Abstract

A microlens-based optical detector was developed to perform small animal optical imaging. In this paper we present an iterative reconstruction algorithm yielding improved image quality and spatial resolution as compared to conventional inverse mapping. The reconstruction method utilizes the compressive sensing concept to cope with the undersampling nature of the problem. Each iteration in the algorithm contains two separate steps to ensure both the convergence of the least-square solution and the minimization of the l1-norm of the sparsifying transform. The results estimated from measurements, employing a Derenzo-like pattern and a Siemens star phantom, illustrate significant improvements in contrast and spatial resolution in comparison to results calculated by inverse mapping.

© 2011 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
    [CrossRef] [PubMed]
  2. D. Rowland, J. Lewis, and M. Welch, “Molecular imaging: the application of small animal positron emission tomography,” J. Cell. Biochem. 87, 110–115 (2002).
    [CrossRef]
  3. G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
    [CrossRef] [PubMed]
  4. R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).
    [CrossRef] [PubMed]
  5. J. Peter, D. Unholtz, R. Schulz, J. Doll, and W. Semmler, “Development and initial results of a tomographic dual-modality positron/optical small animal imager,” IEEE Trans. Nucl. Sci. 54, 1553–1560 (2007).
    [CrossRef]
  6. D. Unholtz, W. Semmler, O. Dössel, and J. Peter, “Image formation with a microlens-based optical detector: a three-dimensional mapping approach,” Appl. Opt. 48, D273–D279 (2009).
    [CrossRef] [PubMed]
  7. R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
    [CrossRef]
  8. M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
    [CrossRef]
  9. A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591 –607 (2006).
    [CrossRef]
  10. N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays (Journal Paper),” Opt. Eng. 33, 3624–3633 (1994).
    [CrossRef]
  11. S. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
    [CrossRef] [PubMed]
  12. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
    [CrossRef]
  13. H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
    [CrossRef]
  14. S. Hong, J. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
    [CrossRef] [PubMed]
  15. S. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12, 4579–4588 (2004).
    [CrossRef] [PubMed]
  16. J. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, 77–94 (2009).
    [CrossRef]
  17. J. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [CrossRef]
  18. D. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express 15, 12039–12049 (2007).
    [CrossRef] [PubMed]
  19. D. Hwang, J. Park, S. Kim, D. Shin, and E. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45, 4631–4637 (2006).
    [CrossRef] [PubMed]
  20. K. Lee, D. Hwang, S. Kim, and E. Kim, “Blur-metric-based resolution enhancement of computationally reconstructed integral images,” Appl. Opt. 47, 2859–2869 (2008).
    [CrossRef] [PubMed]
  21. G. Saavedra, R. Martinez-Cuenca, M. Martinez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16, 17154–17160 (2008).
    [CrossRef] [PubMed]
  22. J. Qi and R. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51, R541–R578 (2006).
    [CrossRef] [PubMed]
  23. E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).
  24. G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
    [CrossRef] [PubMed]
  25. M. Katz, Introduction to Geometrical Optics (World Scientific Pub. Co. Inc., 2002).
  26. E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
    [CrossRef]
  27. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
    [CrossRef]
  28. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
    [CrossRef]
  29. D. Shin, E. Kim, and B. Lee, “Computational reconstruction of three-dimensional objects in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
    [CrossRef]

2011

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

2009

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

J. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, 77–94 (2009).
[CrossRef]

D. Unholtz, W. Semmler, O. Dössel, and J. Peter, “Image formation with a microlens-based optical detector: a three-dimensional mapping approach,” Appl. Opt. 48, D273–D279 (2009).
[CrossRef] [PubMed]

2008

2007

J. Peter, D. Unholtz, R. Schulz, J. Doll, and W. Semmler, “Development and initial results of a tomographic dual-modality positron/optical small animal imager,” IEEE Trans. Nucl. Sci. 54, 1553–1560 (2007).
[CrossRef]

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

D. Shin and H. Yoo, “Image quality enhancement in 3D computational integral imaging by use of interpolation methods,” Opt. Express 15, 12039–12049 (2007).
[CrossRef] [PubMed]

2006

D. Hwang, J. Park, S. Kim, D. Shin, and E. Kim, “Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique,” Appl. Opt. 45, 4631–4637 (2006).
[CrossRef] [PubMed]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591 –607 (2006).
[CrossRef]

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[CrossRef]

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

J. Qi and R. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51, R541–R578 (2006).
[CrossRef] [PubMed]

E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

2005

D. Shin, E. Kim, and B. Lee, “Computational reconstruction of three-dimensional objects in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
[CrossRef]

2004

2003

2002

D. Rowland, J. Lewis, and M. Welch, “Molecular imaging: the application of small animal positron emission tomography,” J. Cell. Biochem. 87, 110–115 (2002).
[CrossRef]

J. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
[CrossRef]

2001

1998

1994

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays (Journal Paper),” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Arai, J.

Arimoto, H.

Bachelier, R.

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

Brewin, M.

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays (Journal Paper),” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Buijs, J.

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

Candès, E.

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[CrossRef]

Chen, G.

G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
[CrossRef] [PubMed]

Cheson, B. D.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Cho, M.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

Clezardin, P.

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

Daneshpanah, M.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

G. Saavedra, R. Martinez-Cuenca, M. Martinez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16, 17154–17160 (2008).
[CrossRef] [PubMed]

Davies, N.

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays (Journal Paper),” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Doll, J.

J. Peter, D. Unholtz, R. Schulz, J. Doll, and W. Semmler, “Development and initial results of a tomographic dual-modality positron/optical small animal imager,” IEEE Trans. Nucl. Sci. 54, 1553–1560 (2007).
[CrossRef]

Donoho, D.

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

Dössel, O.

Eckelman, W.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Guyton, K.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Henriquez, N.

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

Hoffman, J.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Hong, K.

J. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, 77–94 (2009).
[CrossRef]

Hong, S.

Hoshino, H.

Hwang, D.

Jang, J.

Javidi, B.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

G. Saavedra, R. Martinez-Cuenca, M. Martinez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16, 17154–17160 (2008).
[CrossRef] [PubMed]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591 –607 (2006).
[CrossRef]

M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G. Saavedra, “Multifacet structure of observed reconstructed integral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).
[CrossRef]

S. Hong and B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12, 4579–4588 (2004).
[CrossRef] [PubMed]

S. Hong, J. Jang, and B. Javidi, “Three-dimensional volumetric object reconstruction using computational integral imaging,” Opt. Express 12, 483–491 (2004).
[CrossRef] [PubMed]

S. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
[CrossRef] [PubMed]

J. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
[CrossRef]

H. Arimoto and B. Javidi, “Integral three-dimensional imaging with digital reconstruction,” Opt. Lett. 26, 157–159 (2001).
[CrossRef]

Kaijzel, E.

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

Kao, C.

E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

Katz, M.

M. Katz, Introduction to Geometrical Optics (World Scientific Pub. Co. Inc., 2002).

Kelloff, G.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Kim, E.

Kim, S.

Krohn, K.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Larson, S.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Leahy, R.

J. Qi and R. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51, R541–R578 (2006).
[CrossRef] [PubMed]

Lee, B.

J. Park, K. Hong, and B. Lee, “Recent progress in three-dimensional information processing based on integral imaging,” Appl. Opt. 48, 77–94 (2009).
[CrossRef]

D. Shin, E. Kim, and B. Lee, “Computational reconstruction of three-dimensional objects in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

S. Min, B. Javidi, and B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
[CrossRef] [PubMed]

Lee, K.

Leng, S.

G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
[CrossRef] [PubMed]

Lewis, J.

D. Rowland, J. Lewis, and M. Welch, “Molecular imaging: the application of small animal positron emission tomography,” J. Cell. Biochem. 87, 110–115 (2002).
[CrossRef]

Link, J.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Löwik, C.

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

Mankoff, D.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Martinez-Corral, M.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

G. Saavedra, R. Martinez-Cuenca, M. Martinez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16, 17154–17160 (2008).
[CrossRef] [PubMed]

Martínez-Corral, M.

Martinez-Cuenca, R.

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

G. Saavedra, R. Martinez-Cuenca, M. Martinez-Corral, H. Navarro, M. Daneshpanah, and B. Javidi, “Digital slicing of 3D scenes by Fourier filtering of integral images,” Opt. Express 16, 17154–17160 (2008).
[CrossRef] [PubMed]

Martínez-Cuenca, R.

McCormick, M.

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays (Journal Paper),” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Mills, G. Q.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Min, S.

Moon, I.

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

Navarro, H.

Ntziachristos, V.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).
[CrossRef] [PubMed]

O’Shaughnessy, J.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Okano, F.

Pan, X.

E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

Park, J.

Peter, J.

D. Unholtz, W. Semmler, O. Dössel, and J. Peter, “Image formation with a microlens-based optical detector: a three-dimensional mapping approach,” Appl. Opt. 48, D273–D279 (2009).
[CrossRef] [PubMed]

J. Peter, D. Unholtz, R. Schulz, J. Doll, and W. Semmler, “Development and initial results of a tomographic dual-modality positron/optical small animal imager,” IEEE Trans. Nucl. Sci. 54, 1553–1560 (2007).
[CrossRef]

Qi, J.

J. Qi and R. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51, R541–R578 (2006).
[CrossRef] [PubMed]

Que, I.

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

Romberg, J.

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[CrossRef]

Rowland, D.

D. Rowland, J. Lewis, and M. Welch, “Molecular imaging: the application of small animal positron emission tomography,” J. Cell. Biochem. 87, 110–115 (2002).
[CrossRef]

Saavedra, G.

Scher, H.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Schulz, R.

J. Peter, D. Unholtz, R. Schulz, J. Doll, and W. Semmler, “Development and initial results of a tomographic dual-modality positron/optical small animal imager,” IEEE Trans. Nucl. Sci. 54, 1553–1560 (2007).
[CrossRef]

Semmler, W.

D. Unholtz, W. Semmler, O. Dössel, and J. Peter, “Image formation with a microlens-based optical detector: a three-dimensional mapping approach,” Appl. Opt. 48, D273–D279 (2009).
[CrossRef] [PubMed]

J. Peter, D. Unholtz, R. Schulz, J. Doll, and W. Semmler, “Development and initial results of a tomographic dual-modality positron/optical small animal imager,” IEEE Trans. Nucl. Sci. 54, 1553–1560 (2007).
[CrossRef]

Shin, D.

Sidky, E.

E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

Sigman, C. C.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Stern, A.

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591 –607 (2006).
[CrossRef]

Sullivan, D. C.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Tang, J.

G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
[CrossRef] [PubMed]

Tao, T.

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[CrossRef]

Tatum, J. L.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Unholtz, D.

D. Unholtz, W. Semmler, O. Dössel, and J. Peter, “Image formation with a microlens-based optical detector: a three-dimensional mapping approach,” Appl. Opt. 48, D273–D279 (2009).
[CrossRef] [PubMed]

J. Peter, D. Unholtz, R. Schulz, J. Doll, and W. Semmler, “Development and initial results of a tomographic dual-modality positron/optical small animal imager,” IEEE Trans. Nucl. Sci. 54, 1553–1560 (2007).
[CrossRef]

van der Pluijm, G.

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

van Overveld, P.

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

Weissleder, R.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).
[CrossRef] [PubMed]

Welch, M.

D. Rowland, J. Lewis, and M. Welch, “Molecular imaging: the application of small animal positron emission tomography,” J. Cell. Biochem. 87, 110–115 (2002).
[CrossRef]

Woodcock, J.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Yoo, H.

Yuyama, I.

Appl. Opt.

Clin. Cancer Res.

G. Kelloff, K. Krohn, S. Larson, R. Weissleder, D. Mankoff, J. Hoffman, J. Link, K. Guyton, W. Eckelman, H. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock, “The progress and promise of molecular imaging probes in oncologic drug development,” Clin. Cancer Res. 11, 7967–7985 (2005).
[CrossRef] [PubMed]

Clin. Exp. Metastasis

N. Henriquez, P. van Overveld, I. Que, J. Buijs, R. Bachelier, E. Kaijzel, C. Löwik, P. Clezardin, and G. van der Pluijm, “Advances in optical imaging and novel model systems for cancer metastasis research,” Clin. Exp. Metastasis 24, 699–705 (2007).
[CrossRef] [PubMed]

IEEE Trans. Inf. Theory

E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).
[CrossRef]

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).
[CrossRef]

IEEE Trans. Nucl. Sci.

J. Peter, D. Unholtz, R. Schulz, J. Doll, and W. Semmler, “Development and initial results of a tomographic dual-modality positron/optical small animal imager,” IEEE Trans. Nucl. Sci. 54, 1553–1560 (2007).
[CrossRef]

J. Cell. Biochem.

D. Rowland, J. Lewis, and M. Welch, “Molecular imaging: the application of small animal positron emission tomography,” J. Cell. Biochem. 87, 110–115 (2002).
[CrossRef]

J. Opt. Soc. Am. A

J. X-Ray Sci. Technol.

E. Sidky, C. Kao, and X. Pan, “Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT,” J. X-Ray Sci. Technol. 14, 119–139 (2006).

Jpn. J. Appl. Phys.

D. Shin, E. Kim, and B. Lee, “Computational reconstruction of three-dimensional objects in integral imaging using lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).
[CrossRef]

Med. Phys.

G. Chen, J. Tang, and S. Leng, “Prior image constrained compressed sensing (PICCS): a method to accurately reconstruct dynamic CT images from highly undersampled projection data sets,” Med. Phys. 35, 660–663 (2008).
[CrossRef] [PubMed]

Nat. Med.

R. Weissleder and V. Ntziachristos, “Shedding light onto live molecular targets,” Nat. Med. 9, 123–128 (2003).
[CrossRef] [PubMed]

Opt. Eng.

N. Davies, M. McCormick, and M. Brewin, “Design and analysis of an image transfer system using microlens arrays (Journal Paper),” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Med. Biol.

J. Qi and R. Leahy, “Iterative reconstruction techniques in emission computed tomography,” Phys. Med. Biol. 51, R541–R578 (2006).
[CrossRef] [PubMed]

Proc. IEEE

R. Martinez-Cuenca, G. Saavedra, M. Martinez-Corral, and B. Javidi, “Progress in 3-D multiperspective display by integral imaging,” Proc. IEEE 97, 1067–1077 (2009).
[CrossRef]

M. Cho, M. Daneshpanah, I. Moon, and B. Javidi, “Three-dimensional optical sensing and visualization using integral imaging,” Proc. IEEE 99, 556–575 (2011).
[CrossRef]

A. Stern and B. Javidi, “Three-dimensional image sensing, visualization, and processing using integral imaging,” Proc. IEEE 94, 591 –607 (2006).
[CrossRef]

Other

M. Katz, Introduction to Geometrical Optics (World Scientific Pub. Co. Inc., 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics