Abstract

We propose and demonstrate a compact microlensed dual-fiber probe that has a good collection efficiency and a high depth-resolution ability for fluorescence measurements. The probe is formed with a conventional fusion splicer creating a common focusing lens on two fibers placed side by side. The collection efficiency of the fabricated probe was evaluated by measuring the fluorescence signal of a fresh ginkgo leaf. It was shown experimentally that the proposed probe could effectively collect the fluorescence signal with a six-fold increase compared to that of a general flat-tipped probe. The beam propagation method was used to design a probe with an optimized working distance and an improved resolving depth. It was found that the working distance depends mainly on the radius of curvature of the lens, whereas the resolving depth is determined by the core diameters of the illumination and collection fibers. The depth-resolved ability of probes with working distances of ~100 μm and 300 μm was validated by using a two-layer tissue phantom. The experimental results demonstrate that the microlensed dual-fiber probe has the potential to facilitate depth-resolved fluorescence detection of epithelial tissue.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
    [CrossRef] [PubMed]
  2. N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1/2), 89–117 (2000).
    [CrossRef] [PubMed]
  3. O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 74(12), 2663–2678 (2002).
    [CrossRef] [PubMed]
  4. L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—a review,” Appl. Spectrosc. Rev. 41(6), 575–590 (2006).
    [CrossRef]
  5. A. Amelink and H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004).
    [CrossRef] [PubMed]
  6. S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 024031 (2005).
    [CrossRef] [PubMed]
  7. R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, “Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,” Appl. Opt. 47(6), 825–834 (2008).
    [CrossRef] [PubMed]
  8. C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
    [CrossRef] [PubMed]
  9. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41(22), 4712–4721 (2002).
    [CrossRef] [PubMed]
  10. T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28(2), 120–122 (2003).
    [CrossRef] [PubMed]
  11. L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43(6), 1308–1319 (2004).
    [CrossRef] [PubMed]
  12. T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10(4), 044016 (2005).
    [CrossRef] [PubMed]
  13. L. T. Nieman, M. Jakovljevic, and K. Sokolov, “Compact beveled fiber optic probe design for enhanced depth discrimination in epithelial tissues,” Opt. Express 17(4), 2780–2796 (2009).
    [CrossRef] [PubMed]
  14. G. K. Bhowmick, N. Gautam, and L. M. Gantayet, “Design optimization of fiber optic probes for remote fluorescence spectroscopy,” Opt. Commun. 282(14), 2676–2684 (2009).
    [CrossRef]
  15. T. F. Cooney, H. T. Skinner, and S. M. Angel, “Comparative study of some fiber-optic remote Raman probe designs. Part II: tests of single-fiber, lensed, and flat- and bevel-tip multi-fiber probes,” Appl. Spectrosc. 50(7), 849–860 (1996).
    [CrossRef]
  16. T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
    [CrossRef]
  17. L. Wang, H. Y. Choi, Y. Jung, B. H. Lee, and K. T. Kim, “Optical probe based on double-clad optical fiber for fluorescence spectroscopy,” Opt. Express 15(26), 17681–17689 (2007).
    [CrossRef] [PubMed]
  18. S. Y. Ryu, H. Y. Choi, M. J. Ju, J. N. Na, W. J. Choi, and B. H. Lee, “The development of double clad fiber and double clad fiber coupler for fiber based biomedical imaging systems,” J. Opt. Soc. Korea 13(3), 310–315 (2009).
    [CrossRef]
  19. F. Jaillon, W. Zheng, and Z. W. Huang, “Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations,” Phys. Med. Biol. 53(4), 937–951 (2008).
    [CrossRef] [PubMed]
  20. R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30(10), 1159–1161 (2005).
    [CrossRef] [PubMed]
  21. F. Jaillon, W. Zheng, and Z. Huang, “Half-ball lens couples a beveled fiber probe for depth-resolved spectroscopy: Monte Carlo simulations,” Appl. Opt. 47(17), 3152–3157 (2008).
    [CrossRef] [PubMed]
  22. J. Mo, W. Zheng, and Z. Huang, “Fiber-optic Raman probe couples ball lens for depth-selected Raman measurements of epithelial tissue,” Biomed. Opt. Express 1(1), 17–30 (2010).
    [CrossRef] [PubMed]
  23. V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47(32), 6046–6057 (2008).
    [CrossRef] [PubMed]
  24. H. Y. Choi, S. Y. Ryu, G. H. Kim, K. S. Chang, S. J. Park, and B. H. Lee, “Lensed dual-fiber probe for the effective collection of fluorescence signals,” IEEE Photon. Technol. Lett. 23(6), 359–361 (2011).
    [CrossRef]
  25. C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, “Imaging of the blue, green, and red fluorescence emission of plants: an overview,” Photosynthetica 38(4), 483–491 (2000).
    [CrossRef]
  26. S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, “Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,” Appl. Opt. 47(10), 1510–1516 (2008).
    [CrossRef] [PubMed]

2011 (1)

H. Y. Choi, S. Y. Ryu, G. H. Kim, K. S. Chang, S. J. Park, and B. H. Lee, “Lensed dual-fiber probe for the effective collection of fluorescence signals,” IEEE Photon. Technol. Lett. 23(6), 359–361 (2011).
[CrossRef]

2010 (1)

2009 (3)

2008 (5)

2007 (1)

2006 (1)

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—a review,” Appl. Spectrosc. Rev. 41(6), 575–590 (2006).
[CrossRef]

2005 (3)

S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 024031 (2005).
[CrossRef] [PubMed]

R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30(10), 1159–1161 (2005).
[CrossRef] [PubMed]

T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10(4), 044016 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (3)

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28(2), 120–122 (2003).
[CrossRef] [PubMed]

2002 (2)

2001 (1)

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[CrossRef]

2000 (2)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1/2), 89–117 (2000).
[CrossRef] [PubMed]

C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, “Imaging of the blue, green, and red fluorescence emission of plants: an overview,” Photosynthetica 38(4), 483–491 (2000).
[CrossRef]

1996 (1)

Aaron, J.

Agrawal, A.

T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10(4), 044016 (2005).
[CrossRef] [PubMed]

Amelink, A.

Angel, S. M.

Arifler, D.

Atkinson, E. N.

S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 024031 (2005).
[CrossRef] [PubMed]

Bachmann, L.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—a review,” Appl. Spectrosc. Rev. 41(6), 575–590 (2006).
[CrossRef]

Backman, V.

Bhowmick, G. K.

G. K. Bhowmick, N. Gautam, and L. M. Gantayet, “Design optimization of fiber optic probes for remote fluorescence spectroscopy,” Opt. Commun. 282(14), 2676–2684 (2009).
[CrossRef]

Buschmann, C.

C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, “Imaging of the blue, green, and red fluorescence emission of plants: an overview,” Photosynthetica 38(4), 483–491 (2000).
[CrossRef]

Chang, K. S.

H. Y. Choi, S. Y. Ryu, G. H. Kim, K. S. Chang, S. J. Park, and B. H. Lee, “Lensed dual-fiber probe for the effective collection of fluorescence signals,” IEEE Photon. Technol. Lett. 23(6), 359–361 (2011).
[CrossRef]

Chang, S. K.

S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 024031 (2005).
[CrossRef] [PubMed]

R. A. Schwarz, D. Arifler, S. K. Chang, I. Pavlova, I. A. Hussain, V. Mack, B. Knight, R. Richards-Kortum, and A. M. Gillenwater, “Ball lens coupled fiber-optic probe for depth-resolved spectroscopy of epithelial tissue,” Opt. Lett. 30(10), 1159–1161 (2005).
[CrossRef] [PubMed]

Choi, H. Y.

Choi, W. J.

Cooney, T. F.

Cox, D.

S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 024031 (2005).
[CrossRef] [PubMed]

Daye, D.

Drezek, R. A.

T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10(4), 044016 (2005).
[CrossRef] [PubMed]

Ediger, M. N.

Follen, M.

S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 024031 (2005).
[CrossRef] [PubMed]

Gantayet, L. M.

G. K. Bhowmick, N. Gautam, and L. M. Gantayet, “Design optimization of fiber optic probes for remote fluorescence spectroscopy,” Opt. Commun. 282(14), 2676–2684 (2009).
[CrossRef]

Gao, W.

Gautam, N.

G. K. Bhowmick, N. Gautam, and L. M. Gantayet, “Design optimization of fiber optic probes for remote fluorescence spectroscopy,” Opt. Commun. 282(14), 2676–2684 (2009).
[CrossRef]

Gillenwater, A. M.

Gomes, A. J.

Gomes, L.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—a review,” Appl. Spectrosc. Rev. 41(6), 575–590 (2006).
[CrossRef]

Huang, Z.

Huang, Z. W.

F. Jaillon, W. Zheng, and Z. W. Huang, “Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations,” Phys. Med. Biol. 53(4), 937–951 (2008).
[CrossRef] [PubMed]

Hussain, I. A.

Ito, A. S.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—a review,” Appl. Spectrosc. Rev. 41(6), 575–590 (2006).
[CrossRef]

Jaillon, F.

F. Jaillon, W. Zheng, and Z. W. Huang, “Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations,” Phys. Med. Biol. 53(4), 937–951 (2008).
[CrossRef] [PubMed]

F. Jaillon, W. Zheng, and Z. Huang, “Half-ball lens couples a beveled fiber probe for depth-resolved spectroscopy: Monte Carlo simulations,” Appl. Opt. 47(17), 3152–3157 (2008).
[CrossRef] [PubMed]

Jakovljevic, M.

Jameel, M.

Ju, M. J.

Jung, Y.

Kim, G. H.

H. Y. Choi, S. Y. Ryu, G. H. Kim, K. S. Chang, S. J. Park, and B. H. Lee, “Lensed dual-fiber probe for the effective collection of fluorescence signals,” IEEE Photon. Technol. Lett. 23(6), 359–361 (2011).
[CrossRef]

Kim, K. T.

Kim, Y. L.

Knight, B.

Kromine, A.

Langsdorf, G.

C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, “Imaging of the blue, green, and red fluorescence emission of plants: an overview,” Photosynthetica 38(4), 483–491 (2000).
[CrossRef]

Lee, B. H.

Lichtenthaler, H. K.

C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, “Imaging of the blue, green, and red fluorescence emission of plants: an overview,” Photosynthetica 38(4), 483–491 (2000).
[CrossRef]

Liu, Q.

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[CrossRef] [PubMed]

Liu, Y.

Mack, V.

Malpica, A.

S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 024031 (2005).
[CrossRef] [PubMed]

Matchette, L. S.

Mirabal, Y. N.

S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 024031 (2005).
[CrossRef] [PubMed]

Mo, J.

Myakov, A.

Na, J.

Na, J. N.

Nieman, L.

Nieman, L. T.

Nishioka, N. S.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41(22), 4712–4721 (2002).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[CrossRef]

Park, S. J.

H. Y. Choi, S. Y. Ryu, G. H. Kim, K. S. Chang, S. J. Park, and B. H. Lee, “Lensed dual-fiber probe for the effective collection of fluorescence signals,” IEEE Photon. Technol. Lett. 23(6), 359–361 (2011).
[CrossRef]

Pavlova, I.

Pfefer, T. J.

T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10(4), 044016 (2005).
[CrossRef] [PubMed]

T. J. Pfefer, L. S. Matchette, A. M. Ross, and M. N. Ediger, “Selective detection of fluorophore layers in turbid media: the role of fiber-optic probe design,” Opt. Lett. 28(2), 120–122 (2003).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41(22), 4712–4721 (2002).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[CrossRef]

Ramanujam, N.

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[CrossRef] [PubMed]

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1/2), 89–117 (2000).
[CrossRef] [PubMed]

Ribeiro, A. D.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—a review,” Appl. Spectrosc. Rev. 41(6), 575–590 (2006).
[CrossRef]

Richards-Kortum, R.

Richards-Kortum, R. R.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Rogers, J. D.

Ross, A. M.

Roy, H. K.

Ryu, S. Y.

Schomacker, K. T.

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41(22), 4712–4721 (2002).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[CrossRef]

Schwarz, R. A.

Skinner, H. T.

Sokolov, K.

Sterenborg, H. J. C. M.

Turzhitsky, V. M.

Utzinger, U.

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

Wang, L.

Williams, M. D.

Wolfbeis, O. S.

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 74(12), 2663–2678 (2002).
[CrossRef] [PubMed]

Zezell, D. M.

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—a review,” Appl. Spectrosc. Rev. 41(6), 575–590 (2006).
[CrossRef]

Zheng, W.

Zhu, C.

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[CrossRef] [PubMed]

Anal. Chem. (1)

O. S. Wolfbeis, “Fiber-optic chemical sensors and biosensors,” Anal. Chem. 74(12), 2663–2678 (2002).
[CrossRef] [PubMed]

Appl. Opt. (7)

A. Amelink and H. J. C. M. Sterenborg, “Measurement of the local optical properties of turbid media by differential path-length spectroscopy,” Appl. Opt. 43(15), 3048–3054 (2004).
[CrossRef] [PubMed]

R. A. Schwarz, W. Gao, D. Daye, M. D. Williams, R. Richards-Kortum, and A. M. Gillenwater, “Autofluorescence and diffuse reflectance spectroscopy of oral epithelial tissue using a depth-sensitive fiber-optic probe,” Appl. Opt. 47(6), 825–834 (2008).
[CrossRef] [PubMed]

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Multiple-fiber probe design for fluorescence spectroscopy in tissue,” Appl. Opt. 41(22), 4712–4721 (2002).
[CrossRef] [PubMed]

L. Nieman, A. Myakov, J. Aaron, and K. Sokolov, “Optical sectioning using a fiber probe with an angled illumination-collection geometry: evaluation in engineered tissue phantoms,” Appl. Opt. 43(6), 1308–1319 (2004).
[CrossRef] [PubMed]

F. Jaillon, W. Zheng, and Z. Huang, “Half-ball lens couples a beveled fiber probe for depth-resolved spectroscopy: Monte Carlo simulations,” Appl. Opt. 47(17), 3152–3157 (2008).
[CrossRef] [PubMed]

V. M. Turzhitsky, A. J. Gomes, Y. L. Kim, Y. Liu, A. Kromine, J. D. Rogers, M. Jameel, H. K. Roy, and V. Backman, “Measuring mucosal blood supply in vivo with a polarization-gating probe,” Appl. Opt. 47(32), 6046–6057 (2008).
[CrossRef] [PubMed]

S. Y. Ryu, H. Y. Choi, J. Na, W. J. Choi, and B. H. Lee, “Lensed fiber probes designed as an alternative to bulk probes in optical coherence tomography,” Appl. Opt. 47(10), 1510–1516 (2008).
[CrossRef] [PubMed]

Appl. Spectrosc. (1)

Appl. Spectrosc. Rev. (1)

L. Bachmann, D. M. Zezell, A. D. Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—a review,” Appl. Spectrosc. Rev. 41(6), 575–590 (2006).
[CrossRef]

Biomed. Opt. Express (1)

IEEE J. Sel. Top. Quantum Electron. (1)

T. J. Pfefer, K. T. Schomacker, M. N. Ediger, and N. S. Nishioka, “Light propagation in tissue during fluorescence spectroscopy with single-fiber probes,” IEEE J. Sel. Top. Quantum Electron. 7(6), 1004–1012 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

H. Y. Choi, S. Y. Ryu, G. H. Kim, K. S. Chang, S. J. Park, and B. H. Lee, “Lensed dual-fiber probe for the effective collection of fluorescence signals,” IEEE Photon. Technol. Lett. 23(6), 359–361 (2011).
[CrossRef]

J. Biomed. Opt. (4)

T. J. Pfefer, A. Agrawal, and R. A. Drezek, “Oblique-incidence illumination and collection for depth-selective fluorescence spectroscopy,” J. Biomed. Opt. 10(4), 044016 (2005).
[CrossRef] [PubMed]

U. Utzinger and R. R. Richards-Kortum, “Fiber optic probes for biomedical optical spectroscopy,” J. Biomed. Opt. 8(1), 121–147 (2003).
[CrossRef] [PubMed]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[CrossRef] [PubMed]

S. K. Chang, Y. N. Mirabal, E. N. Atkinson, D. Cox, A. Malpica, M. Follen, and R. Richards-Kortum, “Combined reflectance and fluorescence spectroscopy for in vivo detection of cervical pre-cancer,” J. Biomed. Opt. 10(2), 024031 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Korea (1)

Neoplasia (1)

N. Ramanujam, “Fluorescence spectroscopy of neoplastic and non-neoplastic tissues,” Neoplasia 2(1/2), 89–117 (2000).
[CrossRef] [PubMed]

Opt. Commun. (1)

G. K. Bhowmick, N. Gautam, and L. M. Gantayet, “Design optimization of fiber optic probes for remote fluorescence spectroscopy,” Opt. Commun. 282(14), 2676–2684 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Photosynthetica (1)

C. Buschmann, G. Langsdorf, and H. K. Lichtenthaler, “Imaging of the blue, green, and red fluorescence emission of plants: an overview,” Photosynthetica 38(4), 483–491 (2000).
[CrossRef]

Phys. Med. Biol. (1)

F. Jaillon, W. Zheng, and Z. W. Huang, “Beveled fiber-optic probe couples a ball lens for improving depth-resolved fluorescence measurements of layered tissue: Monte Carlo simulations,” Phys. Med. Biol. 53(4), 937–951 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Fabrication process of a microlensed dual-fiber probe (insets: microscopic images of the well-cleaved dual-fiber end and the constructed microlensed dual-fiber probe). (b) The fluorescence spectra measured from a fresh ginkgo leaf (blue line: flat-tipped dual fiber probe with 50 μm collection fiber; red line: microlensed dual-fiber probe with 50 μm collection fiber; black line: microlensed dual-fiber probe with 105 μm collection fiber). All fluorescence spectra were measured under the same conditions.

Fig. 2
Fig. 2

Contour maps of the beam propagation simulated with BPM: (a), (b), and (c) correspond to flat-tipped dual-fiber probes constructed using SMF, MMF1 and MMF2 and (d), (e), (f), (g), and (h) correspond to the proposed microlensed dual-fiber probes with different fiber and radius of curvature (R) combinations. Design parameters: (a) flat-tipped probe, combination of SMF and MMF1; (b) flat-tipped probe, combination of MMF1 and MMF1; (c) flat-tipped probe, combination of SMF and MMF2; (d) 110 μm radius of curvature, combination of SMF and MMF1; (e) 110 μm radius of curvature, combination of MMF1 and MMF1; (f) 125 μm radius of curvature, combination of SMF and MMF1; (g) 125 μm radius of curvature, combination of MMF1 and MMF1; (h) 125 μm radius of curvature, combination of MMF1 and MMF2. The core/cladding diameters of SMF, MMF1, and MMF2 are 9/125, 50/125, and 105/125 μm, respectively. The working distance is indicated by the dotted blue line and FWHM is related with the dotted yellow lines in Figures.

Fig. 3
Fig. 3

Intensity variation of the reflected light measured as a function of distance between the probe and reflection target for (a) the microlensed dual-fiber probes and (b) the flat-tipped dual-fiber probe.

Fig. 4
Fig. 4

Fluorescence measurement system based on the fabricated compact probe. LPF: Long pass filer. The fiber holder mounted on 3-axis translation stage was used to control the distance between the probe and sample surface.

Fig. 5
Fig. 5

(a) Fluorescence spectra of the single layer phantoms corresponding to the top (green) and bottom (red) layers of the two-layer tissue phantoms. Fluorescence spectra of the two-layer tissue phantom collected by the use of (b) the flat-tipped dual fiber probe, (c) microlensed dual-fiber probe 1 with a short working distance, and (d) microlensed dual-fiber probe 2 with a long working distance. Note that all spectra were normalized to facilitate comparison.

Tables (1)

Tables Icon

Table 1 Summarized Results of Working Distance and FWHM of Probes Simulated with BPM

Metrics