. 29(9), 1359–1365 (2003).
[CrossRef] [PubMed]

Ives, K. A.

M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
[CrossRef] [PubMed]

Jacques, S. L.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Jamadar, D. A.

Jurklies, B.

U. M. Schmidt-Erfurth, S. Michels, C. Kusserow, B. Jurklies, and A. J. Augustin, “Photodynamic therapy for symptomatic choroidal hemangioma: visual and anatomic results,” Ophthalmology 109(12), 2284–2294 (2002).
[CrossRef] [PubMed]

Kawabata, K.

K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S. Umemura, “Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting,” Jpn. J. Appl. Phys. 44(6B), 4548–4552 (2005).
[CrossRef]

Kennedy, A. M.

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[CrossRef] [PubMed]

N. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging,” Mol. Pharm. 7(1), 22–31 (2010).
[CrossRef] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[CrossRef] [PubMed]

Khamapirad, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Kim, C. H.

K. H. Song, C. H. Kim, C. M. Cobley, Y. N. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[CrossRef] [PubMed]

Kim, G.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
[CrossRef] [PubMed]

Kopelman, R.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
[CrossRef] [PubMed]

Kripfgans, O. D.

M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010).
[CrossRef] [PubMed]

M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
[CrossRef] [PubMed]

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[CrossRef] [PubMed]

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Ku, G.

Kusserow, C.

U. M. Schmidt-Erfurth, S. Michels, C. Kusserow, B. Jurklies, and A. J. Augustin, “Photodynamic therapy for symptomatic choroidal hemangioma: visual and anatomic results,” Ophthalmology 109(12), 2284–2294 (2002).
[CrossRef] [PubMed]

Kwant, G.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

Lacewell, R.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Landsman, M. L. J.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

Lee, J. A.

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[CrossRef] [PubMed]

Leeuwen, T. G. V.

D. Piras, W. Xia, W. Steenbergen, T. G. V. Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quant. 16(4), 730–739 (2010).
[CrossRef]

Leonard, M. H.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Li, Z.-Y.

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

Liao, M. H.

J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, “A study of the formulation design of acoustically active lipospheres as carriers for drug delivery,” Eur. J. Pharm. Biopharm. 67(1), 67–75 (2007).
[CrossRef] [PubMed]

Liu, B.

K. M. Stantz, M. Cao, B. Liu, K. D. Miller, and L. Guo, “Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors,” Proc. SPIE 7564, 7564O (2010).

Manohar, S.

D. Piras, W. Xia, W. Steenbergen, T. G. V. Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quant. 16(4), 730–739 (2010).
[CrossRef]

Mayer, R. H.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
[CrossRef] [PubMed]

Mehta, K.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Michels, S.

U. M. Schmidt-Erfurth, S. Michels, C. Kusserow, B. Jurklies, and A. J. Augustin, “Photodynamic therapy for symptomatic choroidal hemangioma: visual and anatomic results,” Ophthalmology 109(12), 2284–2294 (2002).
[CrossRef] [PubMed]

Miller, D. L.

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

Miller, K. D.

K. M. Stantz, M. Cao, B. Liu, K. D. Miller, and L. Guo, “Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors,” Proc. SPIE 7564, 7564O (2010).

Miller, T.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

Mook, G. A.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

Nam, K. H.

N. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging,” Mol. Pharm. 7(1), 22–31 (2010).
[CrossRef] [PubMed]

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[CrossRef] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[CrossRef] [PubMed]

O’Donnell, M.

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
[CrossRef] [PubMed]

Oraevsky, A. A.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Orlock, D. A.

L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, D. R. Guyer, and D. A. Orlock, “Digital indocyanine green videoangiography and choroidal neovascularization,” Retina 12(3), 191–223 (1992).
[CrossRef] [PubMed]

Parsons, J. E.

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
[CrossRef] [PubMed]

Piras, D.

D. Piras, W. Xia, W. Steenbergen, T. G. V. Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quant. 16(4), 730–739 (2010).
[CrossRef]

Rajian, J. R.

Rapoport, N.

N. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging,” Mol. Pharm. 7(1), 22–31 (2010).
[CrossRef] [PubMed]

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[CrossRef] [PubMed]

Rapoport, N. Y.

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[CrossRef] [PubMed]

Reynolds, J. S.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
[CrossRef] [PubMed]

Riess, J. G.

J. G. Riess, “Oxygen carriers (“blood substitutes”) - raison d’etre, chemistry, and some physiology,” Chem. Rev. 101(9), 2797–2920 (2001).
[CrossRef] [PubMed]

Roberts, W. W.

M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
[CrossRef] [PubMed]

Scaife, C. L.

N. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging,” Mol. Pharm. 7(1), 22–31 (2010).
[CrossRef] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[CrossRef] [PubMed]

Schmidt-Erfurth, U. M.

U. M. Schmidt-Erfurth, S. Michels, C. Kusserow, B. Jurklies, and A. J. Augustin, “Photodynamic therapy for symptomatic choroidal hemangioma: visual and anatomic results,” Ophthalmology 109(12), 2284–2294 (2002).
[CrossRef] [PubMed]

Sebastian, I. E.

M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010).
[CrossRef] [PubMed]

Sevick-Muraca, E. M.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
[CrossRef] [PubMed]

Shea, J. E.

N. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging,” Mol. Pharm. 7(1), 22–31 (2010).
[CrossRef] [PubMed]

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[CrossRef] [PubMed]

Skrabalak, S. E.

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

Slakter, J. S.

L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, D. R. Guyer, and D. A. Orlock, “Digital indocyanine green videoangiography and choroidal neovascularization,” Retina 12(3), 191–223 (1992).
[CrossRef] [PubMed]

Snyder, P. W.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
[CrossRef] [PubMed]

Song, K. H.

K. H. Song, C. H. Kim, C. M. Cobley, Y. N. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[CrossRef] [PubMed]

Sorenson, J. A.

L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, D. R. Guyer, and D. A. Orlock, “Digital indocyanine green videoangiography and choroidal neovascularization,” Retina 12(3), 191–223 (1992).
[CrossRef] [PubMed]

Stantz, K. M.

K. M. Stantz, M. Cao, B. Liu, K. D. Miller, and L. Guo, “Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors,” Proc. SPIE 7564, 7564O (2010).

Steenbergen, W.

D. Piras, W. Xia, W. Steenbergen, T. G. V. Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quant. 16(4), 730–739 (2010).
[CrossRef]

Stoica, G.

Sugita, N.

K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S. Umemura, “Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting,” Jpn. J. Appl. Phys. 44(6B), 4548–4552 (2005).
[CrossRef]

Thompson, A. B.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
[CrossRef] [PubMed]

Tittel, F. K.

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

Troy, T. L.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
[CrossRef] [PubMed]

Umemura, S.

K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S. Umemura, “Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting,” Jpn. J. Appl. Phys. 44(6B), 4548–4552 (2005).
[CrossRef]

Wang, L. V.

K. H. Song, C. H. Kim, C. M. Cobley, Y. N. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[CrossRef] [PubMed]

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

X. D. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, and L. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29(7), 730–732 (2004).
[CrossRef] [PubMed]

Wang, X.

Wang, X. D.

Waters, D. J.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
[CrossRef] [PubMed]

Wegiel, M. A.

Xia, W.

D. Piras, W. Xia, W. Steenbergen, T. G. V. Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quant. 16(4), 730–739 (2010).
[CrossRef]

Xia, Y.

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

Xia, Y. N.

K. H. Song, C. H. Kim, C. M. Cobley, Y. N. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[CrossRef] [PubMed]

Xu, M.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Yang, X.

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

Yannuzzi, L. A.

L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, D. R. Guyer, and D. A. Orlock, “Digital indocyanine green videoangiography and choroidal neovascularization,” Retina 12(3), 191–223 (1992).
[CrossRef] [PubMed]

Yoshikawa, H.

K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S. Umemura, “Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting,” Jpn. J. Appl. Phys. 44(6B), 4548–4552 (2005).
[CrossRef]

Zhang, M. L.

M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
[CrossRef] [PubMed]

Zijlstra, W. G.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

Chem. Rev.

J. G. Riess, “Oxygen carriers (“blood substitutes”) - raison d’etre, chemistry, and some physiology,” Chem. Rev. 101(9), 2797–2920 (2001).
[CrossRef] [PubMed]

Curr. Opin. Chem. Biol.

J. V. Frangioni, “In vivo near-infrared fluorescence imaging,” Curr. Opin. Chem. Biol. 7(5), 626–634 (2003).
[CrossRef] [PubMed]

Eur. J. Pharm. Biopharm.

J. Y. Fang, C. F. Hung, M. H. Liao, and C. C. Chien, “A study of the formulation design of acoustically active lipospheres as carriers for drug delivery,” Eur. J. Pharm. Biopharm. 67(1), 67–75 (2007).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quant.

D. Piras, W. Xia, W. Steenbergen, T. G. V. Leeuwen, and S. Manohar, “Photoacoustic imaging of the breast using the twente photoacoustic mammoscope: present status and future perspectives,” IEEE J. Sel. Top. Quant. 16(4), 730–739 (2010).
[CrossRef]

J. Acoust. Soc. Am.

J. E. Parsons, C. A. Cain, and J. B. Fowlkes, “Cost-effective assembly of a basic fiber-optic hydrophone for measurement of high-amplitude therapeutic ultrasound fields,” J. Acoust. Soc. Am. 119(3), 1432–1440 (2006).
[CrossRef] [PubMed]

J. Appl. Physiol.

M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, “Light-absorbing properties, stability, and spectral stabilization of indocyanine green,” J. Appl. Physiol. 40(4), 575–583 (1976).
[PubMed]

J. Biomed. Opt.

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer,” J. Biomed. Opt. 14(2), 024007 (2009).
[CrossRef] [PubMed]

G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, “Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging,” J. Biomed. Opt. 12(4), 044020 (2007).
[CrossRef] [PubMed]

J. Control. Release

N. Y. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles,” J. Control. Release 138(3), 268–276 (2009).
[CrossRef] [PubMed]

J. Franklin Inst.

A. G. Bell, “Production of sound by radiant energy,” J. Franklin Inst. 111(6), 401–428 (1881).
[CrossRef]

Jpn. J. Appl. Phys.

K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma, and S. Umemura, “Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting,” Jpn. J. Appl. Phys. 44(6B), 4548–4552 (2005).
[CrossRef]

Mol. Pharm.

N. Rapoport, A. M. Kennedy, J. E. Shea, C. L. Scaife, and K. H. Nam, “Ultrasonic nanotherapy of pancreatic cancer: lessons from ultrasound imaging,” Mol. Pharm. 7(1), 22–31 (2010).
[CrossRef] [PubMed]

Nano Lett.

X. Yang, S. E. Skrabalak, Z.-Y. Li, Y. Xia, and L. V. Wang, “Photoacoustic tomography of a rat cerebral cortex in vivo with au nanocages as an optical contrast agent,” Nano Lett. 7(12), 3798–3802 (2007).
[CrossRef] [PubMed]

K. H. Song, C. H. Kim, C. M. Cobley, Y. N. Xia, and L. V. Wang, “Near-infrared gold nanocages as a new class of tracers for photoacoustic sentinel lymph node mapping on a rat model,” Nano Lett. 9(1), 183–188 (2009).
[CrossRef] [PubMed]

Ophthalmology

U. M. Schmidt-Erfurth, S. Michels, C. Kusserow, B. Jurklies, and A. J. Augustin, “Photodynamic therapy for symptomatic choroidal hemangioma: visual and anatomic results,” Ophthalmology 109(12), 2284–2294 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Pharm. Res.

M. L. Fabiilli, J. A. Lee, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of water-soluble drugs using acoustically triggered perfluorocarbon double emulsions,” Pharm. Res. 27(12), 2753–2765 (2010).
[CrossRef] [PubMed]

Photochem. Photobiol.

J. S. Reynolds, T. L. Troy, R. H. Mayer, A. B. Thompson, D. J. Waters, K. K. Cornell, P. W. Snyder, and E. M. Sevick-Muraca, “Imaging of spontaneous canine mammary tumors using fluorescent contrast agents,” Photochem. Photobiol. 70(1), 87–94 (1999).
[CrossRef] [PubMed]

Proc. SPIE

A. A. Oraevsky, S. L. Jacques, R. O. Esenaliev, and F. K. Tittel, “Laser based optoacoustic imaging in biological tissues,” Proc. SPIE 2134A, 122–128 (1994).

K. M. Stantz, M. Cao, B. Liu, K. D. Miller, and L. Guo, “Molecular imaging of neutropilin-1 receptor using photoacoustic spectroscopy in breast tumors,” Proc. SPIE 7564, 7564O (2010).

Retina

L. A. Yannuzzi, J. S. Slakter, J. A. Sorenson, D. R. Guyer, and D. A. Orlock, “Digital indocyanine green videoangiography and choroidal neovascularization,” Retina 12(3), 191–223 (1992).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77(4), 041101 (2006).
[CrossRef]

Ultrasonics

J. Y. Fang, C. F. Hung, S. C. Hua, and T. L. Hwang, “Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells,” Ultrasonics 49(1), 39–46 (2009).
[CrossRef] [PubMed]

Ultrasound Med. Biol.

M. L. Fabiilli, K. J. Haworth, I. E. Sebastian, O. D. Kripfgans, P. L. Carson, and J. B. Fowlkes, “Delivery of chlorambucil using an acoustically-triggered perfluoropentane emulsion,” Ultrasound Med. Biol. 36(8), 1364–1375 (2010).
[CrossRef] [PubMed]

O. D. Kripfgans, J. B. Fowlkes, D. L. Miller, O. P. Eldevik, and P. L. Carson, “Acoustic droplet vaporization for therapeutic and diagnostic applications,” Ultrasound Med. Biol. 26(7), 1177–1189 (2000).
[CrossRef] [PubMed]

T. Giesecke and K. Hynynen, “Ultrasound-mediated cavitation thresholds of liquid perfluorocarbon droplets in vitro,” Ultrasound Med. Biol. 29(9), 1359–1365 (2003).
[CrossRef] [PubMed]

N. Rapoport, D. A. Christensen, A. M. Kennedy, and K. H. Nam, “Cavitation properties of block copolymer stabilized phase-shift nanoemulsions used as drug carriers,” Ultrasound Med. Biol. 36(3), 419–429 (2010).
[CrossRef] [PubMed]

M. L. Zhang, M. L. Fabiilli, K. J. Haworth, J. B. Fowlkes, O. D. Kripfgans, W. W. Roberts, K. A. Ives, and P. L. Carson, “Initial investigation of acoustic droplet vaporization for occlusion in canine kidney,” Ultrasound Med. Biol. 36(10), 1691–1703 (2010).
[CrossRef] [PubMed]

Other

R. E. Apfel, “Activatable infusable dispersions containing drops of a superheated liquid for methods oftherapy and diagnosis,” Apfel Enterprises, Inc., ed. (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The size distribution of the ICG-loaded double emulsion. The mean droplet diameter is 4.4 μm.

Fig. 2
Fig. 2

A visible micrograph displaying the double emulsion. The dark green color shows that the ICG is encapsulated within the droplets.

Fig. 3
Fig. 3

Schematic of the photoacoustic experimental setup used: (a) for single point measurement and (b) for 2-D imaging. NDF - neutral density filters, FG - function generator.

Fig. 4
Fig. 4

The photoacoustic spectra of free ICG in saline (■) and in plasma(▲). The concentration of the emulsion was 3 μL/mL of saline or plasma. Each data point is the average from eight independent measurements. Error bars reflect the standard deviation at each point determined as described in the text.

Fig. 5
Fig. 5

The photoacoustic spectra of the ICG-loaded emulsion in plasma (■) and in saline (●). The green, dotted line represents the photoacoustic spectrum of free ICG in saline.

Fig. 6
Fig. 6

The PA spectrum of the ICG-loaded emulsion in plasma before (■) and after (▲) ADV. The green, dashed line represents the spectrum of free ICG in plasma.

Fig. 7
Fig. 7

The PA spectra of the ICG emulsion in canine blood before (■) and after (▲) ADV. The red dashed line represents the linear combination of the spectrum of whole blood and the spectrum of ICG emulsion in plasma. The green dashed line represents spectrum of whole blood and the spectrum of free ICG in plasma.

Fig. 8
Fig. 8

2-D, photoacoustic images of two vessels containing oxygenated canine blood at 860 nm before (a) and after (b) exposure to ultrasound (no emulsion present). Only vessel 1 was exposed to ultrasound pulses used to generate ADV.

Fig. 9
Fig. 9

2-D, photoacoustic images two vessels containing oxygenated canine blood and ICG-loaded double emulsion before (a) and after (b) ADV. Only vessel 1 was exposed to ultrasound pulses used to generate ADV. The concentration of the emulsion was 3 μL/mL of blood.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

y i , j = a j f ( λ )
y i , 2 = a 2 y i , 1
a 2 i = 1 i = n ( y i , 2 a 2 y i , 1 ) 2 = 0
a 2 = i = 1 i = n y i , 2 y i , 1 i = 1 i = n y i , 1 2
a j = i = 1 i = n y i , j y i , 1 i = 1 i = n y i , 1 2           , j = 2 , .. n

Metrics