Abstract

Chemical mechanical polishing (CMP) is a key process for global planarization of silicon wafers for semiconductors and AlTiC wafers for magnetic heads. Removal rate of wafer material is directly dependent on the surface roughness of a CMP pad, thus the structure of the pad surface has been evaluated with variable techniques. However, under in situ CMP process, the measurements have been severely limited due to the existence of polishing fluids including the slurry on the pad surface. In here, we newly introduce ultra-high resolution full-field optical coherence tomography (FF-OCT) to investigate the surface of wet pads. With FF-OCT, the wet pad surface could be quantitatively characterized in terms of the polishing pad lifetime, and also be three-dimensionally visualized. We found that reasonable polishing span could be evaluated from the surface roughness measurement and the groove depth measurement made by FF-OCT.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. Rep. 45(3-6), 89–220 (2004).
    [CrossRef]
  2. D. Stein, D. Hetherington, M. Dugger, and T. Stout, “Optical interferometry for surface measurements of CMP pads,” J. Electron. Mater. 25(10), 1623–1627 (1996).
    [CrossRef]
  3. R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270(1-2), 596–600 (1995).
    [CrossRef]
  4. Z. Stavreva, D. Zeidler, M. Plötner, G. Grasshoff, and K. Drescher, “Chemical-mechanical polishing of copper for interconnect formation,” Microelectron. Eng. 33(1-4), 249–257 (1997).
    [CrossRef]
  5. H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49(1), 35–44 (2002).
    [CrossRef]
  6. K. H. Park, H. J. Kim, O. M. Chang, and H. D. Jeong, “Effects of pad properties on material removal in chemical mechanical polishing,” J. Mater. Process. Technol. 187-188, 73–76 (2007).
    [CrossRef]
  7. T. Sun, Y. Zhuang, L. Borucki, and A. Philipossian, “Optical and mechanical characterization of chemical mechanical planarization pad surfaces,” Jpn. J. Appl. Phys. 49(4), 046501 (2010).
    [CrossRef]
  8. J. McGrath and C. Davis, “Polishing pad surface characterisation in chemical mechanical planarisation,” J. Mater. Process. Technol. 153–154, 666–673 (2004).
    [CrossRef]
  9. H. Lee, D.-I. Kim, H. Jeong, and K. H. Kim, “Chemical mechanical polishing of a Ti-Si-N nanocomposite and AFM study on its nanostructure,” J. Korean Phys. Soc. 57(4), 845–849 (2010).
    [CrossRef]
  10. Y. Zhuang, X. Liao, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, “Effect of pad micro-texture on frictional force, removal rate, and wafer topography during copper CMP process,” Elec. Soc. Trans. 27(1), 599–604 (2010).
  11. S. Nagai, T. Fujishima, and K. Sameshima, “Nondestructive monitoring of CMP pad surface,” IEEE International Symposium on Semiconductor Manufacturing, 343–346 (2003).
  12. D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
    [CrossRef]
  13. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
    [CrossRef] [PubMed]
  14. W. Y. Oh, B. E. Bouma, N. Iftimia, S. H. Yun, R. Yelin, and G. J. Tearney, “Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera,” Opt. Express 14(2), 726–735 (2006).
    [CrossRef] [PubMed]
  15. M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12(4), 041202 (2007).
    [CrossRef] [PubMed]
  16. G. Latour, J.-P. Echard, B. Soulier, I. Emond, S. Vaiedelich, and M. Elias, “Structural and optical properties of wood and wood finishes studied using optical coherence tomography: application to an 18th century Italian violin,” Appl. Opt. 48(33), 6485–6491 (2009).
    [CrossRef] [PubMed]
  17. L. Vabre, V. Loriette, A. Dubois, J. Moreau, and A. C. Boccara, “Imagery of local defects in multilayer components by short coherence length interferometry,” Opt. Lett. 27(21), 1899–1901 (2002).
    [CrossRef] [PubMed]
  18. W.-J. Choi, J.-H. Na, S.-Y. Ryu, B.-H. Lee, and D.-S. Ko, “Realization of 3-D topographic and tomographic images with ultrahigh-resolution full-field optical coherence tomography,” J. Opt. Soc. Korea 11(1), 18–25 (2007).
    [CrossRef]
  19. W.-J. Choi, G.-H. Min, B.-H. Lee, J.-H. Eom, and J.-W. Kim, “Counterfeit detection using characterization of safety feature on banknote with full-field optical coherence tomography,” J. Opt. Soc. Korea 14(4), 316–320 (2010).
    [CrossRef]

2010

T. Sun, Y. Zhuang, L. Borucki, and A. Philipossian, “Optical and mechanical characterization of chemical mechanical planarization pad surfaces,” Jpn. J. Appl. Phys. 49(4), 046501 (2010).
[CrossRef]

H. Lee, D.-I. Kim, H. Jeong, and K. H. Kim, “Chemical mechanical polishing of a Ti-Si-N nanocomposite and AFM study on its nanostructure,” J. Korean Phys. Soc. 57(4), 845–849 (2010).
[CrossRef]

Y. Zhuang, X. Liao, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, “Effect of pad micro-texture on frictional force, removal rate, and wafer topography during copper CMP process,” Elec. Soc. Trans. 27(1), 599–604 (2010).

W.-J. Choi, G.-H. Min, B.-H. Lee, J.-H. Eom, and J.-W. Kim, “Counterfeit detection using characterization of safety feature on banknote with full-field optical coherence tomography,” J. Opt. Soc. Korea 14(4), 316–320 (2010).
[CrossRef]

2009

2007

W.-J. Choi, J.-H. Na, S.-Y. Ryu, B.-H. Lee, and D.-S. Ko, “Realization of 3-D topographic and tomographic images with ultrahigh-resolution full-field optical coherence tomography,” J. Opt. Soc. Korea 11(1), 18–25 (2007).
[CrossRef]

M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12(4), 041202 (2007).
[CrossRef] [PubMed]

K. H. Park, H. J. Kim, O. M. Chang, and H. D. Jeong, “Effects of pad properties on material removal in chemical mechanical polishing,” J. Mater. Process. Technol. 187-188, 73–76 (2007).
[CrossRef]

2006

2004

A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, and C. Boccara, “Ultrahigh-resolution full-field optical coherence tomography,” Appl. Opt. 43(14), 2874–2883 (2004).
[CrossRef] [PubMed]

J. McGrath and C. Davis, “Polishing pad surface characterisation in chemical mechanical planarisation,” J. Mater. Process. Technol. 153–154, 666–673 (2004).
[CrossRef]

P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. Rep. 45(3-6), 89–220 (2004).
[CrossRef]

2002

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49(1), 35–44 (2002).
[CrossRef]

L. Vabre, V. Loriette, A. Dubois, J. Moreau, and A. C. Boccara, “Imagery of local defects in multilayer components by short coherence length interferometry,” Opt. Lett. 27(21), 1899–1901 (2002).
[CrossRef] [PubMed]

2001

D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
[CrossRef]

1997

Z. Stavreva, D. Zeidler, M. Plötner, G. Grasshoff, and K. Drescher, “Chemical-mechanical polishing of copper for interconnect formation,” Microelectron. Eng. 33(1-4), 249–257 (1997).
[CrossRef]

1996

D. Stein, D. Hetherington, M. Dugger, and T. Stout, “Optical interferometry for surface measurements of CMP pads,” J. Electron. Mater. 25(10), 1623–1627 (1996).
[CrossRef]

1995

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270(1-2), 596–600 (1995).
[CrossRef]

Akiba, M.

M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12(4), 041202 (2007).
[CrossRef] [PubMed]

Ashizawa, T.

Y. Zhuang, X. Liao, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, “Effect of pad micro-texture on frictional force, removal rate, and wafer topography during copper CMP process,” Elec. Soc. Trans. 27(1), 599–604 (2010).

Belyaev, A.

D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
[CrossRef]

Boccara, A. C.

Boccara, C.

Borucki, L.

T. Sun, Y. Zhuang, L. Borucki, and A. Philipossian, “Optical and mechanical characterization of chemical mechanical planarization pad surfaces,” Jpn. J. Appl. Phys. 49(4), 046501 (2010).
[CrossRef]

Borucki, L. J.

Y. Zhuang, X. Liao, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, “Effect of pad micro-texture on frictional force, removal rate, and wafer topography during copper CMP process,” Elec. Soc. Trans. 27(1), 599–604 (2010).

Bouma, B. E.

Chan, K. P.

M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12(4), 041202 (2007).
[CrossRef] [PubMed]

Chang, O. M.

K. H. Park, H. J. Kim, O. M. Chang, and H. D. Jeong, “Effects of pad properties on material removal in chemical mechanical polishing,” J. Mater. Process. Technol. 187-188, 73–76 (2007).
[CrossRef]

Choi, W.-J.

Crevasse, A.

D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
[CrossRef]

Davis, C.

J. McGrath and C. Davis, “Polishing pad surface characterisation in chemical mechanical planarisation,” J. Mater. Process. Technol. 153–154, 666–673 (2004).
[CrossRef]

Drescher, K.

Z. Stavreva, D. Zeidler, M. Plötner, G. Grasshoff, and K. Drescher, “Chemical-mechanical polishing of copper for interconnect formation,” Microelectron. Eng. 33(1-4), 249–257 (1997).
[CrossRef]

Dubois, A.

Dugger, M.

D. Stein, D. Hetherington, M. Dugger, and T. Stout, “Optical interferometry for surface measurements of CMP pads,” J. Electron. Mater. 25(10), 1623–1627 (1996).
[CrossRef]

Duquette, D. J.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270(1-2), 596–600 (1995).
[CrossRef]

Easter, W.

D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
[CrossRef]

Echard, J.-P.

Elias, M.

Emond, I.

Eom, J.-H.

Fookes, B.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49(1), 35–44 (2002).
[CrossRef]

Grasshoff, G.

Z. Stavreva, D. Zeidler, M. Plötner, G. Grasshoff, and K. Drescher, “Chemical-mechanical polishing of copper for interconnect formation,” Microelectron. Eng. 33(1-4), 249–257 (1997).
[CrossRef]

Grieve, K.

Gutmann, R. J.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270(1-2), 596–600 (1995).
[CrossRef]

Hetherington, D.

D. Stein, D. Hetherington, M. Dugger, and T. Stout, “Optical interferometry for surface measurements of CMP pads,” J. Electron. Mater. 25(10), 1623–1627 (1996).
[CrossRef]

Iftimia, N.

Jeong, H.

H. Lee, D.-I. Kim, H. Jeong, and K. H. Kim, “Chemical mechanical polishing of a Ti-Si-N nanocomposite and AFM study on its nanostructure,” J. Korean Phys. Soc. 57(4), 845–849 (2010).
[CrossRef]

Jeong, H. D.

K. H. Park, H. J. Kim, O. M. Chang, and H. D. Jeong, “Effects of pad properties on material removal in chemical mechanical polishing,” J. Mater. Process. Technol. 187-188, 73–76 (2007).
[CrossRef]

Kim, D.-I.

H. Lee, D.-I. Kim, H. Jeong, and K. H. Kim, “Chemical mechanical polishing of a Ti-Si-N nanocomposite and AFM study on its nanostructure,” J. Korean Phys. Soc. 57(4), 845–849 (2010).
[CrossRef]

Kim, H. J.

K. H. Park, H. J. Kim, O. M. Chang, and H. D. Jeong, “Effects of pad properties on material removal in chemical mechanical polishing,” J. Mater. Process. Technol. 187-188, 73–76 (2007).
[CrossRef]

Kim, J.-W.

Kim, K. H.

H. Lee, D.-I. Kim, H. Jeong, and K. H. Kim, “Chemical mechanical polishing of a Ti-Si-N nanocomposite and AFM study on its nanostructure,” J. Korean Phys. Soc. 57(4), 845–849 (2010).
[CrossRef]

Ko, D.-S.

Kumar, A.

P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. Rep. 45(3-6), 89–220 (2004).
[CrossRef]

Latour, G.

Lecaque, R.

Lee, B.-H.

Lee, H.

H. Lee, D.-I. Kim, H. Jeong, and K. H. Kim, “Chemical mechanical polishing of a Ti-Si-N nanocomposite and AFM study on its nanostructure,” J. Korean Phys. Soc. 57(4), 845–849 (2010).
[CrossRef]

Liao, X.

Y. Zhuang, X. Liao, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, “Effect of pad micro-texture on frictional force, removal rate, and wafer topography during copper CMP process,” Elec. Soc. Trans. 27(1), 599–604 (2010).

Loriette, V.

Lu, H.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49(1), 35–44 (2002).
[CrossRef]

Machinski, S.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49(1), 35–44 (2002).
[CrossRef]

Maeda, N.

M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12(4), 041202 (2007).
[CrossRef] [PubMed]

Maury, A.

D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
[CrossRef]

McGrath, J.

J. McGrath and C. Davis, “Polishing pad surface characterisation in chemical mechanical planarisation,” J. Mater. Process. Technol. 153–154, 666–673 (2004).
[CrossRef]

Min, G.-H.

Moneron, G.

Moreau, J.

Moreno, W.

D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
[CrossRef]

Murarka, S. P.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270(1-2), 596–600 (1995).
[CrossRef]

Na, J.-H.

Neirynck, J.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270(1-2), 596–600 (1995).
[CrossRef]

Nishida, K.

M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12(4), 041202 (2007).
[CrossRef] [PubMed]

Obeng, Y.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49(1), 35–44 (2002).
[CrossRef]

Oh, W. Y.

Ostapenko, S.

D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
[CrossRef]

Park, K. H.

K. H. Park, H. J. Kim, O. M. Chang, and H. D. Jeong, “Effects of pad properties on material removal in chemical mechanical polishing,” J. Mater. Process. Technol. 187-188, 73–76 (2007).
[CrossRef]

Philipossian, A.

T. Sun, Y. Zhuang, L. Borucki, and A. Philipossian, “Optical and mechanical characterization of chemical mechanical planarization pad surfaces,” Jpn. J. Appl. Phys. 49(4), 046501 (2010).
[CrossRef]

Y. Zhuang, X. Liao, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, “Effect of pad micro-texture on frictional force, removal rate, and wafer topography during copper CMP process,” Elec. Soc. Trans. 27(1), 599–604 (2010).

Plötner, M.

Z. Stavreva, D. Zeidler, M. Plötner, G. Grasshoff, and K. Drescher, “Chemical-mechanical polishing of copper for interconnect formation,” Microelectron. Eng. 33(1-4), 249–257 (1997).
[CrossRef]

Price, D. T.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270(1-2), 596–600 (1995).
[CrossRef]

Richardson, K. A.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49(1), 35–44 (2002).
[CrossRef]

Ryu, S.-Y.

Sikder, A. K.

P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. Rep. 45(3-6), 89–220 (2004).
[CrossRef]

Soma, T.

M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12(4), 041202 (2007).
[CrossRef] [PubMed]

Soulier, B.

Stavreva, Z.

Z. Stavreva, D. Zeidler, M. Plötner, G. Grasshoff, and K. Drescher, “Chemical-mechanical polishing of copper for interconnect formation,” Microelectron. Eng. 33(1-4), 249–257 (1997).
[CrossRef]

Steigerwald, J. M.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270(1-2), 596–600 (1995).
[CrossRef]

Stein, D.

D. Stein, D. Hetherington, M. Dugger, and T. Stout, “Optical interferometry for surface measurements of CMP pads,” J. Electron. Mater. 25(10), 1623–1627 (1996).
[CrossRef]

Stout, T.

D. Stein, D. Hetherington, M. Dugger, and T. Stout, “Optical interferometry for surface measurements of CMP pads,” J. Electron. Mater. 25(10), 1623–1627 (1996).
[CrossRef]

Sun, T.

T. Sun, Y. Zhuang, L. Borucki, and A. Philipossian, “Optical and mechanical characterization of chemical mechanical planarization pad surfaces,” Jpn. J. Appl. Phys. 49(4), 046501 (2010).
[CrossRef]

Tano, Y.

M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12(4), 041202 (2007).
[CrossRef] [PubMed]

Tarasov, I.

D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
[CrossRef]

Tearney, G. J.

Theng, S.

Y. Zhuang, X. Liao, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, “Effect of pad micro-texture on frictional force, removal rate, and wafer topography during copper CMP process,” Elec. Soc. Trans. 27(1), 599–604 (2010).

Totzke, D. G.

D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
[CrossRef]

Vabre, L.

Vaiedelich, S.

Wei, X.

Y. Zhuang, X. Liao, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, “Effect of pad micro-texture on frictional force, removal rate, and wafer topography during copper CMP process,” Elec. Soc. Trans. 27(1), 599–604 (2010).

Yelin, R.

You, L.

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270(1-2), 596–600 (1995).
[CrossRef]

Yumikake, K.

M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12(4), 041202 (2007).
[CrossRef] [PubMed]

Yun, S. H.

Zantye, P. B.

P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. Rep. 45(3-6), 89–220 (2004).
[CrossRef]

Zeidler, D.

Z. Stavreva, D. Zeidler, M. Plötner, G. Grasshoff, and K. Drescher, “Chemical-mechanical polishing of copper for interconnect formation,” Microelectron. Eng. 33(1-4), 249–257 (1997).
[CrossRef]

Zhuang, Y.

Y. Zhuang, X. Liao, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, “Effect of pad micro-texture on frictional force, removal rate, and wafer topography during copper CMP process,” Elec. Soc. Trans. 27(1), 599–604 (2010).

T. Sun, Y. Zhuang, L. Borucki, and A. Philipossian, “Optical and mechanical characterization of chemical mechanical planarization pad surfaces,” Jpn. J. Appl. Phys. 49(4), 046501 (2010).
[CrossRef]

AIP Conf. Proc.

D. G. Totzke, A. Belyaev, W. Moreno, S. Ostapenko, I. Tarasov, W. Easter, A. Maury, and A. Crevasse, “Non-destructive characterization of CMP pads using scanning ultrasonic transmission,” AIP Conf. Proc. 550, 259–262 (2001).
[CrossRef]

Appl. Opt.

Elec. Soc. Trans.

Y. Zhuang, X. Liao, L. J. Borucki, S. Theng, X. Wei, T. Ashizawa, and A. Philipossian, “Effect of pad micro-texture on frictional force, removal rate, and wafer topography during copper CMP process,” Elec. Soc. Trans. 27(1), 599–604 (2010).

J. Biomed. Opt.

M. Akiba, N. Maeda, K. Yumikake, T. Soma, K. Nishida, Y. Tano, and K. P. Chan, “Ultrahigh-resolution imaging of human donor cornea using full-field optical coherence tomography,” J. Biomed. Opt. 12(4), 041202 (2007).
[CrossRef] [PubMed]

J. Electron. Mater.

D. Stein, D. Hetherington, M. Dugger, and T. Stout, “Optical interferometry for surface measurements of CMP pads,” J. Electron. Mater. 25(10), 1623–1627 (1996).
[CrossRef]

J. Korean Phys. Soc.

H. Lee, D.-I. Kim, H. Jeong, and K. H. Kim, “Chemical mechanical polishing of a Ti-Si-N nanocomposite and AFM study on its nanostructure,” J. Korean Phys. Soc. 57(4), 845–849 (2010).
[CrossRef]

J. Mater. Process. Technol.

K. H. Park, H. J. Kim, O. M. Chang, and H. D. Jeong, “Effects of pad properties on material removal in chemical mechanical polishing,” J. Mater. Process. Technol. 187-188, 73–76 (2007).
[CrossRef]

J. McGrath and C. Davis, “Polishing pad surface characterisation in chemical mechanical planarisation,” J. Mater. Process. Technol. 153–154, 666–673 (2004).
[CrossRef]

J. Opt. Soc. Korea

Jpn. J. Appl. Phys.

T. Sun, Y. Zhuang, L. Borucki, and A. Philipossian, “Optical and mechanical characterization of chemical mechanical planarization pad surfaces,” Jpn. J. Appl. Phys. 49(4), 046501 (2010).
[CrossRef]

Mater. Charact.

H. Lu, B. Fookes, Y. Obeng, S. Machinski, and K. A. Richardson, “Quantitative analysis of physical and chemical changes in CMP polyurethane pad surfaces,” Mater. Charact. 49(1), 35–44 (2002).
[CrossRef]

Mater. Sci. Eng. Rep.

P. B. Zantye, A. Kumar, and A. K. Sikder, “Chemical mechanical planarization for microelectronics applications,” Mater. Sci. Eng. Rep. 45(3-6), 89–220 (2004).
[CrossRef]

Microelectron. Eng.

Z. Stavreva, D. Zeidler, M. Plötner, G. Grasshoff, and K. Drescher, “Chemical-mechanical polishing of copper for interconnect formation,” Microelectron. Eng. 33(1-4), 249–257 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Thin Solid Films

R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette, and S. P. Murarka, “Chemical-mechanical polishing of copper with oxide and polymer interlevel dielectrics,” Thin Solid Films 270(1-2), 596–600 (1995).
[CrossRef]

Other

S. Nagai, T. Fujishima, and K. Sameshima, “Nondestructive monitoring of CMP pad surface,” IEEE International Symposium on Semiconductor Manufacturing, 343–346 (2003).

Supplementary Material (2)

» Media 1: MPG (3517 KB)     
» Media 2: MPG (3720 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Layout of the CMP process.

Fig. 2
Fig. 2

En-face FF-OCT images of the wet pad (no polishing) at depth of (a) z = 25 µm, (b) z = 39 µm below the pad top surface, respectively. The single frames were excerpted from the FF-OCT video recordings of the pad surface (Media 1). (c) Top view of 3-D pad structure reconstructed from a stack of 178 en-face OCT images (670(X) × 670(Y) × 89(Z) µm3) and its cross-sectional OCT images along the white lines in the figure (Media 2). Asperities and pores are indicated as white arrows and white asterisks, respectively. (d) Scanning electron microscope (SEM, 100×, top down) image of the same type new pad (through different location).

Fig. 3
Fig. 3

(a) Cross-sectional cut view (XZ) extracted from 3-D OCT data, (b) Extracted surface profile (green line) of the pad surface, and (c) The surface roughness Ra calculated with the surface profile.

Fig. 4
Fig. 4

Experimentally obtained 3-D FF-OCT images, cross-section images, and SEM images (500 × ) taken with; (a) new pad, (b) 68 wafers polished pad, (c) 139 wafers polished pad, (d) 178 wafers polished pad, and (e) life-ended pad. White bars in the cross-sectional OCT images are 20 µm (vertical) and 100 µm (horizontal).

Fig. 5
Fig. 5

Pad surface Ra values measured by FF-OCT and Wyko in terms of the pad lifetime.

Fig. 6
Fig. 6

(a) 3-D FF-OCT images of the grooved pads measured in terms of the pad life time, and their cross-sectional OCT images taken along white lines, (b) The groove depths taken with FF-OCT and Wyko, (c) Correlation between FF-OCT and Wyko measurements.

Metrics