Abstract

When performing multiphoton fluorescence lifetime imaging in multiple spectral emission channels, an instrument response function must be acquired in each channel if accurate measurements of complex fluorescence decays are to be performed. Although this can be achieved using the reference reconvolution technique, it is difficult to identify suitable fluorophores with a mono-exponential fluorescence decay across a broad emission spectrum. We present a solution to this problem by measuring the IRF using the ultrafast luminescence from gold nanorods. We show that ultrafast gold nanorod luminescence allows the IRF to be directly obtained in multiple spectral channels simultaneously across a wide spectral range. We validate this approach by presenting an analysis of multispectral autofluorescence FLIM data obtained from human skin ex vivo.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
    [CrossRef] [PubMed]
  3. B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
    [CrossRef] [PubMed]
  4. W. Becker, A. Bergmann, E. Haustein, Z. Petrasek, P. Schwille, C. Biskup, T. Anhut, I. Riemann, and K. Koenig, “Fluorescence lifetime images and correlation spectra obtained by multi-dimensional TCSPC,” in Multiphoton Microscopy in the Biomedical Sciences V, A. Periasamy, and P. T. C. So, eds. (SPIE, Bellingham, 2005), pp. 144–151.
  5. A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
    [CrossRef] [PubMed]
  6. M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
    [CrossRef] [PubMed]
  7. K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000).
    [CrossRef]
  8. H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280(26), 25119–25126 (2005).
    [CrossRef] [PubMed]
  9. Y. Wu, W. Zheng, and J. Y. Qu, “Sensing cell metabolism by time-resolved autofluorescence,” Opt. Lett. 31(21), 3122–3124 (2006).
    [CrossRef] [PubMed]
  10. J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,” Opt. Express 14(10), 4395–4402 (2006).
    [CrossRef] [PubMed]
  11. D. K. Bird, K. W. Eliceiri, C. H. Fan, and J. G. White, “Simultaneous two-photon spectral and lifetime fluorescence microscopy,” Appl. Opt. 43(27), 5173–5182 (2004).
    [CrossRef] [PubMed]
  12. A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, “Two-photon excitation and time-resolved fluorescence: 1. The proper response function for analysing single-photon counting experiments,” Chem. Phys. Lett. 354(5-6), 367–375 (2002).
    [CrossRef]
  13. W. Becker, “Recording the instrument response function of a multiphoton FLIM sytem,” Becker & Hickl GmbH Application Note irf-mp-04.doc (2008), http://www.becker-hickl.de/pdf/irf-mp04.pdf .
  14. R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
    [CrossRef]
  15. E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
    [CrossRef] [PubMed]
  16. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
  17. D. Bebelaar, “Time response of various types of photomultipliers and its wavelength dependence in time-correlated single-photon counting with an ultimate resolution of 47 ps FWHM,” Rev. Sci. Instrum. 57(6), 1116–1125 (1986).
    [CrossRef]
  18. R. Krahl, A. Bülter, and F. Koberling, “Performance of the Micro Photon Devices PDM 50CT SPAD detector with PicoQuant TCSPC systems” Technical Note (PicoQuant GmbH, 2005).
  19. R. Luchowski, M. Szabelski, P. Sarkar, E. Apicella, K. Midde, S. Raut, J. Borejdo, Z. Gryczynski, and I. Gryczynski, “Fluorescence instrument response standards in two-photon time-resolved spectroscopy,” Appl. Spectrosc. 64(8), 918–922 (2010).
    [CrossRef] [PubMed]
  20. K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
    [PubMed]
  21. M. Wakita, G. Nishimura, and M. Tamura, “Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ,” J. Biochem. 118(6), 1151–1160 (1995).
    [PubMed]
  22. M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, and B. Selinger, “Delta-function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56(1), 14–22 (1985).
    [CrossRef]
  23. N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
    [CrossRef] [PubMed]
  24. A. Mooradian, “Photoluminescence of Metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
    [CrossRef]
  25. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
    [CrossRef]
  26. E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
    [CrossRef]
  27. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
    [CrossRef] [PubMed]
  28. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
    [CrossRef]
  29. S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111(1), 116–123 (2007).
    [CrossRef]
  30. O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson, “Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites,” J. Chem. Phys. 114(5), 1962–1965 (2001).
    [CrossRef]
  31. O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
    [CrossRef]
  32. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
    [CrossRef] [PubMed]
  33. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
    [CrossRef] [PubMed]
  34. S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
    [CrossRef] [PubMed]
  35. J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
    [CrossRef]
  36. H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
    [CrossRef] [PubMed]
  37. Y. A. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt. 15(2), 020504 (2010).
    [CrossRef] [PubMed]
  38. P. Matteini, F. Ratto, F. Rossi, S. Centi, L. Dei, and R. Pini, “Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4313–4316 (2010).
    [CrossRef] [PubMed]
  39. J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
    [CrossRef]
  40. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  41. F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanopart. Res. 12(6), 2029–2036 (2010).
    [CrossRef]
  42. L. F. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17(14), 3668–3672 (2005).
    [CrossRef]
  43. X. D. Xu and M. B. Cortie, “Shape change and color gamut in gold nanorods, dumbbells, and dog bones,” Adv. Funct. Mater. 16(16), 2170–2176 (2006).
    [CrossRef]
  44. C. B. Talbot, R. Patalay, I. H. Munro, H. G. Breunig, K. Konig, Y. Alexandrov, S. Warren, A. Chu, G. W. Stamp, M. A. A. Neil, P. M. W. French, and C. W. Dunsby, “A multispectral FLIM microscope for in-vivo imaging of skin cancer,” P. Ammasi, K. Karsten, and T. C. S. Peter, eds. (SPIE, 2011), p. 79032B.
  45. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
    [CrossRef]
  46. M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
    [CrossRef]
  47. R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
    [CrossRef] [PubMed]
  48. L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J.-X. Cheng, “Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity,” Angew. Chem. Int. Ed. Engl. 49(20), 3485–3488 (2010).
    [CrossRef] [PubMed]
  49. S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
    [CrossRef]
  50. S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 104(33), 7867–7870 (2000).
    [CrossRef]
  51. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
    [CrossRef] [PubMed]

2010 (5)

Y. A. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt. 15(2), 020504 (2010).
[CrossRef] [PubMed]

P. Matteini, F. Ratto, F. Rossi, S. Centi, L. Dei, and R. Pini, “Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4313–4316 (2010).
[CrossRef] [PubMed]

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanopart. Res. 12(6), 2029–2036 (2010).
[CrossRef]

L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J.-X. Cheng, “Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity,” Angew. Chem. Int. Ed. Engl. 49(20), 3485–3488 (2010).
[CrossRef] [PubMed]

R. Luchowski, M. Szabelski, P. Sarkar, E. Apicella, K. Midde, S. Raut, J. Borejdo, Z. Gryczynski, and I. Gryczynski, “Fluorescence instrument response standards in two-photon time-resolved spectroscopy,” Appl. Spectrosc. 64(8), 918–922 (2010).
[CrossRef] [PubMed]

2009 (3)

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[CrossRef] [PubMed]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

2008 (2)

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

2007 (4)

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111(1), 116–123 (2007).
[CrossRef]

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[CrossRef]

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
[CrossRef] [PubMed]

2006 (4)

X. D. Xu and M. B. Cortie, “Shape change and color gamut in gold nanorods, dumbbells, and dog bones,” Adv. Funct. Mater. 16(16), 2170–2176 (2006).
[CrossRef]

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[CrossRef] [PubMed]

J. A. Palero, H. S. de Bruijn, A. van der Ploeg-van den Heuvel, H. J. C. M. Sterenborg, and H. C. Gerritsen, “In vivo nonlinear spectral imaging in mouse skin,” Opt. Express 14(10), 4395–4402 (2006).
[CrossRef] [PubMed]

Y. Wu, W. Zheng, and J. Y. Qu, “Sensing cell metabolism by time-resolved autofluorescence,” Opt. Lett. 31(21), 3122–3124 (2006).
[CrossRef] [PubMed]

2005 (7)

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280(26), 25119–25126 (2005).
[CrossRef] [PubMed]

H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

L. F. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17(14), 3668–3672 (2005).
[CrossRef]

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[CrossRef] [PubMed]

2004 (2)

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[CrossRef]

D. K. Bird, K. W. Eliceiri, C. H. Fan, and J. G. White, “Simultaneous two-photon spectral and lifetime fluorescence microscopy,” Appl. Opt. 43(27), 5173–5182 (2004).
[CrossRef] [PubMed]

2003 (3)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
[CrossRef] [PubMed]

2002 (2)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, “Two-photon excitation and time-resolved fluorescence: 1. The proper response function for analysing single-photon counting experiments,” Chem. Phys. Lett. 354(5-6), 367–375 (2002).
[CrossRef]

2001 (1)

O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson, “Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites,” J. Chem. Phys. 114(5), 1962–1965 (2001).
[CrossRef]

2000 (4)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 104(33), 7867–7870 (2000).
[CrossRef]

1999 (1)

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[PubMed]

1997 (1)

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
[CrossRef] [PubMed]

1995 (2)

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
[CrossRef] [PubMed]

M. Wakita, G. Nishimura, and M. Tamura, “Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ,” J. Biochem. 118(6), 1151–1160 (1995).
[PubMed]

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1986 (2)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

D. Bebelaar, “Time response of various types of photomultipliers and its wavelength dependence in time-correlated single-photon counting with an ultimate resolution of 47 ps FWHM,” Rev. Sci. Instrum. 57(6), 1116–1125 (1986).
[CrossRef]

1985 (1)

M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, and B. Selinger, “Delta-function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56(1), 14–22 (1985).
[CrossRef]

1969 (1)

A. Mooradian, “Photoluminescence of Metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[CrossRef]

Altmeyer, P.

K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000).
[CrossRef]

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[PubMed]

Ameloot, M.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Apicella, E.

Babai, F.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
[CrossRef] [PubMed]

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[CrossRef] [PubMed]

Balassy, A.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
[CrossRef] [PubMed]

Balogh, L.

O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson, “Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites,” J. Chem. Phys. 114(5), 1962–1965 (2001).
[CrossRef]

Basaric, N.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Bebelaar, D.

D. Bebelaar, “Time response of various types of photomultipliers and its wavelength dependence in time-correlated single-photon counting with an ultimate resolution of 47 ps FWHM,” Rev. Sci. Instrum. 57(6), 1116–1125 (1986).
[CrossRef]

Bergstrom, F.

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, “Two-photon excitation and time-resolved fluorescence: 1. The proper response function for analysing single-photon counting experiments,” Chem. Phys. Lett. 354(5-6), 367–375 (2002).
[CrossRef]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

Biagioni, P.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Birch, D. J. S.

Y. A. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt. 15(2), 020504 (2010).
[CrossRef] [PubMed]

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[PubMed]

Bird, D. K.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
[CrossRef] [PubMed]

D. K. Bird, K. W. Eliceiri, C. H. Fan, and J. G. White, “Simultaneous two-photon spectral and lifetime fluorescence microscopy,” Appl. Opt. 43(27), 5173–5182 (2004).
[CrossRef] [PubMed]

Blanchard, L.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
[CrossRef] [PubMed]

Boens, N.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Borejdo, J.

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[CrossRef] [PubMed]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Bramall, L.

M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, and B. Selinger, “Delta-function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56(1), 14–22 (1985).
[CrossRef]

Brida, D.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Burda, C.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Butterfield, F. L.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

Caruso, F.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[CrossRef]

Celebrano, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Centi, S.

P. Matteini, F. Ratto, F. Rossi, S. Centi, L. Dei, and R. Pini, “Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4313–4316 (2010).
[CrossRef] [PubMed]

Cerullo, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Chen, J.

L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J.-X. Cheng, “Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity,” Angew. Chem. Int. Ed. Engl. 49(20), 3485–3488 (2010).
[CrossRef] [PubMed]

Chen, V. W.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

Chen, Y.

Y. A. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt. 15(2), 020504 (2010).
[CrossRef] [PubMed]

Cheng, J. X.

H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Cheng, J.-X.

L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J.-X. Cheng, “Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity,” Angew. Chem. Int. Ed. Engl. 49(20), 3485–3488 (2010).
[CrossRef] [PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Cicchi, R.

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

Cobley, C. M.

L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J.-X. Cheng, “Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity,” Angew. Chem. Int. Ed. Engl. 49(20), 3485–3488 (2010).
[CrossRef] [PubMed]

Cortie, M. B.

X. D. Xu and M. B. Cortie, “Shape change and color gamut in gold nanorods, dumbbells, and dog bones,” Adv. Funct. Mater. 16(16), 2170–2176 (2006).
[CrossRef]

de Bruijn, H. S.

De Giorgi, V.

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

Dei, L.

P. Matteini, F. Ratto, F. Rossi, S. Centi, L. Dei, and R. Pini, “Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4313–4316 (2010).
[CrossRef] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dimitrow, E.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[CrossRef] [PubMed]

Dulkeith, E.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[CrossRef]

Duò, L.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Durocher, G.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
[CrossRef] [PubMed]

Ehlers, A.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[CrossRef] [PubMed]

Ehlert, J.

K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000).
[CrossRef]

Eichelbaum, M.

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[CrossRef]

Eickhoff, J.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
[CrossRef] [PubMed]

Eliceiri, K. W.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
[CrossRef] [PubMed]

D. K. Bird, K. W. Eliceiri, C. H. Fan, and J. G. White, “Simultaneous two-photon spectral and lifetime fluorescence microscopy,” Appl. Opt. 43(27), 5173–5182 (2004).
[CrossRef] [PubMed]

el-Sayed, M. A.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[CrossRef] [PubMed]

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 104(33), 7867–7870 (2000).
[CrossRef]

Elsner, P.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[CrossRef] [PubMed]

Engelborghs, Y.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Eustis, S.

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[CrossRef] [PubMed]

Fan, C. H.

Farrer, R. A.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

Feldmann, J.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Finazzi, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Fourkas, J. T.

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Freyer, W.

K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000).
[CrossRef]

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[PubMed]

Gaboury, L.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
[CrossRef] [PubMed]

Gendron-Fitzpatrick, A.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
[CrossRef] [PubMed]

Gerritsen, H. C.

Gittins, D. I.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[CrossRef]

Goodson, T.

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson, “Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites,” J. Chem. Phys. 114(5), 1962–1965 (2001).
[CrossRef]

Gou, L. F.

L. F. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17(14), 3668–3672 (2005).
[CrossRef]

Grancini, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Gratton, E.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
[CrossRef] [PubMed]

Gryczynski, I.

R. Luchowski, M. Szabelski, P. Sarkar, E. Apicella, K. Midde, S. Raut, J. Borejdo, Z. Gryczynski, and I. Gryczynski, “Fluorescence instrument response standards in two-photon time-resolved spectroscopy,” Appl. Spectrosc. 64(8), 918–922 (2010).
[CrossRef] [PubMed]

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Gryczynski, Z.

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Guyot-Sionnest, P.

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111(1), 116–123 (2007).
[CrossRef]

Habenicht, A.

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, “Two-photon excitation and time-resolved fluorescence: 1. The proper response function for analysing single-photon counting experiments,” Chem. Phys. Lett. 354(5-6), 367–375 (2002).
[CrossRef]

He, W.

H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Hecht, B.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Heikal, A. A.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280(26), 25119–25126 (2005).
[CrossRef] [PubMed]

Hjelm, J.

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, “Two-photon excitation and time-resolved fluorescence: 1. The proper response function for analysing single-photon counting experiments,” Chem. Phys. Lett. 354(5-6), 367–375 (2002).
[CrossRef]

Hoffmann, K.

K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000).
[CrossRef]

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[PubMed]

Hofkens, J.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Huff, T. B.

H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Ibrahim, H.

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[CrossRef]

Imura, K.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

Ispasoiu, R. G.

O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson, “Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites,” J. Chem. Phys. 114(5), 1962–1965 (2001).
[CrossRef]

Jasaitis, A.

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

Johansson, L. B. A.

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, “Two-photon excitation and time-resolved fluorescence: 1. The proper response function for analysing single-photon counting experiments,” Chem. Phys. Lett. 354(5-6), 367–375 (2002).
[CrossRef]

Kaatz, M.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[CrossRef] [PubMed]

Kasischke, K. A.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280(26), 25119–25126 (2005).
[CrossRef] [PubMed]

Keely, P. J.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
[CrossRef] [PubMed]

Klar, T. A.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[CrossRef]

Koehler, M. J.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[CrossRef] [PubMed]

Koenig, K.

K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
[CrossRef] [PubMed]

König, K.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[CrossRef] [PubMed]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[CrossRef] [PubMed]

Krajcarski, D. T.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, and B. Selinger, “Delta-function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56(1), 14–22 (1985).
[CrossRef]

Lakowicz, J. R.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Lefèvre, J. P.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[CrossRef] [PubMed]

Leupold, D.

K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000).
[CrossRef]

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[PubMed]

Li, S.-L.

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

Lin, K.-Q.

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

Link, S.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 104(33), 7867–7870 (2000).
[CrossRef]

Liu, M.

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111(1), 116–123 (2007).
[CrossRef]

Liz-Marzan, L. M.

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

Lotti, T.

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

Low, P. S.

H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Lu, Y.-H.

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

Luchowski, R.

Luo, Z.-F.

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

Malak, H.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Massi, D.

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

Masters, B. R.

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
[CrossRef] [PubMed]

Mátéfi-Tempfli, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Mátéfi-Tempfli, S.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Matteini, P.

P. Matteini, F. Ratto, F. Rossi, S. Centi, L. Dei, and R. Pini, “Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4313–4316 (2010).
[CrossRef] [PubMed]

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanopart. Res. 12(6), 2029–2036 (2010).
[CrossRef]

Mayya, K. S.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[CrossRef]

Midde, K.

Ming, H.

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

Miura, A.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Mohamed, M. B.

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

Mooradian, A.

A. Mooradian, “Photoluminescence of Metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[CrossRef]

Mukhtar, E.

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, “Two-photon excitation and time-resolved fluorescence: 1. The proper response function for analysing single-photon counting experiments,” Chem. Phys. Lett. 354(5-6), 367–375 (2002).
[CrossRef]

Mulvaney, P.

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Murphy, C. J.

L. F. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17(14), 3668–3672 (2005).
[CrossRef]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[CrossRef]

Nikoobakht, B.

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

Nishimura, G.

M. Wakita, G. Nishimura, and M. Tamura, “Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ,” J. Biochem. 118(6), 1151–1160 (1995).
[PubMed]

Norgauer, J.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[CrossRef] [PubMed]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

O’Connor, R. P.

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

Okamoto, H.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

Pal, P.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
[CrossRef] [PubMed]

Palero, J. A.

Park, S.

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111(1), 116–123 (2007).
[CrossRef]

Pavone, F. S.

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

Pelton, M.

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111(1), 116–123 (2007).
[CrossRef]

Pérez-Juste, J.

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

Phillips, D.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Pini, R.

P. Matteini, F. Ratto, F. Rossi, S. Centi, L. Dei, and R. Pini, “Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4313–4316 (2010).
[CrossRef] [PubMed]

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanopart. Res. 12(6), 2029–2036 (2010).
[CrossRef]

Pouget, J.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Pradhan, A.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
[CrossRef] [PubMed]

Qin, W. W.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Qu, J. Y.

Rademann, K.

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[CrossRef]

Ramanujam, N.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
[CrossRef] [PubMed]

Ratto, F.

P. Matteini, F. Ratto, F. Rossi, S. Centi, L. Dei, and R. Pini, “Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4313–4316 (2010).
[CrossRef] [PubMed]

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanopart. Res. 12(6), 2029–2036 (2010).
[CrossRef]

Raut, S.

Riching, K. M.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
[CrossRef] [PubMed]

Riemann, I.

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[CrossRef] [PubMed]

K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
[CrossRef] [PubMed]

Rodriguez-Gonzalez, B.

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

Rossi, F.

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanopart. Res. 12(6), 2029–2036 (2010).
[CrossRef]

P. Matteini, F. Ratto, F. Rossi, S. Centi, L. Dei, and R. Pini, “Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4313–4316 (2010).
[CrossRef] [PubMed]

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[CrossRef] [PubMed]

Rumbles, G.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Sacconi, L.

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

Sarkar, P.

Savoini, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Scherer, N. F.

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111(1), 116–123 (2007).
[CrossRef]

Schmidt, B. E.

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[CrossRef]

Selinger, B.

M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, and B. Selinger, “Delta-function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56(1), 14–22 (1985).
[CrossRef]

Sestini, S.

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Sillen, A.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Silva, N. D.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Skala, M. C.

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
[CrossRef] [PubMed]

So, P. T. C.

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Stücker, M.

K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000).
[CrossRef]

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[PubMed]

Szabelski, M.

Szabo, A. G.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, and B. Selinger, “Delta-function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56(1), 14–22 (1985).
[CrossRef]

Tamai, N.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Tamura, M.

M. Wakita, G. Nishimura, and M. Tamura, “Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ,” J. Biochem. 118(6), 1151–1160 (1995).
[PubMed]

Tao, J.

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

Teuchner, K.

K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000).
[CrossRef]

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[PubMed]

Tomalia, D.

O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson, “Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites,” J. Chem. Phys. 114(5), 1962–1965 (2001).
[CrossRef]

Tong, L.

L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J.-X. Cheng, “Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity,” Angew. Chem. Int. Ed. Engl. 49(20), 3485–3488 (2010).
[CrossRef] [PubMed]

Valeur, B.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

van der Ploeg-van den Heuvel, A.

van Hoek, A.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

vandeVen, M.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Varnavski, O.

O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson, “Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites,” J. Chem. Phys. 114(5), 1962–1965 (2001).
[CrossRef]

Varnavski, O. P.

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

Villeneuve, L.

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
[CrossRef] [PubMed]

Vishwasrao, H. D.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280(26), 25119–25126 (2005).
[CrossRef] [PubMed]

Visser, A. J.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Volkmer, A.

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[PubMed]

Volkov, V.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

von Plessen, G.

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[CrossRef]

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wakita, M.

M. Wakita, G. Nishimura, and M. Tamura, “Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ,” J. Biochem. 118(6), 1151–1160 (1995).
[PubMed]

Wang, H. F.

H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wang, P.

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

Wang, Z. L.

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 104(33), 7867–7870 (2000).
[CrossRef]

Webb, W. W.

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280(26), 25119–25126 (2005).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wei, A.

H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

White, J. G.

Wiederrecht, G. P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[CrossRef] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Willaert, K.

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

Wu, Y.

Xia, Y.

L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J.-X. Cheng, “Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity,” Angew. Chem. Int. Ed. Engl. 49(20), 3485–3488 (2010).
[CrossRef] [PubMed]

Xie, Z.-G.

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

Xu, X. D.

X. D. Xu and M. B. Cortie, “Shape change and color gamut in gold nanorods, dumbbells, and dog bones,” Adv. Funct. Mater. 16(16), 2170–2176 (2006).
[CrossRef]

Yu, J.

Y. A. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt. 15(2), 020504 (2010).
[CrossRef] [PubMed]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Zhang, Y. A.

Y. A. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt. 15(2), 020504 (2010).
[CrossRef] [PubMed]

Zheng, R.-S.

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

Zheng, W.

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Zuker, M.

M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, and B. Selinger, “Delta-function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56(1), 14–22 (1985).
[CrossRef]

Zweifel, D. A.

H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Adv. Funct. Mater. (2)

J. Pérez-Juste, B. Rodriguez-Gonzalez, P. Mulvaney, and L. M. Liz-Marzan, “Optical control and patterning of gold-nanorod-poly(vinyl alcohol) nanocomposite films,” Adv. Funct. Mater. 15(7), 1065–1071 (2005).
[CrossRef]

X. D. Xu and M. B. Cortie, “Shape change and color gamut in gold nanorods, dumbbells, and dog bones,” Adv. Funct. Mater. 16(16), 2170–2176 (2006).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

P. Matteini, F. Ratto, F. Rossi, S. Centi, L. Dei, and R. Pini, “Chitosan films doped with gold nanorods as laser-activatable hybrid bioadhesives,” Adv. Mater. (Deerfield Beach Fla.) 22(38), 4313–4316 (2010).
[CrossRef] [PubMed]

Anal. Chem. (1)

N. Boens, W. W. Qin, N. Basarić, J. Hofkens, M. Ameloot, J. Pouget, J. P. Lefèvre, B. Valeur, E. Gratton, M. vandeVen, N. D. Silva, Y. Engelborghs, K. Willaert, A. Sillen, G. Rumbles, D. Phillips, A. J. Visser, A. van Hoek, J. R. Lakowicz, H. Malak, I. Gryczynski, A. G. Szabo, D. T. Krajcarski, N. Tamai, and A. Miura, “Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy,” Anal. Chem. 79(5), 2137–2149 (2007).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. Tong, C. M. Cobley, J. Chen, Y. Xia, and J.-X. Cheng, “Bright three-photon luminescence from gold/silver alloyed nanostructures for bioimaging with negligible photothermal toxicity,” Angew. Chem. Int. Ed. Engl. 49(20), 3485–3488 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

R. Cicchi, L. Sacconi, A. Jasaitis, R. P. O’Connor, D. Massi, S. Sestini, V. De Giorgi, T. Lotti, and F. S. Pavone, “Multidimensional custom-made non-linear microscope: from ex-vivo to in-vivo imaging,” Appl. Phys. B 92(3), 359–365 (2008).
[CrossRef]

Appl. Spectrosc. (1)

Biophys. J. (1)

B. R. Masters, P. T. C. So, and E. Gratton, “Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin,” Biophys. J. 72(6), 2405–2412 (1997).
[CrossRef] [PubMed]

Chem. Mater. (1)

L. F. Gou and C. J. Murphy, “Fine-tuning the shape of gold nanorods,” Chem. Mater. 17(14), 3668–3672 (2005).
[CrossRef]

Chem. Phys. Lett. (2)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The 'lightning' gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[CrossRef]

A. Habenicht, J. Hjelm, E. Mukhtar, F. Bergstrom, and L. B. A. Johansson, “Two-photon excitation and time-resolved fluorescence: 1. The proper response function for analysing single-photon counting experiments,” Chem. Phys. Lett. 354(5-6), 367–375 (2002).
[CrossRef]

Chem. Soc. Rev. (1)

S. Eustis and M. A. el-Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev. 35(3), 209–217 (2006).
[CrossRef] [PubMed]

Chin. Phys. Lett. (1)

J. Tao, Y.-H. Lu, R.-S. Zheng, K.-Q. Lin, Z.-G. Xie, Z.-F. Luo, S.-L. Li, P. Wang, and H. Ming, “Effect of aspect ratio distribution on localized surface plasmon resonance extinction spectrum of gold nanorods,” Chin. Phys. Lett. 25(12), 4459–4462 (2008).
[CrossRef]

Exp. Dermatol. (1)

E. Dimitrow, I. Riemann, A. Ehlers, M. J. Koehler, J. Norgauer, P. Elsner, K. König, and M. Kaatz, “Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis,” Exp. Dermatol. 18(6), 509–515 (2009).
[CrossRef] [PubMed]

J. Biochem. (1)

M. Wakita, G. Nishimura, and M. Tamura, “Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ,” J. Biochem. 118(6), 1151–1160 (1995).
[PubMed]

J. Biol. Chem. (1)

H. D. Vishwasrao, A. A. Heikal, K. A. Kasischke, and W. W. Webb, “Conformational dependence of intracellular NADH on metabolic state revealed by associated fluorescence anisotropy,” J. Biol. Chem. 280(26), 25119–25126 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt. (3)

K. Koenig and I. Riemann, “High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution,” J. Biomed. Opt. 8(3), 432–439 (2003).
[CrossRef] [PubMed]

M. C. Skala, K. M. Riching, D. K. Bird, A. Gendron-Fitzpatrick, J. Eickhoff, K. W. Eliceiri, P. J. Keely, and N. Ramanujam, “In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia,” J. Biomed. Opt. 12(2), 024014 (2007).
[CrossRef] [PubMed]

Y. A. Zhang, J. Yu, D. J. S. Birch, and Y. Chen, “Gold nanorods for fluorescence lifetime imaging in biology,” J. Biomed. Opt. 15(2), 020504 (2010).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

O. Varnavski, R. G. Ispasoiu, L. Balogh, D. Tomalia, and T. Goodson, “Ultrafast time-resolved photoluminescence from novel metal-dendrimer nanocomposites,” J. Chem. Phys. 114(5), 1962–1965 (2001).
[CrossRef]

J. Fluoresc. (1)

K. Teuchner, J. Ehlert, W. Freyer, D. Leupold, P. Altmeyer, M. Stücker, and K. Hoffmann, “Fluorescence Studies of melanin by stepwise two-photon femtosecond laser excitation,” J. Fluoresc. 10(3), 275–282 (2000).
[CrossRef]

J. Nanopart. Res. (1)

F. Ratto, P. Matteini, F. Rossi, and R. Pini, “Size and shape control in the overgrowth of gold nanorods,” J. Nanopart. Res. 12(6), 2029–2036 (2010).
[CrossRef]

J. Photochem. Photobiol. B (1)

A. Pradhan, P. Pal, G. Durocher, L. Villeneuve, A. Balassy, F. Babai, L. Gaboury, and L. Blanchard, “Steady state and time-resolved fluorescence properties of metastatic and non-metastatic malignant cells from different species,” J. Photochem. Photobiol. B 31(3), 101–112 (1995).
[CrossRef] [PubMed]

J. Phys. Chem. B (4)

S. Link, C. Burda, B. Nikoobakht, and M. A. El-Sayed, “Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses,” J. Phys. Chem. B 104(26), 6152–6163 (2000).
[CrossRef]

S. Link, Z. L. Wang, and M. A. El-Sayed, “How does a gold nanorod melt?” J. Phys. Chem. B 104(33), 7867–7870 (2000).
[CrossRef]

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B 109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

S. Park, M. Pelton, M. Liu, P. Guyot-Sionnest, and N. F. Scherer, “Ultrafast resonant dynamics of surface plasmons in gold nanorods,” J. Phys. Chem. C 111(1), 116–123 (2007).
[CrossRef]

Nano Lett. (1)

R. A. Farrer, F. L. Butterfield, V. W. Chen, and J. T. Fourkas, “Highly efficient multiphoton-absorption-induced luminescence from gold nanoparticles,” Nano Lett. 5(6), 1139–1142 (2005).
[CrossRef] [PubMed]

Nanotechnology (1)

M. Eichelbaum, B. E. Schmidt, H. Ibrahim, and K. Rademann, “Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers,” Nanotechnology 18(35), 355702 (2007).
[CrossRef]

Nature (1)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Photochem. Photobiol. (1)

K. Teuchner, W. Freyer, D. Leupold, A. Volkmer, D. J. S. Birch, P. Altmeyer, M. Stücker, and K. Hoffmann, “Femtosecond two-photon excited fluorescence of melanin,” Photochem. Photobiol. 70(2), 146–151 (1999).
[PubMed]

Phys. Rev. B (3)

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68(11), 115433 (2003).
[CrossRef]

E. Dulkeith, T. Niedereichholz, T. A. Klar, J. Feldmann, G. von Plessen, D. I. Gittins, K. S. Mayya, and F. Caruso, “Plasmon emission in photoexcited gold nanoparticles,” Phys. Rev. B 70(20), 205424 (2004).
[CrossRef]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B 80(4), 045411 (2009).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter 33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett. 88(7), 077402 (2002).
[CrossRef] [PubMed]

A. Mooradian, “Photoluminescence of Metals,” Phys. Rev. Lett. 22(5), 185–187 (1969).
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, “Surface plasmon characteristics of tunable photoluminescence in single gold nanorods,” Phys. Rev. Lett. 95(26), 267405 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J. X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A. 102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

M. Zuker, A. G. Szabo, L. Bramall, D. T. Krajcarski, and B. Selinger, “Delta-function convolution method (DFCM) for fluorescence decay experiments,” Rev. Sci. Instrum. 56(1), 14–22 (1985).
[CrossRef]

D. Bebelaar, “Time response of various types of photomultipliers and its wavelength dependence in time-correlated single-photon counting with an ultimate resolution of 47 ps FWHM,” Rev. Sci. Instrum. 57(6), 1116–1125 (1986).
[CrossRef]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (5)

W. Becker, A. Bergmann, E. Haustein, Z. Petrasek, P. Schwille, C. Biskup, T. Anhut, I. Riemann, and K. Koenig, “Fluorescence lifetime images and correlation spectra obtained by multi-dimensional TCSPC,” in Multiphoton Microscopy in the Biomedical Sciences V, A. Periasamy, and P. T. C. So, eds. (SPIE, Bellingham, 2005), pp. 144–151.

C. B. Talbot, R. Patalay, I. H. Munro, H. G. Breunig, K. Konig, Y. Alexandrov, S. Warren, A. Chu, G. W. Stamp, M. A. A. Neil, P. M. W. French, and C. W. Dunsby, “A multispectral FLIM microscope for in-vivo imaging of skin cancer,” P. Ammasi, K. Karsten, and T. C. S. Peter, eds. (SPIE, 2011), p. 79032B.

R. Krahl, A. Bülter, and F. Koberling, “Performance of the Micro Photon Devices PDM 50CT SPAD detector with PicoQuant TCSPC systems” Technical Note (PicoQuant GmbH, 2005).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).

W. Becker, “Recording the instrument response function of a multiphoton FLIM sytem,” Becker & Hickl GmbH Application Note irf-mp-04.doc (2008), http://www.becker-hickl.de/pdf/irf-mp04.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Showing a schematic of the DermaInspect and the detectors. (a) shows a simplified diagram of the excitation path. The DermaInspect has a slider in the emission path which allows the collected fluorescence to be directed to one of three different detectors: an intensity PMT, the spectrometer (b) or the 4-channel TCSPC detector (c). The spectral response of the 4-channel detector is shown in (d).

Fig. 2
Fig. 2

(a) Extinction and (b) emission spectra of the gold nanorods. The extinction spectrum was acquired using the nanorods embedded into a thin film, rather than in solution and therefore the extinction coefficient is in arbitrary units.

Fig. 3
Fig. 3

(a) Comparison of the temporal response of luminescence from the gold nanorods excited at 840 nm to that of the SHG signal from urea crystals in the short wavelength channel (360-425 nm) of the multispectral TCSPC detector. (b) the wavelength dependence of the temporal shift (the color shift) of the SHG signal relative to the nanorod luminescence in the short wavelength channel. The error bars are estimates obtained from numerical simulations, see section 2.4.

Fig. 4
Fig. 4

Plot of the gold nanorod luminescence count rate as a function of excitation intensity at the sample plane. The fit line was calculated using only the first four data points.

Fig. 5
Fig. 5

Showing the temporal response of the system measured using the nanorod sample over a wide range of excitation wavelengths measured with the 4-channel detector.

Fig. 6
Fig. 6

Showing FLIM data acquired from ex vivo tissue containing a nBCC excised from the chest. The excitation wavelength was 760 nm and the emission channel for the images shown in (a) & (b) was 425-515 nm. (a) shows the total intensity image with a field of view of 180 × 180 µm2. (b) shows a FLIM image of the single exponential lifetime map following fitting of the data using a nanorod IRF, where the lifetime image has been merged with the intensity image. The scale bar in (a) and (b) is 40 µm. Data from the cell outlined in red in (a) was spatially binned and fitted in three channels (we did not observe a strong fluorescence signal in the fourth channel). The raw data, IRFs and reduced χ2 values are shown in (c-e).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F ( t ) = { a 1 exp ( t / τ 1 ) + a 2 exp ( t / τ 2 )   for t 0 0   for  t < 0
χ 2 = ( F I R F d a t a ) 2 F I R F

Metrics