Abstract

We report theoretical calculations of the mode fields of high index lead silicate and silicon nano fibers, and show that their strong longitudinal component enables efficient excitation of surface plasmons within a silver nanorod placed at the fiber tip. An excitation efficiency 1600 times higher than that of the standard single mode fibers has been achieved using a 350nm diameter silicon fiber at 1.1μm wavelength, while a factor of 640 times higher efficiency is achieved for a 400nm diameter lead silicate F2 glass fiber. The strong localized field emerging from the end of the rod serves as a nano-scale source with adjustable beam width, and such sources offer a new approach to high-resolution microscopy, particle manipulation and sensing.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl. 47(43), 8178–8191 (2008).
    [CrossRef] [PubMed]
  2. H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
    [CrossRef] [PubMed]
  3. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
    [CrossRef] [PubMed]
  4. T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
    [CrossRef] [PubMed]
  5. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
    [CrossRef]
  6. A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
    [CrossRef]
  7. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
    [CrossRef] [PubMed]
  8. http://www.ntmdt-tips.com/catalog/snom/red/products/MF003.html .
  9. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
    [CrossRef] [PubMed]
  10. P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
    [CrossRef]
  11. S. Afshar V and T. M. Monro, “A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity,” Opt. Express 17(4), 2298–2318 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2298 .
    [CrossRef] [PubMed]
  12. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15086 .
    [CrossRef] [PubMed]
  13. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-4-2646 .
    [CrossRef] [PubMed]
  14. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18533 .
    [CrossRef]
  15. P. Mehta, N. Healy, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Nonlinear transmission properties of hydrogenated amorphous silicon core optical fibers,” Opt. Express 18(16), 16826–16831 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-16-16826 .
    [CrossRef] [PubMed]
  16. Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18, 26018–26026 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26018 .
  17. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman &Hall, London, UK, 1983).
  18. N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells,” Gold Bull. 41(1), 5–14 (2008).
    [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New Yor, 1985).
  20. T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
    [CrossRef]
  21. http://www.corning.com/docs/specialtymaterials/pisheets/pi101.pdf .
  22. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [CrossRef] [PubMed]
  23. H. Ishitobi, I. Nakamura, N. Hayazawa, Z. Sekkat, and S. Kawata, “Orientational imaging of single molecules by using azimuthal and radial polarizations,” J. Phys. Chem. B 114(8), 2565–2571 (2010).
    [CrossRef] [PubMed]
  24. http://www.illuminex.biz .
  25. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [CrossRef] [PubMed]
  26. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  27. R. P. Van Duyne, in Chemical and biochemical applications of lasers (ed. Moore, C. B.) Vol. 4, 101–184(Academic, New York, 1979).
  28. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]

2010 (2)

2009 (4)

2008 (2)

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl. 47(43), 8178–8191 (2008).
[CrossRef] [PubMed]

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells,” Gold Bull. 41(1), 5–14 (2008).
[CrossRef]

2007 (4)

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
[CrossRef]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15(23), 15086–15092 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-23-15086 .
[CrossRef] [PubMed]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

2006 (1)

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

2002 (1)

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
[CrossRef]

2001 (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[CrossRef] [PubMed]

1997 (2)

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Afshar V, S.

Anger, P.

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
[CrossRef]

Badding, J. V.

Badenes, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Baril, N. F.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
[CrossRef]

Bian, R. X.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Bridges, F.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
[CrossRef]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Burger, S.

T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[CrossRef] [PubMed]

Cao, D.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
[CrossRef]

Chen, X. W.

H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

Cortie, M. B.

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells,” Gold Bull. 41(1), 5–14 (2008).
[CrossRef]

Drezet, A.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

Ebendorff-Heidepriem, H.

Eghlidi, H.

H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Ford, M. J.

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells,” Gold Bull. 41(1), 5–14 (2008).
[CrossRef]

Gotzinger, S.

H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

Grant, C. D.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
[CrossRef]

Hakanson, U.

T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[CrossRef] [PubMed]

Harris, N.

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells,” Gold Bull. 41(1), 5–14 (2008).
[CrossRef]

Hartschuh, A.

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl. 47(43), 8178–8191 (2008).
[CrossRef] [PubMed]

Hayazawa, N.

H. Ishitobi, I. Nakamura, N. Hayazawa, Z. Sekkat, and S. Kawata, “Orientational imaging of single molecules by using azimuthal and radial polarizations,” J. Phys. Chem. B 114(8), 2565–2571 (2010).
[CrossRef] [PubMed]

Healy, N.

Henkel, C.

T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[CrossRef] [PubMed]

Huant, S.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

Ishitobi, H.

H. Ishitobi, I. Nakamura, N. Hayazawa, Z. Sekkat, and S. Kawata, “Orientational imaging of single molecules by using azimuthal and radial polarizations,” J. Phys. Chem. B 114(8), 2565–2571 (2010).
[CrossRef] [PubMed]

Kalkbrenner, T.

T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[CrossRef] [PubMed]

Kawata, S.

H. Ishitobi, I. Nakamura, N. Hayazawa, Z. Sekkat, and S. Kawata, “Orientational imaging of single molecules by using azimuthal and radial polarizations,” J. Phys. Chem. B 114(8), 2565–2571 (2010).
[CrossRef] [PubMed]

Kristensen, P.

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Lee, K. G.

H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

Liu, J.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
[CrossRef]

Magana, D.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
[CrossRef]

Mehta, P.

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Monro, T. M.

Mulvaney, P.

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells,” Gold Bull. 41(1), 5–14 (2008).
[CrossRef]

Nakamura, I.

H. Ishitobi, I. Nakamura, N. Hayazawa, Z. Sekkat, and S. Kawata, “Orientational imaging of single molecules by using azimuthal and radial polarizations,” J. Phys. Chem. B 114(8), 2565–2571 (2010).
[CrossRef] [PubMed]

Nasse, M. J.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Norman, T. J.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
[CrossRef]

Novotny, L.

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
[CrossRef]

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Peacock, A. C.

Petrov, D.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Quidant, R.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Ramachandran, S.

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[CrossRef] [PubMed]

Sandoghdar, V.

H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[CrossRef] [PubMed]

Sazio, P. J. A.

Schadle, A.

T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[CrossRef] [PubMed]

Segerink, F. B.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Sekkat, Z.

H. Ishitobi, I. Nakamura, N. Hayazawa, Z. Sekkat, and S. Kawata, “Orientational imaging of single molecules by using azimuthal and radial polarizations,” J. Phys. Chem. B 114(8), 2565–2571 (2010).
[CrossRef] [PubMed]

Taminiau, T. H.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Van Buuren, A.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

van Hulst, N. F.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

Warren-Smith, S. C.

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Woehl, J. C.

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

Xie, X. S.

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Yan, M. F.

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

Zhang, J. Z.

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
[CrossRef]

Angew. Chem. Int. Ed. Engl. (1)

A. Hartschuh, “Tip-enhanced near-field optical microscopy,” Angew. Chem. Int. Ed. Engl. 47(43), 8178–8191 (2008).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Europhys. Lett. (1)

A. Drezet, M. J. Nasse, S. Huant, and J. C. Woehl, “The optical near-field of an aperture tip,” Europhys. Lett. 66(1), 41–47 (2004).
[CrossRef]

Gold Bull. (1)

N. Harris, M. J. Ford, P. Mulvaney, and M. B. Cortie, “Tunable infrared absorption by metal nanoparticles: the case for gold rods and shells,” Gold Bull. 41(1), 5–14 (2008).
[CrossRef]

J. Microsc. (1)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202(1), 72–76 (2001).
[CrossRef] [PubMed]

J. Phys. Chem. B (2)

T. J. Norman, C. D. Grant, D. Magana, J. Z. Zhang, J. Liu, D. Cao, F. Bridges, and A. Van Buuren, “Near infrared optical absorption of gold nanoparticle aggregates,” J. Phys. Chem. B 106(28), 7005–7012 (2002).
[CrossRef]

H. Ishitobi, I. Nakamura, N. Hayazawa, Z. Sekkat, and S. Kawata, “Orientational imaging of single molecules by using azimuthal and radial polarizations,” J. Phys. Chem. B 114(8), 2565–2571 (2010).
[CrossRef] [PubMed]

Nano Lett. (2)

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, “λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence,” Nano Lett. 7(1), 28–33 (2007).
[CrossRef] [PubMed]

H. Eghlidi, K. G. Lee, X. W. Chen, S. Gotzinger, and V. Sandoghdar, “Resolution and enhancement in nanoantenna-based fluorescence microscopy,” Nano Lett. 9(12), 4007–4011 (2009).
[CrossRef] [PubMed]

Nanotechnology (1)

P. Bharadwaj, P. Anger, and L. Novotny, “Nanoplasmonic enhancement of single-molecule fluorescence,” Nanotechnology 18(4), 044017 (2007).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. Lett. (4)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[CrossRef] [PubMed]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96(23), 238101 (2006).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Hakanson, A. Schadle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95(20), 200801 (2005).
[CrossRef] [PubMed]

L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79(4), 645–648 (1997).
[CrossRef]

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Other (8)

R. P. Van Duyne, in Chemical and biochemical applications of lasers (ed. Moore, C. B.) Vol. 4, 101–184(Academic, New York, 1979).

http://www.illuminex.biz .

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-21-18533 .
[CrossRef]

Y. Ruan, H. Ebendorff-Heidepriem, S. Afshar, and T. M. Monro, “Light confinement within nanoholes in nanostructured optical fibers,” Opt. Express 18, 26018–26026 (2010), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-18-25-26018 .

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman &Hall, London, UK, 1983).

http://www.ntmdt-tips.com/catalog/snom/red/products/MF003.html .

http://www.corning.com/docs/specialtymaterials/pisheets/pi101.pdf .

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, New Yor, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a). Intensity distribution of the transverse component E t and longitudinal component E z of the mode field for the silicon fibers with 300nm and 1.5μm diameter, respectively, and corresponding cross-sectional profiles taken along the dashed lines (the field is polarized along the dashed line). (b). Dependence of the non-transversality on fiber diameter for the F2 and silicon fibers.

Fig. 2
Fig. 2

(a). Configuration used to excite the fiber mode field (in vacuum). Excitation source is the fiber fundamental mode field polarized along x axis and injected along the fiber’s z axis. (b) & (c). Propagation patterns of the total electric field and its longitudinal component (on a log scale) in the x-z plane (y=0), respectively, for the 350nm silicon fiber. Inserts are magnified field image around the fiber end. (d). Intensity distribution of the longitudinal field on the output endface (xy plane) of the same silicon fiber. Insert is the cross-sectional profile along the line y = 0. (e) & (f). Non-transversality and normalized power of the transverse and longitudinal components for the silicon fibers with their diameter as 350nm and 240nm, respectively. Insert magnifies the region around the fiber interface.

Fig. 3
Fig. 3

Dependence of the non-transversality of the field in the near field on the diameter of the silicon and F2 fibers. (a). Non-transversality in the x-y plane 50nm away from the fiber output endface. (b). Power of the longitudinal component contained in a circle with 40nm diameter and centered at the point of its maximal intensity in the same plane as (a).

Fig. 4
Fig. 4

(a) Geometrical arrangements for excitation of SPPs of the silver rod by collimated Gaussian beam from the SMF with a vacuum surrounding. (b)-(c) Electric field intensity distribution on the observe plane (xz plane) and the xy plane (z=0), respectively, for the silver rod with L=200nm at the wavelength of 853nm. (d) 3D electric field intensity distribution on the observe plane (xy plane) for the silver rod with L=290nm at the wavelength of 1.1 nm. (e) Spectral dependence of the maximized intensity of the longitudinal field on the observation plane for the silver rod with L=200nm. f. Excitation efficiency as a function of the beam width of the Gaussian source.

Fig. 5
Fig. 5

(a). Configuration for exciting SPPs on a silver nanorod in vacuum by the nano fiber in the near field. (b). Dependence of resonant wavelength and peak intensity as a function of the location of the silver nanorod for the 350nm diameter silicon fiber along x axis. (c). Electric field distribution on the xz plane (y=0), and (d) on the observation plane with the 204nm long silver rod located at the center of the output endface of the fiber (on a log scale). The insert in c is the field in the vicinity of the silver rod (magnified).

Fig. 6
Fig. 6

Field intensity distribution (on a log scale) for the 350nm diameter silicon fiber and the silver nanorod (D=40nm, L=204nm) located at 140nm position on the x-axis. First column (a, d and g) is for the transverse component E t . Second column (b, e and h) is for E z . Third one (c, f and i) is for the total electric field E . Images in the first row are from the x-z plane (y=0), the inserts show a close-up of the field distribution around the silver rod. Second row are from the observation plane, those from the third row are 3D plot for those from the second row. Inserts in (a) to (c) are magnified silver rod.

Fig. 7
Fig. 7

Cross-sectional profiles of field intensities taken from Figs. 6d, 6e and 6f.

Fig. 8
Fig. 8

Field intensity distribution (on a log value) for the 400nm F2 fiber and the silver nanorod located at its output endface. The first column (a, d and g) is for the transverse component E t , the second column (b, e and h) is for E z , the third one (c, f and i) is for the total electric field E . The pattern images in the first row are from the x-z plane (y=0), those in the second row are from the observation plane (xy plane), those from the third row are 3D plot for those from the second row.

Fig. 9
Fig. 9

Cross sectional profile of Fig. 8d,8e and 8f along x axis when the silver rod is excited by a F2 nanofiber.

Metrics