Abstract

Micro pattern on PDMS surface has been achieved by using synchrotron radiation (SR) stimulated etching. The experimental results indicated that SR stimulated etching has many advantages, such as extremely high etching rate (as large as 40-50 μm per 10 min), area-selectivity and anisotropy at room temperature, high spatial resolution. Combining the SR stimulated etching with photolithography, a PDMS-based microfluidic channel was obtained. The aim of this work is to develop a three-dimensional microfluidic channel with a special through hole, which is beneficial for cell differentiation, functionality and longevity and cannot be fabricated by conventional direct tooling techniques.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
    [CrossRef] [PubMed]
  2. A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem. 71(23), 5340–5347 (1999).
    [CrossRef] [PubMed]
  3. A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
    [CrossRef] [PubMed]
  4. A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabricated elastomeric stencils for micropatterning cell cultures,” J. Biomed. Mater. Res. 52(2), 346–353 (2000).
    [CrossRef] [PubMed]
  5. G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their application for DNA separation and detection,” Sens. Actuators B 75, 142–148 (2001).
  6. S. G. Li, Z. G. Xu, A. Mazzeo, D. J. Burns, G. Fu, M. Dirckx, V. Shilpiekandula, X. Chen, N. C. Nayak, E. Wong, S. F. Yoon, Z. P. Fang, K. Youcef-Toumi, D. Hardt, S. B. Tor, C. Y. Yue, and J. H. Chun, “Review of production of microfluidic devices: material, manufacturing and metrology,” Proc. SPIE 6993, 69930F1–12 (2008).
  7. C. Gaertner, H. Becker, B. Anton, A. P. O'Neill, and O. Roetting, “Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts,” Proc. SPIE 4982, 99–104 (2003).
    [CrossRef]
  8. J. Narasimhan and I. Papautsky, “Rapid fabrication of hot embossing tools using PDMS,” Proc. SPIE 4982, 110–119 (2003).
    [CrossRef]
  9. Z.-C. Peng, Z.-G. Ling, J. Goettert, J. Hormes, and K. Lian, “Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography,” Proc. SPIE 5718, 209–215 (2005).
    [CrossRef]
  10. A. Bubendorfer, X. M. Liu, and A. V. Ellis, “Microfabrication of PDMS microchannels using SU-8/PMMA moldings and their sealing to polystyrene substrates,” Smart Mater. Struct. 16(2), 367–371 (2007).
    [CrossRef]
  11. M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromech. Microeng. 19(3), 035028 (2009).
    [CrossRef]
  12. W. Brostow, B. P. Gorman, and O. Olea-Mejia, “Focused ion beam milling and scanning electron microscopy characterization of polymer metal hybrids,” Mater. Lett. 61(6), 1333–1336 (2007).
    [CrossRef]
  13. C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
    [CrossRef]
  14. T. Urisu and H. Kyuragi, “Synchrotron radiation-excited chemical-vapor deposition and etching,” J. Vac. Sci. Technol. B 5(5), 1436–1440 (1987).
    [CrossRef]
  15. C. S. Wang and T. Urisu, “Synchrotron radiation stimulated etching SiO2 thin films with a contact cobalt mask,” Appl. Surf. Sci. 242(3-4), 276–280 (2005).
    [CrossRef]
  16. C. Wang, X. Pan, C. Sun, and T. Urisu, “Area-selective deposition of self-assembled monolayers on SiO2/Si(100) patterns,” Appl. Phys. Lett. 89(23), 233105–233107 (2006).
    [CrossRef]
  17. P. Camelliti, J. O. Gallagher, P. Kohl, and A. D. McCulloch, “Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium,” Nat. Protoc. 1(3), 1379–1391 (2006).
    [CrossRef]

2009

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromech. Microeng. 19(3), 035028 (2009).
[CrossRef]

2007

W. Brostow, B. P. Gorman, and O. Olea-Mejia, “Focused ion beam milling and scanning electron microscopy characterization of polymer metal hybrids,” Mater. Lett. 61(6), 1333–1336 (2007).
[CrossRef]

A. Bubendorfer, X. M. Liu, and A. V. Ellis, “Microfabrication of PDMS microchannels using SU-8/PMMA moldings and their sealing to polystyrene substrates,” Smart Mater. Struct. 16(2), 367–371 (2007).
[CrossRef]

2006

C. Wang, X. Pan, C. Sun, and T. Urisu, “Area-selective deposition of self-assembled monolayers on SiO2/Si(100) patterns,” Appl. Phys. Lett. 89(23), 233105–233107 (2006).
[CrossRef]

P. Camelliti, J. O. Gallagher, P. Kohl, and A. D. McCulloch, “Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium,” Nat. Protoc. 1(3), 1379–1391 (2006).
[CrossRef]

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[CrossRef] [PubMed]

2005

Z.-C. Peng, Z.-G. Ling, J. Goettert, J. Hormes, and K. Lian, “Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography,” Proc. SPIE 5718, 209–215 (2005).
[CrossRef]

C. S. Wang and T. Urisu, “Synchrotron radiation stimulated etching SiO2 thin films with a contact cobalt mask,” Appl. Surf. Sci. 242(3-4), 276–280 (2005).
[CrossRef]

2003

C. Gaertner, H. Becker, B. Anton, A. P. O'Neill, and O. Roetting, “Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts,” Proc. SPIE 4982, 99–104 (2003).
[CrossRef]

J. Narasimhan and I. Papautsky, “Rapid fabrication of hot embossing tools using PDMS,” Proc. SPIE 4982, 110–119 (2003).
[CrossRef]

2002

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[CrossRef]

2001

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their application for DNA separation and detection,” Sens. Actuators B 75, 142–148 (2001).

A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
[CrossRef] [PubMed]

2000

A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabricated elastomeric stencils for micropatterning cell cultures,” J. Biomed. Mater. Res. 52(2), 346–353 (2000).
[CrossRef] [PubMed]

1999

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem. 71(23), 5340–5347 (1999).
[CrossRef] [PubMed]

1987

T. Urisu and H. Kyuragi, “Synchrotron radiation-excited chemical-vapor deposition and etching,” J. Vac. Sci. Technol. B 5(5), 1436–1440 (1987).
[CrossRef]

Anton, B.

C. Gaertner, H. Becker, B. Anton, A. P. O'Neill, and O. Roetting, “Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts,” Proc. SPIE 4982, 99–104 (2003).
[CrossRef]

Aubry, C.

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[CrossRef]

Becker, H.

C. Gaertner, H. Becker, B. Anton, A. P. O'Neill, and O. Roetting, “Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts,” Proc. SPIE 4982, 99–104 (2003).
[CrossRef]

Beebe, D. J.

A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabricated elastomeric stencils for micropatterning cell cultures,” J. Biomed. Mater. Res. 52(2), 346–353 (2000).
[CrossRef] [PubMed]

Bock, C.

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromech. Microeng. 19(3), 035028 (2009).
[CrossRef]

Brostow, W.

W. Brostow, B. P. Gorman, and O. Olea-Mejia, “Focused ion beam milling and scanning electron microscopy characterization of polymer metal hybrids,” Mater. Lett. 61(6), 1333–1336 (2007).
[CrossRef]

Bubendorfer, A.

A. Bubendorfer, X. M. Liu, and A. V. Ellis, “Microfabrication of PDMS microchannels using SU-8/PMMA moldings and their sealing to polystyrene substrates,” Smart Mater. Struct. 16(2), 367–371 (2007).
[CrossRef]

Camelliti, P.

P. Camelliti, J. O. Gallagher, P. Kohl, and A. D. McCulloch, “Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium,” Nat. Protoc. 1(3), 1379–1391 (2006).
[CrossRef]

Chen, Q.

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromech. Microeng. 19(3), 035028 (2009).
[CrossRef]

Chen, S. H.

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their application for DNA separation and detection,” Sens. Actuators B 75, 142–148 (2001).

Chiron, D.

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[CrossRef]

Ellis, A. V.

A. Bubendorfer, X. M. Liu, and A. V. Ellis, “Microfabrication of PDMS microchannels using SU-8/PMMA moldings and their sealing to polystyrene substrates,” Smart Mater. Struct. 16(2), 367–371 (2007).
[CrossRef]

Finlayson, B. A.

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem. 71(23), 5340–5347 (1999).
[CrossRef] [PubMed]

Folch, A.

A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabricated elastomeric stencils for micropatterning cell cultures,” J. Biomed. Mater. Res. 52(2), 346–353 (2000).
[CrossRef] [PubMed]

Gaertner, C.

C. Gaertner, H. Becker, B. Anton, A. P. O'Neill, and O. Roetting, “Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts,” Proc. SPIE 4982, 99–104 (2003).
[CrossRef]

Gallagher, J. O.

P. Camelliti, J. O. Gallagher, P. Kohl, and A. D. McCulloch, “Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium,” Nat. Protoc. 1(3), 1379–1391 (2006).
[CrossRef]

Goettert, J.

Z.-C. Peng, Z.-G. Ling, J. Goettert, J. Hormes, and K. Lian, “Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography,” Proc. SPIE 5718, 209–215 (2005).
[CrossRef]

Gorman, B. P.

W. Brostow, B. P. Gorman, and O. Olea-Mejia, “Focused ion beam milling and scanning electron microscopy characterization of polymer metal hybrids,” Mater. Lett. 61(6), 1333–1336 (2007).
[CrossRef]

Hormes, J.

Z.-C. Peng, Z.-G. Ling, J. Goettert, J. Hormes, and K. Lian, “Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography,” Proc. SPIE 5718, 209–215 (2005).
[CrossRef]

Huang, G. R.

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their application for DNA separation and detection,” Sens. Actuators B 75, 142–148 (2001).

Hurtado, O.

A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabricated elastomeric stencils for micropatterning cell cultures,” J. Biomed. Mater. Res. 52(2), 346–353 (2000).
[CrossRef] [PubMed]

Jo, B. H.

A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabricated elastomeric stencils for micropatterning cell cultures,” J. Biomed. Mater. Res. 52(2), 346–353 (2000).
[CrossRef] [PubMed]

Kamholz, A. E.

A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
[CrossRef] [PubMed]

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem. 71(23), 5340–5347 (1999).
[CrossRef] [PubMed]

Kohl, P.

P. Camelliti, J. O. Gallagher, P. Kohl, and A. D. McCulloch, “Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium,” Nat. Protoc. 1(3), 1379–1391 (2006).
[CrossRef]

Kyuragi, H.

T. Urisu and H. Kyuragi, “Synchrotron radiation-excited chemical-vapor deposition and etching,” J. Vac. Sci. Technol. B 5(5), 1436–1440 (1987).
[CrossRef]

Lee, G. B.

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their application for DNA separation and detection,” Sens. Actuators B 75, 142–148 (2001).

Lian, K.

Z.-C. Peng, Z.-G. Ling, J. Goettert, J. Hormes, and K. Lian, “Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography,” Proc. SPIE 5718, 209–215 (2005).
[CrossRef]

Lin, Y. H.

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their application for DNA separation and detection,” Sens. Actuators B 75, 142–148 (2001).

Ling, Z.-G.

Z.-C. Peng, Z.-G. Ling, J. Goettert, J. Hormes, and K. Lian, “Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography,” Proc. SPIE 5718, 209–215 (2005).
[CrossRef]

Liu, M.

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromech. Microeng. 19(3), 035028 (2009).
[CrossRef]

Liu, X. M.

A. Bubendorfer, X. M. Liu, and A. V. Ellis, “Microfabrication of PDMS microchannels using SU-8/PMMA moldings and their sealing to polystyrene substrates,” Smart Mater. Struct. 16(2), 367–371 (2007).
[CrossRef]

McCulloch, A. D.

P. Camelliti, J. O. Gallagher, P. Kohl, and A. D. McCulloch, “Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium,” Nat. Protoc. 1(3), 1379–1391 (2006).
[CrossRef]

Moliton, J. P.

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[CrossRef]

Narasimhan, J.

J. Narasimhan and I. Papautsky, “Rapid fabrication of hot embossing tools using PDMS,” Proc. SPIE 4982, 110–119 (2003).
[CrossRef]

Olea-Mejia, O.

W. Brostow, B. P. Gorman, and O. Olea-Mejia, “Focused ion beam milling and scanning electron microscopy characterization of polymer metal hybrids,” Mater. Lett. 61(6), 1333–1336 (2007).
[CrossRef]

O'Neill, A. P.

C. Gaertner, H. Becker, B. Anton, A. P. O'Neill, and O. Roetting, “Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts,” Proc. SPIE 4982, 99–104 (2003).
[CrossRef]

Pan, X.

C. Wang, X. Pan, C. Sun, and T. Urisu, “Area-selective deposition of self-assembled monolayers on SiO2/Si(100) patterns,” Appl. Phys. Lett. 89(23), 233105–233107 (2006).
[CrossRef]

Papautsky, I.

J. Narasimhan and I. Papautsky, “Rapid fabrication of hot embossing tools using PDMS,” Proc. SPIE 4982, 110–119 (2003).
[CrossRef]

Peng, Z.-C.

Z.-C. Peng, Z.-G. Ling, J. Goettert, J. Hormes, and K. Lian, “Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography,” Proc. SPIE 5718, 209–215 (2005).
[CrossRef]

Roetting, O.

C. Gaertner, H. Becker, B. Anton, A. P. O'Neill, and O. Roetting, “Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts,” Proc. SPIE 4982, 99–104 (2003).
[CrossRef]

Schilling, E. A.

A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
[CrossRef] [PubMed]

Sun, C.

C. Wang, X. Pan, C. Sun, and T. Urisu, “Area-selective deposition of self-assembled monolayers on SiO2/Si(100) patterns,” Appl. Phys. Lett. 89(23), 233105–233107 (2006).
[CrossRef]

Sun, J.

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromech. Microeng. 19(3), 035028 (2009).
[CrossRef]

Sun, Y.

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromech. Microeng. 19(3), 035028 (2009).
[CrossRef]

Sung, W. C.

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their application for DNA separation and detection,” Sens. Actuators B 75, 142–148 (2001).

Toner, M.

A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabricated elastomeric stencils for micropatterning cell cultures,” J. Biomed. Mater. Res. 52(2), 346–353 (2000).
[CrossRef] [PubMed]

Trigaud, T.

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[CrossRef]

Urisu, T.

C. Wang, X. Pan, C. Sun, and T. Urisu, “Area-selective deposition of self-assembled monolayers on SiO2/Si(100) patterns,” Appl. Phys. Lett. 89(23), 233105–233107 (2006).
[CrossRef]

C. S. Wang and T. Urisu, “Synchrotron radiation stimulated etching SiO2 thin films with a contact cobalt mask,” Appl. Surf. Sci. 242(3-4), 276–280 (2005).
[CrossRef]

T. Urisu and H. Kyuragi, “Synchrotron radiation-excited chemical-vapor deposition and etching,” J. Vac. Sci. Technol. B 5(5), 1436–1440 (1987).
[CrossRef]

Wang, C.

C. Wang, X. Pan, C. Sun, and T. Urisu, “Area-selective deposition of self-assembled monolayers on SiO2/Si(100) patterns,” Appl. Phys. Lett. 89(23), 233105–233107 (2006).
[CrossRef]

Wang, C. S.

C. S. Wang and T. Urisu, “Synchrotron radiation stimulated etching SiO2 thin films with a contact cobalt mask,” Appl. Surf. Sci. 242(3-4), 276–280 (2005).
[CrossRef]

Weigl, B. H.

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem. 71(23), 5340–5347 (1999).
[CrossRef] [PubMed]

Whitesides, G. M.

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[CrossRef] [PubMed]

Yager, P.

A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
[CrossRef] [PubMed]

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem. 71(23), 5340–5347 (1999).
[CrossRef] [PubMed]

Anal. Chem.

A. E. Kamholz, B. H. Weigl, B. A. Finlayson, and P. Yager, “Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor,” Anal. Chem. 71(23), 5340–5347 (1999).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. Wang, X. Pan, C. Sun, and T. Urisu, “Area-selective deposition of self-assembled monolayers on SiO2/Si(100) patterns,” Appl. Phys. Lett. 89(23), 233105–233107 (2006).
[CrossRef]

Appl. Surf. Sci.

C. S. Wang and T. Urisu, “Synchrotron radiation stimulated etching SiO2 thin films with a contact cobalt mask,” Appl. Surf. Sci. 242(3-4), 276–280 (2005).
[CrossRef]

Biophys. J.

A. E. Kamholz, E. A. Schilling, and P. Yager, “Optical measurement of transverse molecular diffusion in a microchannel,” Biophys. J. 80(4), 1967–1972 (2001).
[CrossRef] [PubMed]

J. Biomed. Mater. Res.

A. Folch, B. H. Jo, O. Hurtado, D. J. Beebe, and M. Toner, “Microfabricated elastomeric stencils for micropatterning cell cultures,” J. Biomed. Mater. Res. 52(2), 346–353 (2000).
[CrossRef] [PubMed]

J. Micromech. Microeng.

M. Liu, J. Sun, Y. Sun, C. Bock, and Q. Chen, “Thickness-dependent mechanical properties of polydimethylsiloxane membranes,” J. Micromech. Microeng. 19(3), 035028 (2009).
[CrossRef]

J. Vac. Sci. Technol. B

T. Urisu and H. Kyuragi, “Synchrotron radiation-excited chemical-vapor deposition and etching,” J. Vac. Sci. Technol. B 5(5), 1436–1440 (1987).
[CrossRef]

Mater. Lett.

W. Brostow, B. P. Gorman, and O. Olea-Mejia, “Focused ion beam milling and scanning electron microscopy characterization of polymer metal hybrids,” Mater. Lett. 61(6), 1333–1336 (2007).
[CrossRef]

Nat. Protoc.

P. Camelliti, J. O. Gallagher, P. Kohl, and A. D. McCulloch, “Micropatterned cell cultures on elastic membranes as an in vitro model of myocardium,” Nat. Protoc. 1(3), 1379–1391 (2006).
[CrossRef]

Nature

G. M. Whitesides, “The origins and the future of microfluidics,” Nature 442(7101), 368–373 (2006).
[CrossRef] [PubMed]

Proc. SPIE

C. Gaertner, H. Becker, B. Anton, A. P. O'Neill, and O. Roetting, “Polymer based microfluidic devices: examples for fluidic interfaces and standardization concepts,” Proc. SPIE 4982, 99–104 (2003).
[CrossRef]

J. Narasimhan and I. Papautsky, “Rapid fabrication of hot embossing tools using PDMS,” Proc. SPIE 4982, 110–119 (2003).
[CrossRef]

Z.-C. Peng, Z.-G. Ling, J. Goettert, J. Hormes, and K. Lian, “Interconnected multilevel microfluidic channels fabricated using low-temperature bonding of SU-8 and multilayer lithography,” Proc. SPIE 5718, 209–215 (2005).
[CrossRef]

Smart Mater. Struct.

A. Bubendorfer, X. M. Liu, and A. V. Ellis, “Microfabrication of PDMS microchannels using SU-8/PMMA moldings and their sealing to polystyrene substrates,” Smart Mater. Struct. 16(2), 367–371 (2007).
[CrossRef]

Synth. Met.

C. Aubry, T. Trigaud, J. P. Moliton, and D. Chiron, “Polymer gratings achieved by focused ion beam,” Synth. Met. 127(1-3), 307–311 (2002).
[CrossRef]

Other

G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, and Y. H. Lin, “Microfabricated plastic chips by hot embossing methods and their application for DNA separation and detection,” Sens. Actuators B 75, 142–148 (2001).

S. G. Li, Z. G. Xu, A. Mazzeo, D. J. Burns, G. Fu, M. Dirckx, V. Shilpiekandula, X. Chen, N. C. Nayak, E. Wong, S. F. Yoon, Z. P. Fang, K. Youcef-Toumi, D. Hardt, S. B. Tor, C. Y. Yue, and J. H. Chun, “Review of production of microfluidic devices: material, manufacturing and metrology,” Proc. SPIE 6993, 69930F1–12 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

End station of the beam line containing the etching chamber and the focussing mirror chamber.

Fig. 2
Fig. 2

(a), microscope image of mask with 1 μm size formed by FIB technique; (b), top view of the pattern formed on the PDMS film surface covered with 1 μm size mask; (c) the depth profile of pattern measured with noncontact 3-dimension measuring meter

Fig. 3
Fig. 3

The dependence of etched depth on the ring current using the masks with different size: (a), 1 μm; (b), 20 μm; (c) 30 μm.

Fig. 4
Fig. 4

(a), The fabricated PDMS-based microfluidic channel; (b) the etched depth profile of single through hole; (c) the optical microscope image of the PC12 cell incubated on the smooth PDMS film surface.

Metrics