Abstract

There is growing demand for robust, reliable, low cost, and easy to use sensor systems that feature multiparameter analysis in many application areas ranging from safety and security to point of care and medical diagnostics. Here, we highlight the theory and show first experimental results on a novel approach targeting the realization of massively multiplexed sensor arrays. The presented sensor platform is based on arrays of frequency-modulated integrated optical microring resonators (MRR) fed by a single bus waveguide combined with lock-in detection to filter out in a reliable and simple manner their individual response to external stimuli. The working principle is exemplified on an array of four thermo-optically modulated MRR. It is shown that with this technique tracking of individual resonances is possible even in case of strong spectral overlap.

© 2011 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors 7, 508–536 (2007).
    [CrossRef]
  2. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
    [CrossRef] [PubMed]
  3. C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
    [CrossRef]
  4. C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
    [CrossRef]
  5. V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by microring resonators,” Sensors 7, 2741–2749 (2007).
    [CrossRef]
  6. R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
    [CrossRef] [PubMed]
  7. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16, 11930–11936 (2008).
    [CrossRef] [PubMed]
  8. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-silicon overlay,” Opt. Express 14, 11622–11630 (2006).
    [CrossRef] [PubMed]
  9. G. Maire, L. Vivien, G. Sattler, A. Kazmierczak, B. Sanchez, K. B. Gylfason, A. Griol, D. Marris-Morini, E. Cassan, D. Giannone, H. Sohlström, and D. Hill, “High efficiency silicon nitride surface grating couplers,” Opt. Express 16, 328–333 (2008).
    [CrossRef] [PubMed]
  10. H. Heidrich, P. Lützow, H. Venghaus, and H. J. W. M. Hoekstra, “Optical sensor and method for detecting molecules,” patent pending (PCT/EP2010/003784).
  11. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
    [CrossRef]
  12. J. Heebner, R. Grover, and T. A. Ibrahim, Optical Microresonators (Springer, 2008).
  13. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
    [CrossRef] [PubMed]
  14. H. J. W. M. Hoekstra, P. V. Lambeck, H. P. Uranus, and T. M Koster, “Relation between noise and resolution in integrated optical refractometric sensing,” Sens. Actuators B 134, 702–710 (2008).
    [CrossRef]
  15. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26, 1032–1041 (2009).
    [CrossRef]

2010

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
[CrossRef] [PubMed]

2009

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26, 1032–1041 (2009).
[CrossRef]

2008

2007

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors 7, 508–536 (2007).
[CrossRef]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by microring resonators,” Sensors 7, 2741–2749 (2007).
[CrossRef]

2006

2003

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

2000

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

Agarwal, A.

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Baets, R.

Burgmeier, J.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
[CrossRef] [PubMed]

Casamassima, B.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors 7, 508–536 (2007).
[CrossRef]

Cassan, E.

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
[CrossRef]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

Chen, L.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16, 11930–11936 (2008).
[CrossRef] [PubMed]

De Leonardis, F.

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by microring resonators,” Sensors 7, 2741–2749 (2007).
[CrossRef]

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors 7, 508–536 (2007).
[CrossRef]

Dell’Olio, F.

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors 7, 508–536 (2007).
[CrossRef]

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by microring resonators,” Sensors 7, 2741–2749 (2007).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Giannone, D.

Gondarenko, A.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Griol, A.

Grover, R.

J. Heebner, R. Grover, and T. A. Ibrahim, Optical Microresonators (Springer, 2008).

Guo, L. J.

C.-Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24, 1395–1402 (2006).
[CrossRef]

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

Gylfason, K. B.

Heebner, J.

J. Heebner, R. Grover, and T. A. Ibrahim, Optical Microresonators (Springer, 2008).

Heidrich, H.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
[CrossRef] [PubMed]

H. Heidrich, P. Lützow, H. Venghaus, and H. J. W. M. Hoekstra, “Optical sensor and method for detecting molecules,” patent pending (PCT/EP2010/003784).

Hill, D.

Hoekstra, H. J. W. M.

H. J. W. M. Hoekstra, P. V. Lambeck, H. P. Uranus, and T. M Koster, “Relation between noise and resolution in integrated optical refractometric sensing,” Sens. Actuators B 134, 702–710 (2008).
[CrossRef]

H. Heidrich, P. Lützow, H. Venghaus, and H. J. W. M. Hoekstra, “Optical sensor and method for detecting molecules,” patent pending (PCT/EP2010/003784).

Hu, J.

Ibrahim, T. A.

J. Heebner, R. Grover, and T. A. Ibrahim, Optical Microresonators (Springer, 2008).

Kazmierczak, A.

Kimerling, L. C.

Koch, J.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
[CrossRef] [PubMed]

Koster, T. M

H. J. W. M. Hoekstra, P. V. Lambeck, H. P. Uranus, and T. M Koster, “Relation between noise and resolution in integrated optical refractometric sensing,” Sens. Actuators B 134, 702–710 (2008).
[CrossRef]

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Lambeck, P. V.

H. J. W. M. Hoekstra, P. V. Lambeck, H. P. Uranus, and T. M Koster, “Relation between noise and resolution in integrated optical refractometric sensing,” Sens. Actuators B 134, 702–710 (2008).
[CrossRef]

Lipson, M.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16, 11930–11936 (2008).
[CrossRef] [PubMed]

Lützow, P.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
[CrossRef] [PubMed]

H. Heidrich, P. Lützow, H. Venghaus, and H. J. W. M. Hoekstra, “Optical sensor and method for detecting molecules,” patent pending (PCT/EP2010/003784).

Maire, G.

Marris-Morini, D.

Nitkowski, A.

Orghici, R.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
[CrossRef] [PubMed]

Passaro, V. M. N.

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by microring resonators,” Sensors 7, 2741–2749 (2007).
[CrossRef]

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors 7, 508–536 (2007).
[CrossRef]

Roelkens, G.

Sanchez, B.

Sattler, G.

Schade, W.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
[CrossRef] [PubMed]

Sohlström, H.

Sun, X.

Uranus, H. P.

H. J. W. M. Hoekstra, P. V. Lambeck, H. P. Uranus, and T. M Koster, “Relation between noise and resolution in integrated optical refractometric sensing,” Sens. Actuators B 134, 702–710 (2008).
[CrossRef]

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Van Thourhout, D.

Venghaus, H.

H. Heidrich, P. Lützow, H. Venghaus, and H. J. W. M. Hoekstra, “Optical sensor and method for detecting molecules,” patent pending (PCT/EP2010/003784).

Vivien, L.

Waldvogel, S.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
[CrossRef] [PubMed]

Welschoff, N.

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
[CrossRef] [PubMed]

Wiederhecker, G. S.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

Appl. Phys. Lett.

C.-Y. Chao and L. J. Guo, “Biochemical sensors based on polymer microrings with sharp asymmetrical resonance,” Appl. Phys. Lett. 83, 1527–1529 (2003).
[CrossRef]

Electron. Lett.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nature

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462, 633–636 (2009).
[CrossRef] [PubMed]

Opt. Express

Science

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007).
[CrossRef] [PubMed]

Sens. Actuators B

H. J. W. M. Hoekstra, P. V. Lambeck, H. P. Uranus, and T. M Koster, “Relation between noise and resolution in integrated optical refractometric sensing,” Sens. Actuators B 134, 702–710 (2008).
[CrossRef]

Sensors

V. M. N. Passaro, F. Dell’Olio, B. Casamassima, and F. De Leonardis, “Guided-wave optical biosensors,” Sensors 7, 508–536 (2007).
[CrossRef]

V. M. N. Passaro, F. Dell’Olio, and F. De Leonardis, “Ammonia optical sensing by microring resonators,” Sensors 7, 2741–2749 (2007).
[CrossRef]

R. Orghici, P. Lützow, J. Burgmeier, J. Koch, H. Heidrich, W. Schade, N. Welschoff, and S. Waldvogel, “A microring resonator sensor for sensitive detection of 1,3,5-trinitrotoluene (TNT),” Sensors 10, 6788–6795 (2010).
[CrossRef] [PubMed]

Other

H. Heidrich, P. Lützow, H. Venghaus, and H. J. W. M. Hoekstra, “Optical sensor and method for detecting molecules,” patent pending (PCT/EP2010/003784).

J. Heebner, R. Grover, and T. A. Ibrahim, Optical Microresonators (Springer, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Properties of frequency-modulated MRR. (a) Simulated resonance spectrum of a single MRR. Resonances belonging to different resonance orders are spectrally separated by the free spectral range (FSR). The linewidth is defined as the full width at half maximum (FWHM) of a resonance dip. The inset shows a schematic of a MRR with racetrack shape coupled to a single bus waveguide. (b) Simulated resonance dips of two exemplary MRR with similar resonance frequencies (red and blue lines). If the two MRR are coupled to the same bus waveguide the overlapping resonance profiles lead to the shaded transmission spectrum. The dashed green line represents the calculated and normalized lock-in signal for the MRR with the red resonance profile being modulated. The signals are plotted against the wavelength difference with respect to the resonance frequency of the modulated MRR. Units are given in terms of its unmodulated linewidth Δλ, simulation parameters are stated in the text.

Fig. 2
Fig. 2

Fabricated test structures. Background: 4” Si Wafer with MRR arrays. Lower inset: Microscope image of an exemplary MRR. The waveguides are seen as thin lines surrounded by metal structures. Upper inset: SEM image giving a more detailed view on part of the MRR waveguide and metal heater.

Fig. 3
Fig. 3

Transmission spectra. Part (a) of the figure shows the transmission spectrum of four unmodulated MRR. Part (b) depicts the lock-in traces for the same MRR subsequently being modulated. The measured data is represented by the colored dots. Lines are guides to the eye. The inset is a schematic of the MRR array with heating electrodes (yellow) establishing the nomenclature used in the text. The different colors of the MRR refer to the colors of the respective lock-in traces.

Fig. 4
Fig. 4

Phase response. Zoom-in on lock-in signals for MRR three and four. Also shown is the lock-in phase for both MRR.

Fig. 5
Fig. 5

Comparison between modulated and unmodulated transmission spectra. Blue dots are the result of a phase-corrected sum of the lock-in traces for MRR one to four subsequently being modulated (SLI ). The light gray background corresponds to the derivative of the unmodulated spectrum with respect to wavelength (d/dλ F). SLI is blueshifted with respect to d/dλ F due to the mean resistive heating effect of the modulation.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

T ( ϕ ) = a 2 + | t | 2 2 a | t | cos ( ϕ ) 1 + a 2 | t | 2 2 a | t | cos ( ϕ )
ϕ = N 2 π λ L
F LOCK–IN ( λ ) = 2 T 0 T dt sin ( ω t ) f ( t , λ ) ,
F n ( λ ) = f ( N R 1 , λ ) f ( N R i , λ ) f ( N R n , λ )
f MOD ( N , λ ) = f ( N + Δ N , λ )
f MOD ( N , λ ) = f ( N , λ ) + d dN f ( N , λ ) Δ N + 𝒪 ( Δ N 2 )
F MOD : R i n ( λ ) = F n ( λ ) + f ( N R 1 , λ ) d dN R i f ( N R i , λ ) Δ N f ( N R n , λ ) + 𝒪 ( Δ N 2 )
F LOCK–IN : R i n ( λ ) = ɛ f ( N R 1 , λ ) d dN R i f ( N R i , λ ) f ( N R n , λ ) + 𝒪 ( Δ N 3 )
F LOCK–IN : R i n ( λ ) = ɛ ( λ N ) f ( N R 1 , λ ) d d λ f ( N R i , λ ) f ( N R n , λ ) + 𝒪 ( Δ N 3 )

Metrics