Abstract

The capabilities of using gold nanoparticle based surface-enhanced Raman spectroscopy (SERS) to obtain blood serum biochemical information for non-invasive colorectal cancer detection were presented in this paper. SERS measurements were performed on two groups of blood serum samples: one group from patients (n = 38) with pathologically confirmed colorectal cancer and the other group from healthy volunteers (control subjects, n = 45). Tentative assignments of the Raman bands in the measured SERS spectra suggested interesting cancer specific biomolecular changes, including an increase in the relative amounts of nucleic acid, a decrease in the percentage of saccharide and proteins contents in the blood serum of colorectal cancer patients as compared to that of healthy subjects. Both empirical approach and multivariate statistical techniques, including principal components analysis (PCA) and linear discriminant analysis (LDA) were employed to develop effective diagnostic algorithms for classification of SERS spectra between normal and colorectal cancer serum. The empirical diagnostic algorithm based on the ratio of the SERS peak intensity at 725 cm−1 for adenine to the peak intensity at 638 cm−1 for tyrosine achieved a diagnostic sensitivity of 68.4% and specificity of 95.6%, whereas the diagnostic algorithms based on PCA-LDA yielded a diagnostic sensitivity of 97.4% and specificity of 100% for separating cancerous samples from normal samples. Receiver operating characteristic (ROC) curves further confirmed the effectiveness of the diagnostic algorithm based on PCA-LDA technique. The results from this exploratory study demonstrated that gold nanoparticle based SERS serum analysis combined with PCA-LDA has tremendous potential for the non-invasive detection of colorectal cancers.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. P. Xavier, C. F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells,” Cancer Lett. 281(2), 162–170 (2009).
    [CrossRef] [PubMed]
  2. S. J. Winawer, “Colorectal cancer screening,” Best Pract. Res. Clin. Gastroenterol. 21(6), 1031–1048 (2007).
    [CrossRef] [PubMed]
  3. R. Labianca, G. D. Beretta, S. Mosconi, L. Milesi, and M. A. Pessi, “Colorectal cancer: screening,” Ann. Oncol. 16(Suppl 2), ii127–ii132 (2005).
    [CrossRef] [PubMed]
  4. R. M. McLoughlin and C. A. O’Morain, “Colorectal cancer screening,” World J. Gastroenterol. 12(42), 6747–6750 (2006).
    [PubMed]
  5. A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta 76(1), 1–8 (2008).
    [CrossRef] [PubMed]
  6. Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
    [CrossRef] [PubMed]
  7. S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” Br. J. Cancer 98(2), 457–465 (2008).
    [CrossRef] [PubMed]
  8. S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy—from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
    [CrossRef] [PubMed]
  9. S. Devpura, J. Thakur, F. Sarkar, W. Sakr, V. Naik, and R. Naik, “Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vib. Spectrosc. 53(2), 227–232 (2010).
    [CrossRef]
  10. U. Utzinger, D. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55(8), 955–959 (2001).
    [CrossRef]
  11. S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
    [CrossRef] [PubMed]
  12. K. Kneipp, A. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. Shafer-Peltier, J. Motz, R. Dasari, and M. Feld, “Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles,” Appl. Spectrosc. 56(2), 150–154 (2002).
    [CrossRef]
  13. M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [CrossRef]
  14. K. Kneipp and M. Moskovits, “Surface-enhanced raman scattering,” Phys. Today 60(11), 40–46 (2007).
    [CrossRef]
  15. Y. Badr and M. A. Mahmoud, “Effect of silver nanowires on the surface-enhanced Raman spectra (SERS) of the RNA bases,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 63(3), 639–645 (2006).
    [CrossRef] [PubMed]
  16. Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007).
    [CrossRef] [PubMed]
  17. Z. S. Wu, G. Z. Zhou, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering,” Talanta 70(3), 533–539 (2006).
    [CrossRef] [PubMed]
  18. J. D. Guingab, B. Lauly, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid,” Talanta 74(2), 271–274 (2007).
    [CrossRef] [PubMed]
  19. M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
    [CrossRef] [PubMed]
  20. J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008).
    [CrossRef] [PubMed]
  21. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
    [CrossRef] [PubMed]
  22. S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
    [CrossRef] [PubMed]
  23. D. Rohleder, W. Kiefer, and W. Petrich, “Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy,” Analyst (Lond.) 129(10), 906–911 (2004).
    [CrossRef] [PubMed]
  24. S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
    [CrossRef] [PubMed]
  25. H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B 94(4), 667–672 (2009).
    [CrossRef]
  26. X. Huang and M. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010).
    [CrossRef]
  27. S. Feng, J. Lin, M. Cheng, Y. Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63(10), 1089–1094 (2009).
    [CrossRef] [PubMed]
  28. K. Grabar, R. Freeman, M. Hommer, and M. Natan, “Preparation and characterization of Au colloid monolayers,” Anal. Chem. 67(4), 735–743 (1995).
    [CrossRef]
  29. R. Liu, X. Zi, Y. Kang, M. Si, and Y. Wu, “Surface-enhanced Raman scattering study of human serum on PVA Ag nanofilm prepared by using electrostatic self-assembly,” J. Raman Spectrosc. 42(2), 137–144 (2011).
    [CrossRef]
  30. J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006).
    [CrossRef] [PubMed]
  31. Z. Movasaghi, S. Rehman, and I. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
    [CrossRef]
  32. J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
    [CrossRef] [PubMed]
  33. H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009).
    [CrossRef]
  34. L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, “In vivo fluorescence spectroscopy of nonmelanoma skin cancer,” Photochem. Photobiol. 73(2), 178–183 (2001).
    [CrossRef] [PubMed]
  35. E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, “Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance,” Mutat. Res. 635(2-3), 105–117 (2007).
    [CrossRef] [PubMed]
  36. E. Benedetti, E. Bramanti, F. Papineschi, I. Rossi, and E. Benedetti, “Determination of the relative amount of nucleic acids and proteins in leukemic and normal lymphocytes by means of Fourier transform infrared microspectroscopy,” Appl. Spectrosc. 51(6), 792–797 (1997).
    [CrossRef]
  37. C. P. Schultz, K. Z. Liu, J. B. Johnston, and H. H. Mantsch, “Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes,” J. Mol. Struct. 408-409, 253–256 (1997).
    [CrossRef]
  38. I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
    [CrossRef]
  39. N. A. Obuchowski, “Receiver operating characteristic curves and their use in radiology,” Radiology 229(1), 3–8 (2003).
    [CrossRef] [PubMed]
  40. N. A. Obuchowski, M. L. Lieber, and F. H. Wians., “ROC curves in clinical chemistry: uses, misuses, and possible solutions,” Clin. Chem. 50(7), 1118–1125 (2004).
    [CrossRef] [PubMed]

2011 (2)

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[CrossRef] [PubMed]

R. Liu, X. Zi, Y. Kang, M. Si, and Y. Wu, “Surface-enhanced Raman scattering study of human serum on PVA Ag nanofilm prepared by using electrostatic self-assembly,” J. Raman Spectrosc. 42(2), 137–144 (2011).
[CrossRef]

2010 (3)

X. Huang and M. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010).
[CrossRef]

S. Devpura, J. Thakur, F. Sarkar, W. Sakr, V. Naik, and R. Naik, “Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vib. Spectrosc. 53(2), 227–232 (2010).
[CrossRef]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

2009 (6)

C. P. Xavier, C. F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells,” Cancer Lett. 281(2), 162–170 (2009).
[CrossRef] [PubMed]

S. Feng, J. Lin, M. Cheng, Y. Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63(10), 1089–1094 (2009).
[CrossRef] [PubMed]

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B 94(4), 667–672 (2009).
[CrossRef]

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009).
[CrossRef]

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy—from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[CrossRef] [PubMed]

2008 (3)

J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008).
[CrossRef] [PubMed]

A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta 76(1), 1–8 (2008).
[CrossRef] [PubMed]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” Br. J. Cancer 98(2), 457–465 (2008).
[CrossRef] [PubMed]

2007 (8)

S. J. Winawer, “Colorectal cancer screening,” Best Pract. Res. Clin. Gastroenterol. 21(6), 1031–1048 (2007).
[CrossRef] [PubMed]

K. Kneipp and M. Moskovits, “Surface-enhanced raman scattering,” Phys. Today 60(11), 40–46 (2007).
[CrossRef]

Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007).
[CrossRef] [PubMed]

J. D. Guingab, B. Lauly, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid,” Talanta 74(2), 271–274 (2007).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, “Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance,” Mutat. Res. 635(2-3), 105–117 (2007).
[CrossRef] [PubMed]

Z. Movasaghi, S. Rehman, and I. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[CrossRef]

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
[CrossRef] [PubMed]

2006 (4)

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006).
[CrossRef] [PubMed]

Z. S. Wu, G. Z. Zhou, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering,” Talanta 70(3), 533–539 (2006).
[CrossRef] [PubMed]

Y. Badr and M. A. Mahmoud, “Effect of silver nanowires on the surface-enhanced Raman spectra (SERS) of the RNA bases,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 63(3), 639–645 (2006).
[CrossRef] [PubMed]

R. M. McLoughlin and C. A. O’Morain, “Colorectal cancer screening,” World J. Gastroenterol. 12(42), 6747–6750 (2006).
[PubMed]

2005 (2)

R. Labianca, G. D. Beretta, S. Mosconi, L. Milesi, and M. A. Pessi, “Colorectal cancer: screening,” Ann. Oncol. 16(Suppl 2), ii127–ii132 (2005).
[CrossRef] [PubMed]

I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
[CrossRef]

2004 (2)

N. A. Obuchowski, M. L. Lieber, and F. H. Wians., “ROC curves in clinical chemistry: uses, misuses, and possible solutions,” Clin. Chem. 50(7), 1118–1125 (2004).
[CrossRef] [PubMed]

D. Rohleder, W. Kiefer, and W. Petrich, “Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy,” Analyst (Lond.) 129(10), 906–911 (2004).
[CrossRef] [PubMed]

2003 (3)

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[CrossRef] [PubMed]

M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
[CrossRef] [PubMed]

N. A. Obuchowski, “Receiver operating characteristic curves and their use in radiology,” Radiology 229(1), 3–8 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (2)

U. Utzinger, D. Heintzelman, A. Mahadevan-Jansen, A. Malpica, M. Follen, and R. Richards-Kortum, “Near-infrared Raman spectroscopy for in vivo detection of cervical precancers,” Appl. Spectrosc. 55(8), 955–959 (2001).
[CrossRef]

L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, “In vivo fluorescence spectroscopy of nonmelanoma skin cancer,” Photochem. Photobiol. 73(2), 178–183 (2001).
[CrossRef] [PubMed]

1997 (2)

1995 (1)

K. Grabar, R. Freeman, M. Hommer, and M. Natan, “Preparation and characterization of Au colloid monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[CrossRef]

1974 (1)

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Ai, M.

H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009).
[CrossRef]

Badizadegan, K.

Badr, Y.

Y. Badr and M. A. Mahmoud, “Effect of silver nanowires on the surface-enhanced Raman spectra (SERS) of the RNA bases,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 63(3), 639–645 (2006).
[CrossRef] [PubMed]

Ban, G.

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B 94(4), 667–672 (2009).
[CrossRef]

Barbosa-García, O.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
[CrossRef] [PubMed]

Benedetti, E.

Beretta, G. D.

R. Labianca, G. D. Beretta, S. Mosconi, L. Milesi, and M. A. Pessi, “Colorectal cancer: screening,” Ann. Oncol. 16(Suppl 2), ii127–ii132 (2005).
[CrossRef] [PubMed]

Bisson, I.

I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
[CrossRef]

Boone, C.

Bramanti, E.

Brancaleon, L.

L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, “In vivo fluorescence spectroscopy of nonmelanoma skin cancer,” Photochem. Photobiol. 73(2), 178–183 (2001).
[CrossRef] [PubMed]

Caboux, E.

E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, “Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance,” Mutat. Res. 635(2-3), 105–117 (2007).
[CrossRef] [PubMed]

Chan, J. W.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006).
[CrossRef] [PubMed]

Chen, G.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

S. Feng, J. Lin, M. Cheng, Y. Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63(10), 1089–1094 (2009).
[CrossRef] [PubMed]

Chen, J.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[CrossRef] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

Chen, R.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[CrossRef] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

S. Feng, J. Lin, M. Cheng, Y. Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63(10), 1089–1094 (2009).
[CrossRef] [PubMed]

Cheng, M.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

S. Feng, J. Lin, M. Cheng, Y. Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63(10), 1089–1094 (2009).
[CrossRef] [PubMed]

Chon, H.

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

Choo, J.

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

Culha, M.

M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
[CrossRef] [PubMed]

Dasari, R.

Devpura, S.

S. Devpura, J. Thakur, F. Sarkar, W. Sakr, V. Naik, and R. Naik, “Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vib. Spectrosc. 53(2), 227–232 (2010).
[CrossRef]

Dluhy, R. A.

J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008).
[CrossRef] [PubMed]

Dong, R.

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B 94(4), 667–672 (2009).
[CrossRef]

Driskell, J. D.

J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008).
[CrossRef] [PubMed]

Durkin, A. J.

L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, “In vivo fluorescence spectroscopy of nonmelanoma skin cancer,” Photochem. Photobiol. 73(2), 178–183 (2001).
[CrossRef] [PubMed]

El-Sayed, I. H.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

El-Sayed, M.

X. Huang and M. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010).
[CrossRef]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

Fallon, J. D.

L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, “In vivo fluorescence spectroscopy of nonmelanoma skin cancer,” Photochem. Photobiol. 73(2), 178–183 (2001).
[CrossRef] [PubMed]

Feld, M.

Feng, S.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[CrossRef] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

S. Feng, J. Lin, M. Cheng, Y. Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63(10), 1089–1094 (2009).
[CrossRef] [PubMed]

Fernandes-Ferreira, M.

C. P. Xavier, C. F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells,” Cancer Lett. 281(2), 162–170 (2009).
[CrossRef] [PubMed]

Fleischmann, M.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Follen, M.

Frausto-Reyes, C.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
[CrossRef] [PubMed]

Freeman, R.

K. Grabar, R. Freeman, M. Hommer, and M. Natan, “Preparation and characterization of Au colloid monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[CrossRef]

Gong, J. L.

Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007).
[CrossRef] [PubMed]

González-Trujillo, J. L.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
[CrossRef] [PubMed]

Gormally, E.

E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, “Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance,” Mutat. Res. 635(2-3), 105–117 (2007).
[CrossRef] [PubMed]

Grabar, K.

K. Grabar, R. Freeman, M. Hommer, and M. Natan, “Preparation and characterization of Au colloid monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[CrossRef]

Guingab, J. D.

J. D. Guingab, B. Lauly, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid,” Talanta 74(2), 271–274 (2007).
[CrossRef] [PubMed]

Gutiérrez-Juárez, G.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
[CrossRef] [PubMed]

Hainaut, P.

E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, “Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance,” Mutat. Res. 635(2-3), 105–117 (2007).
[CrossRef] [PubMed]

Haka, A.

Han, H.

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B 94(4), 667–672 (2009).
[CrossRef]

He, B.

H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009).
[CrossRef]

Heintzelman, D.

Hench, L.

I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
[CrossRef]

Hendra, P.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Ho, K. Y.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” Br. J. Cancer 98(2), 457–465 (2008).
[CrossRef] [PubMed]

Hommer, M.

K. Grabar, R. Freeman, M. Hommer, and M. Natan, “Preparation and characterization of Au colloid monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[CrossRef]

Huang, X.

X. Huang and M. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010).
[CrossRef]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

Huang, Y.

Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007).
[CrossRef] [PubMed]

Huang, Z.

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

S. Feng, J. Lin, M. Cheng, Y. Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63(10), 1089–1094 (2009).
[CrossRef] [PubMed]

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” Br. J. Cancer 98(2), 457–465 (2008).
[CrossRef] [PubMed]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[CrossRef] [PubMed]

Huerta-Franco, R.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
[CrossRef] [PubMed]

Huser, T.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy—from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[CrossRef] [PubMed]

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006).
[CrossRef] [PubMed]

Ihara, K.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006).
[CrossRef] [PubMed]

Jell, G.

I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
[CrossRef]

Jiang, J. H.

Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007).
[CrossRef] [PubMed]

Z. S. Wu, G. Z. Zhou, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering,” Talanta 70(3), 533–539 (2006).
[CrossRef] [PubMed]

Johnston, J. B.

C. P. Schultz, K. Z. Liu, J. B. Johnston, and H. H. Mantsch, “Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes,” J. Mol. Struct. 408-409, 253–256 (1997).
[CrossRef]

Jokela, S.

J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008).
[CrossRef] [PubMed]

Jones, L. P.

J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008).
[CrossRef] [PubMed]

Kang, Y.

R. Liu, X. Zi, Y. Kang, M. Si, and Y. Wu, “Surface-enhanced Raman scattering study of human serum on PVA Ag nanofilm prepared by using electrostatic self-assembly,” J. Raman Spectrosc. 42(2), 137–144 (2011).
[CrossRef]

Kiefer, W.

D. Rohleder, W. Kiefer, and W. Petrich, “Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy,” Analyst (Lond.) 129(10), 906–911 (2004).
[CrossRef] [PubMed]

Kneipp, H.

Kneipp, K.

Kollias, N.

L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, “In vivo fluorescence spectroscopy of nonmelanoma skin cancer,” Photochem. Photobiol. 73(2), 178–183 (2001).
[CrossRef] [PubMed]

Kudelski, A.

A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta 76(1), 1–8 (2008).
[CrossRef] [PubMed]

Labianca, R.

R. Labianca, G. D. Beretta, S. Mosconi, L. Milesi, and M. A. Pessi, “Colorectal cancer: screening,” Ann. Oncol. 16(Suppl 2), ii127–ii132 (2005).
[CrossRef] [PubMed]

Lam, S.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[CrossRef] [PubMed]

Lane, S. M.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006).
[CrossRef] [PubMed]

Lauly, B.

J. D. Guingab, B. Lauly, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid,” Talanta 74(2), 271–274 (2007).
[CrossRef] [PubMed]

Lee, M.

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

Lee, S.

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

Lee, Y. H.

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

Li, K.

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B 94(4), 667–672 (2009).
[CrossRef]

Li, Y.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[CrossRef] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009).
[CrossRef]

Li, Y. Z.

Liang, Y.

Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007).
[CrossRef] [PubMed]

Lieber, M. L.

N. A. Obuchowski, M. L. Lieber, and F. H. Wians., “ROC curves in clinical chemistry: uses, misuses, and possible solutions,” Clin. Chem. 50(7), 1118–1125 (2004).
[CrossRef] [PubMed]

Lima, C. F.

C. P. Xavier, C. F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells,” Cancer Lett. 281(2), 162–170 (2009).
[CrossRef] [PubMed]

Lin, J.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[CrossRef] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

S. Feng, J. Lin, M. Cheng, Y. Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63(10), 1089–1094 (2009).
[CrossRef] [PubMed]

Liu, K. Z.

C. P. Schultz, K. Z. Liu, J. B. Johnston, and H. H. Mantsch, “Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes,” J. Mol. Struct. 408-409, 253–256 (1997).
[CrossRef]

Liu, R.

R. Liu, X. Zi, Y. Kang, M. Si, and Y. Wu, “Surface-enhanced Raman scattering study of human serum on PVA Ag nanofilm prepared by using electrostatic self-assembly,” J. Raman Spectrosc. 42(2), 137–144 (2011).
[CrossRef]

Lui, H.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[CrossRef] [PubMed]

Mahadevan-Jansen, A.

Mahmoud, M. A.

Y. Badr and M. A. Mahmoud, “Effect of silver nanowires on the surface-enhanced Raman spectra (SERS) of the RNA bases,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 63(3), 639–645 (2006).
[CrossRef] [PubMed]

Malpica, A.

Mantsch, H. H.

C. P. Schultz, K. Z. Liu, J. B. Johnston, and H. H. Mantsch, “Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes,” J. Mol. Struct. 408-409, 253–256 (1997).
[CrossRef]

McLean, D. I.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[CrossRef] [PubMed]

McLoughlin, R. M.

R. M. McLoughlin and C. A. O’Morain, “Colorectal cancer screening,” World J. Gastroenterol. 12(42), 6747–6750 (2006).
[PubMed]

McQuillan, A.

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

McWilliams, A.

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[CrossRef] [PubMed]

Medina-Gutiérrez, C.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
[CrossRef] [PubMed]

Menaker, G.

L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, “In vivo fluorescence spectroscopy of nonmelanoma skin cancer,” Photochem. Photobiol. 73(2), 178–183 (2001).
[CrossRef] [PubMed]

Milesi, L.

R. Labianca, G. D. Beretta, S. Mosconi, L. Milesi, and M. A. Pessi, “Colorectal cancer: screening,” Ann. Oncol. 16(Suppl 2), ii127–ii132 (2005).
[CrossRef] [PubMed]

Mosconi, S.

R. Labianca, G. D. Beretta, S. Mosconi, L. Milesi, and M. A. Pessi, “Colorectal cancer: screening,” Ann. Oncol. 16(Suppl 2), ii127–ii132 (2005).
[CrossRef] [PubMed]

Moskovits, M.

K. Kneipp and M. Moskovits, “Surface-enhanced raman scattering,” Phys. Today 60(11), 40–46 (2007).
[CrossRef]

Motz, J.

Movasaghi, Z.

Z. Movasaghi, S. Rehman, and I. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[CrossRef]

Naik, R.

S. Devpura, J. Thakur, F. Sarkar, W. Sakr, V. Naik, and R. Naik, “Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vib. Spectrosc. 53(2), 227–232 (2010).
[CrossRef]

Naik, V.

S. Devpura, J. Thakur, F. Sarkar, W. Sakr, V. Naik, and R. Naik, “Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vib. Spectrosc. 53(2), 227–232 (2010).
[CrossRef]

Natan, M.

K. Grabar, R. Freeman, M. Hommer, and M. Natan, “Preparation and characterization of Au colloid monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[CrossRef]

Notingher, I.

I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
[CrossRef]

Notingher, P.

I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
[CrossRef]

O’Morain, C. A.

R. M. McLoughlin and C. A. O’Morain, “Colorectal cancer screening,” World J. Gastroenterol. 12(42), 6747–6750 (2006).
[PubMed]

Obuchowski, N. A.

N. A. Obuchowski, M. L. Lieber, and F. H. Wians., “ROC curves in clinical chemistry: uses, misuses, and possible solutions,” Clin. Chem. 50(7), 1118–1125 (2004).
[CrossRef] [PubMed]

N. A. Obuchowski, “Receiver operating characteristic curves and their use in radiology,” Radiology 229(1), 3–8 (2003).
[CrossRef] [PubMed]

Oh, C. H.

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

Omenetto, N.

J. D. Guingab, B. Lauly, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid,” Talanta 74(2), 271–274 (2007).
[CrossRef] [PubMed]

Pan, J.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[CrossRef] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

Papineschi, F.

Peng, L.

H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009).
[CrossRef]

Pereira-Wilson, C.

C. P. Xavier, C. F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells,” Cancer Lett. 281(2), 162–170 (2009).
[CrossRef] [PubMed]

Pessi, M. A.

R. Labianca, G. D. Beretta, S. Mosconi, L. Milesi, and M. A. Pessi, “Colorectal cancer: screening,” Ann. Oncol. 16(Suppl 2), ii127–ii132 (2005).
[CrossRef] [PubMed]

Petrich, W.

D. Rohleder, W. Kiefer, and W. Petrich, “Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy,” Analyst (Lond.) 129(10), 906–911 (2004).
[CrossRef] [PubMed]

Pichardo-Molina, J. L.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
[CrossRef] [PubMed]

Polak, J.

I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
[CrossRef]

Preto, A.

C. P. Xavier, C. F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells,” Cancer Lett. 281(2), 162–170 (2009).
[CrossRef] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

Ramírez-Alvarado, C. A.

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
[CrossRef] [PubMed]

Rehman, I.

Z. Movasaghi, S. Rehman, and I. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[CrossRef]

Rehman, S.

Z. Movasaghi, S. Rehman, and I. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[CrossRef]

Rhyu, I. J.

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

Richards-Kortum, R.

Rohleder, D.

D. Rohleder, W. Kiefer, and W. Petrich, “Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy,” Analyst (Lond.) 129(10), 906–911 (2004).
[CrossRef] [PubMed]

Rossi, I.

Sakr, W.

S. Devpura, J. Thakur, F. Sarkar, W. Sakr, V. Naik, and R. Naik, “Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vib. Spectrosc. 53(2), 227–232 (2010).
[CrossRef]

Sarkar, F.

S. Devpura, J. Thakur, F. Sarkar, W. Sakr, V. Naik, and R. Naik, “Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vib. Spectrosc. 53(2), 227–232 (2010).
[CrossRef]

Schultz, C. P.

C. P. Schultz, K. Z. Liu, J. B. Johnston, and H. H. Mantsch, “Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes,” J. Mol. Struct. 408-409, 253–256 (1997).
[CrossRef]

Seruca, R.

C. P. Xavier, C. F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells,” Cancer Lett. 281(2), 162–170 (2009).
[CrossRef] [PubMed]

Seto, A. G.

J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008).
[CrossRef] [PubMed]

Shafer-Peltier, K.

Shen, G. L.

Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007).
[CrossRef] [PubMed]

Z. S. Wu, G. Z. Zhou, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering,” Talanta 70(3), 533–539 (2006).
[CrossRef] [PubMed]

Shin, S. Y.

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

Si, M.

R. Liu, X. Zi, Y. Kang, M. Si, and Y. Wu, “Surface-enhanced Raman scattering study of human serum on PVA Ag nanofilm prepared by using electrostatic self-assembly,” J. Raman Spectrosc. 42(2), 137–144 (2011).
[CrossRef]

Smith, B. W.

J. D. Guingab, B. Lauly, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid,” Talanta 74(2), 271–274 (2007).
[CrossRef] [PubMed]

Son, S. W.

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

Stevens, M.

I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
[CrossRef]

Stokes, D.

M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
[CrossRef] [PubMed]

Tao, Z.

H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009).
[CrossRef]

Taylor, D. S.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006).
[CrossRef] [PubMed]

Teh, M.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” Br. J. Cancer 98(2), 457–465 (2008).
[CrossRef] [PubMed]

Teh, S. K.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” Br. J. Cancer 98(2), 457–465 (2008).
[CrossRef] [PubMed]

Thakur, J.

S. Devpura, J. Thakur, F. Sarkar, W. Sakr, V. Naik, and R. Naik, “Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vib. Spectrosc. 53(2), 227–232 (2010).
[CrossRef]

Tripp, R. A.

J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008).
[CrossRef] [PubMed]

Tsigkou, O.

I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
[CrossRef]

Tu, J. H.

L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, “In vivo fluorescence spectroscopy of nonmelanoma skin cancer,” Photochem. Photobiol. 73(2), 178–183 (2001).
[CrossRef] [PubMed]

Utzinger, U.

Vineis, P.

E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, “Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance,” Mutat. Res. 635(2-3), 105–117 (2007).
[CrossRef] [PubMed]

Vo-Dinh, T.

M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
[CrossRef] [PubMed]

Wachsmann-Hogiu, S.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy—from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[CrossRef] [PubMed]

Wang, G.

H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009).
[CrossRef]

Weeks, T.

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy—from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[CrossRef] [PubMed]

Wians, F. H.

N. A. Obuchowski, M. L. Lieber, and F. H. Wians., “ROC curves in clinical chemistry: uses, misuses, and possible solutions,” Clin. Chem. 50(7), 1118–1125 (2004).
[CrossRef] [PubMed]

Winawer, S. J.

S. J. Winawer, “Colorectal cancer screening,” Best Pract. Res. Clin. Gastroenterol. 21(6), 1031–1048 (2007).
[CrossRef] [PubMed]

Winefordner, J. D.

J. D. Guingab, B. Lauly, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid,” Talanta 74(2), 271–274 (2007).
[CrossRef] [PubMed]

Wu, Y.

R. Liu, X. Zi, Y. Kang, M. Si, and Y. Wu, “Surface-enhanced Raman scattering study of human serum on PVA Ag nanofilm prepared by using electrostatic self-assembly,” J. Raman Spectrosc. 42(2), 137–144 (2011).
[CrossRef]

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[CrossRef] [PubMed]

Wu, Z. S.

Z. S. Wu, G. Z. Zhou, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering,” Talanta 70(3), 533–539 (2006).
[CrossRef] [PubMed]

Xavier, C. P.

C. P. Xavier, C. F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells,” Cancer Lett. 281(2), 162–170 (2009).
[CrossRef] [PubMed]

Yan, X.

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B 94(4), 667–672 (2009).
[CrossRef]

Yao, H.

H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009).
[CrossRef]

Yeoh, K. G.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” Br. J. Cancer 98(2), 457–465 (2008).
[CrossRef] [PubMed]

Yoshizawa, N.

Yu, R. Q.

Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007).
[CrossRef] [PubMed]

Z. S. Wu, G. Z. Zhou, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering,” Talanta 70(3), 533–539 (2006).
[CrossRef] [PubMed]

Yu, Y.

Zeng, H.

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[CrossRef] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

S. Feng, J. Lin, M. Cheng, Y. Z. Li, G. Chen, Z. Huang, Y. Yu, R. Chen, and H. Zeng, “Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation,” Appl. Spectrosc. 63(10), 1089–1094 (2009).
[CrossRef] [PubMed]

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[CrossRef] [PubMed]

Zhao, Y. P.

J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008).
[CrossRef] [PubMed]

Zheng, W.

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” Br. J. Cancer 98(2), 457–465 (2008).
[CrossRef] [PubMed]

Zheng, Y.

Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007).
[CrossRef] [PubMed]

Zhou, G. Z.

Z. S. Wu, G. Z. Zhou, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering,” Talanta 70(3), 533–539 (2006).
[CrossRef] [PubMed]

Zi, X.

R. Liu, X. Zi, Y. Kang, M. Si, and Y. Wu, “Surface-enhanced Raman scattering study of human serum on PVA Ag nanofilm prepared by using electrostatic self-assembly,” J. Raman Spectrosc. 42(2), 137–144 (2011).
[CrossRef]

Zwerdling, T.

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006).
[CrossRef] [PubMed]

Anal. Chem. (1)

K. Grabar, R. Freeman, M. Hommer, and M. Natan, “Preparation and characterization of Au colloid monolayers,” Anal. Chem. 67(4), 735–743 (1995).
[CrossRef]

Analyst (Lond.) (1)

D. Rohleder, W. Kiefer, and W. Petrich, “Quantitative analysis of serum and serum ultrafiltrate by means of Raman spectroscopy,” Analyst (Lond.) 129(10), 906–911 (2004).
[CrossRef] [PubMed]

Ann. Oncol. (1)

R. Labianca, G. D. Beretta, S. Mosconi, L. Milesi, and M. A. Pessi, “Colorectal cancer: screening,” Ann. Oncol. 16(Suppl 2), ii127–ii132 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

H. Han, X. Yan, R. Dong, G. Ban, and K. Li, “Analysis of serum from type II diabetes mellitus and diabetic complication using surface-enhanced Raman spectra (SERS),” Appl. Phys. B 94(4), 667–672 (2009).
[CrossRef]

Appl. Spectrosc. (4)

Appl. Spectrosc. Rev. (1)

Z. Movasaghi, S. Rehman, and I. Rehman, “Raman spectroscopy of biological tissues,” Appl. Spectrosc. Rev. 42(5), 493–541 (2007).
[CrossRef]

Best Pract. Res. Clin. Gastroenterol. (1)

S. J. Winawer, “Colorectal cancer screening,” Best Pract. Res. Clin. Gastroenterol. 21(6), 1031–1048 (2007).
[CrossRef] [PubMed]

Biophys. J. (1)

J. W. Chan, D. S. Taylor, T. Zwerdling, S. M. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90(2), 648–656 (2006).
[CrossRef] [PubMed]

Biosens. Bioelectron. (4)

S. Feng, R. Chen, J. Lin, J. Pan, Y. Wu, Y. Li, J. Chen, and H. Zeng, “Gastric cancer detection based on blood plasma surface-enhanced Raman spectroscopy excited by polarized laser light,” Biosens. Bioelectron. 26(7), 3167–3174 (2011).
[CrossRef] [PubMed]

S. Lee, H. Chon, M. Lee, J. Choo, S. Y. Shin, Y. H. Lee, I. J. Rhyu, S. W. Son, and C. H. Oh, “Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres,” Biosens. Bioelectron. 24(7), 2260–2263 (2009).
[CrossRef] [PubMed]

S. Feng, R. Chen, J. Lin, J. Pan, G. Chen, Y. Li, M. Cheng, Z. Huang, J. Chen, and H. Zeng, “Nasopharyngeal cancer detection based on blood plasma surface-enhanced Raman spectroscopy and multivariate analysis,” Biosens. Bioelectron. 25(11), 2414–2419 (2010).
[CrossRef] [PubMed]

J. D. Driskell, A. G. Seto, L. P. Jones, S. Jokela, R. A. Dluhy, Y. P. Zhao, and R. A. Tripp, “Rapid microRNA (miRNA) detection and classification via surface-enhanced Raman spectroscopy (SERS),” Biosens. Bioelectron. 24(4), 917–928 (2008).
[CrossRef] [PubMed]

Br. J. Cancer (1)

S. K. Teh, W. Zheng, K. Y. Ho, M. Teh, K. G. Yeoh, and Z. Huang, “Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue,” Br. J. Cancer 98(2), 457–465 (2008).
[CrossRef] [PubMed]

Cancer Lett. (1)

C. P. Xavier, C. F. Lima, A. Preto, R. Seruca, M. Fernandes-Ferreira, and C. Pereira-Wilson, “Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells,” Cancer Lett. 281(2), 162–170 (2009).
[CrossRef] [PubMed]

Chem. Phys. Lett. (1)

M. Fleischmann, P. Hendra, and A. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[CrossRef]

Clin. Chem. (1)

N. A. Obuchowski, M. L. Lieber, and F. H. Wians., “ROC curves in clinical chemistry: uses, misuses, and possible solutions,” Clin. Chem. 50(7), 1118–1125 (2004).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

S. Wachsmann-Hogiu, T. Weeks, and T. Huser, “Chemical analysis in vivo and in vitro by Raman spectroscopy—from single cells to humans,” Curr. Opin. Biotechnol. 20(1), 63–73 (2009).
[CrossRef] [PubMed]

Expert Rev. Mol. Diagn. (1)

M. Culha, D. Stokes, and T. Vo-Dinh, “Surface-enhanced Raman scattering for cancer diagnostics: detection of the BCL2 gene,” Expert Rev. Mol. Diagn. 3(5), 669–675 (2003).
[CrossRef] [PubMed]

Int. J. Cancer (1)

Z. Huang, A. McWilliams, H. Lui, D. I. McLean, S. Lam, and H. Zeng, “Near-infrared Raman spectroscopy for optical diagnosis of lung cancer,” Int. J. Cancer 107(6), 1047–1052 (2003).
[CrossRef] [PubMed]

J. Advert. Res. (1)

X. Huang and M. El-Sayed, “Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy,” J. Advert. Res. 1(1), 13–28 (2010).
[CrossRef]

J. Mol. Struct. (2)

C. P. Schultz, K. Z. Liu, J. B. Johnston, and H. H. Mantsch, “Prognosis of chronic lymphocytic leukemia from infrared spectra of lymphocytes,” J. Mol. Struct. 408-409, 253–256 (1997).
[CrossRef]

I. Notingher, G. Jell, P. Notingher, I. Bisson, O. Tsigkou, J. Polak, M. Stevens, and L. Hench, “Multivariate analysis of Raman spectra for in vitro non-invasive studies of living cells,” J. Mol. Struct. 744-747, 179–185 (2005).
[CrossRef]

J. Raman Spectrosc. (1)

R. Liu, X. Zi, Y. Kang, M. Si, and Y. Wu, “Surface-enhanced Raman scattering study of human serum on PVA Ag nanofilm prepared by using electrostatic self-assembly,” J. Raman Spectrosc. 42(2), 137–144 (2011).
[CrossRef]

Lasers Med. Sci. (1)

J. L. Pichardo-Molina, C. Frausto-Reyes, O. Barbosa-García, R. Huerta-Franco, J. L. González-Trujillo, C. A. Ramírez-Alvarado, G. Gutiérrez-Juárez, and C. Medina-Gutiérrez, “Raman spectroscopy and multivariate analysis of serum samples from breast cancer patients,” Lasers Med. Sci. 22(4), 229–236 (2007).
[CrossRef] [PubMed]

Mutat. Res. (1)

E. Gormally, E. Caboux, P. Vineis, and P. Hainaut, “Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance,” Mutat. Res. 635(2-3), 105–117 (2007).
[CrossRef] [PubMed]

Nano Lett. (1)

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cells assemble and align gold nanorods conjugated to antibodies to produce highly enhanced, sharp, and polarized surface Raman spectra: a potential cancer diagnostic marker,” Nano Lett. 7(6), 1591–1597 (2007).
[CrossRef] [PubMed]

Photochem. Photobiol. (1)

L. Brancaleon, A. J. Durkin, J. H. Tu, G. Menaker, J. D. Fallon, and N. Kollias, “In vivo fluorescence spectroscopy of nonmelanoma skin cancer,” Photochem. Photobiol. 73(2), 178–183 (2001).
[CrossRef] [PubMed]

Phys. Today (1)

K. Kneipp and M. Moskovits, “Surface-enhanced raman scattering,” Phys. Today 60(11), 40–46 (2007).
[CrossRef]

Radiology (1)

N. A. Obuchowski, “Receiver operating characteristic curves and their use in radiology,” Radiology 229(1), 3–8 (2003).
[CrossRef] [PubMed]

Spectrochim. Acta A Mol. Biomol. Spectrosc. (1)

Y. Badr and M. A. Mahmoud, “Effect of silver nanowires on the surface-enhanced Raman spectra (SERS) of the RNA bases,” Spectrochim. Acta A Mol. Biomol. Spectrosc. 63(3), 639–645 (2006).
[CrossRef] [PubMed]

Talanta (4)

Y. Liang, J. L. Gong, Y. Huang, Y. Zheng, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Biocompatible core-shell nanoparticle-based surface-enhanced Raman scattering probes for detection of DNA related to HIV gene using silica-coated magnetic nanoparticles as separation tools,” Talanta 72(2), 443–449 (2007).
[CrossRef] [PubMed]

Z. S. Wu, G. Z. Zhou, J. H. Jiang, G. L. Shen, and R. Q. Yu, “Gold colloid-bienzyme conjugates for glucose detection utilizing surface-enhanced Raman scattering,” Talanta 70(3), 533–539 (2006).
[CrossRef] [PubMed]

J. D. Guingab, B. Lauly, B. W. Smith, N. Omenetto, and J. D. Winefordner, “Stability of silver colloids as substrate for surface enhanced Raman spectroscopy detection of dipicolinic acid,” Talanta 74(2), 271–274 (2007).
[CrossRef] [PubMed]

A. Kudelski, “Analytical applications of Raman spectroscopy,” Talanta 76(1), 1–8 (2008).
[CrossRef] [PubMed]

Vib. Spectrosc. (2)

S. Devpura, J. Thakur, F. Sarkar, W. Sakr, V. Naik, and R. Naik, “Detection of benign epithelia, prostatic intraepithelial neoplasia, and cancer regions in radical prostatectomy tissues using Raman spectroscopy,” Vib. Spectrosc. 53(2), 227–232 (2010).
[CrossRef]

H. Yao, Z. Tao, M. Ai, L. Peng, G. Wang, B. He, and Y. Li, “Raman spectroscopic analysis of apoptosis of single human gastric cancer cells,” Vib. Spectrosc. 50(2), 193–197 (2009).
[CrossRef]

World J. Gastroenterol. (1)

R. M. McLoughlin and C. A. O’Morain, “Colorectal cancer screening,” World J. Gastroenterol. 12(42), 6747–6750 (2006).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

The UV/visible absorption spectrum of the Au colloid. The absorption maximum is located at 527 nm. The inserted picture shows the TEM micrograph of Au nanoparticles.

Fig. 2
Fig. 2

(A) SERS spectrum of the blood serum sample from a patient with colorectal cancer obtained by mixing the serum with Au colloid at a 1:1 proportion, (B) the regular Raman spectrum of the same serum sample without the Au colloid and (C) the background Raman signal of the coagulant agent mixed with Au colloid.

Fig. 3
Fig. 3

(A) Comparison of the mean spectrum for the colorectal cancer serum (blue curve, n = 38) versus that of the normal serum (red curve, n = 45) samples. Each spectrum was normalized to the integrated area under the curve to correct for variations in absolute spectral intensity. The shaded areas represent the standard deviations of the means. Also shown at the bottom is the difference spectrum. (B) Comparison of the mean intensities and standard deviations of the selected peaks with the most distinguishable differences between colorectal cancer serum (blue pillar) and normal serum (red pillar).

Fig. 4
Fig. 4

Scatter plot of the intensity ratio of the Raman signal at (A) 725 vs. 638 cm–1, (B)725 vs. 494 cm–1and (C) 725 vs. 1655 cm–1, as measured for each sample. The dotted lines (I725/I638 = 1.11; I725/I494 = 1.95; I725/I1655 = 0.92) as diagnostic threshold classify cancer from normal with sensitivity of 68.4% (26/38), 57.9% (22/38) and 60.5% (23/38); specificity of 95.6% (43/45), 97.8% (44/45) and 91.1% (41/45), respectively.

Fig. 5
Fig. 5

(A) Plots of the first principal component (PC1) versus the second principal component (PC2) for normal group versus colorectal cancer group. The dotted line (PC2 = 1.68PC1 + 0.13) as diagnostic algorithm separates the two groups with sensitivity of 84.2% and specificity of 93.3%. (B) Plot of the first principal component (PC1) versus the third principal component (PC3) for normal group versus colorectal cancer group. The dotted line (PC3 = 1.14PC1 + 0.11) as diagnostic algorithm separates the two groups with sensitivity of 92.1% and specificity of 95.6%.

Fig. 6
Fig. 6

Scatter plots of the posterior probability of belonging to the normal and colorectal cancer categories calculated from the data sets with (A) empirical approach (I725/I638), (B) multivariate statistical techniques (significant PCs) in the LDA model. The posterior probability corresponding to the dashed separation line is 0.5.

Fig. 7
Fig. 7

Comparison of receiver operating characteristic (ROC) curves of discrimination results for SERS spectra utilizing the PCA-LDA-based spectral classification with leave-one-out, cross-validation method and the empirical approach using SERS spectra intensity ratio of I725/I638. The integration areas under the ROC curves are 1 and 0.896 for PCA-LDA based diagnostic algorithm and intensity ratio algorithm, respectively. The dotted line called the chance diagonal from 0,0 to 1,1 has an area of 0.5.

Tables (2)

Tables Icon

Table 1 Clinical Information on Colorectal Cancer Patients and Healthy Volunteers

Tables Icon

Table 2 The Peak Positions and Tentative Assignment of Major Vibrational Bands Observed in Serum Samples [6,11,25,2933]*

Metrics