Abstract

Photoluminescence of polyfluoren copolymers, a white-light material, was demonstrated to be enhanced selectively by coupling with either localized or propagating modes of surface plasmon resonance (SPR). The silver sub-micron cylinders with 75nm height fabricated by e-beam lithography followed by e-beam evaporation and lift-off process. The enhanced light emissions at 500nm and 533nm are attributed to the low frequency branch of localized SPR. Furthermore, a 50nm silver thin film between these cylinders and the substrate provides propagating surface plasmons under excitation and enhances the blue emission band of the polyfluoren copolymer at 438nm. This delocalized SPR is sufficient for effective plasmon to light conversion. Moreover, by effectively coupling the localized and propagating SPR, we can experimentally demonstrate that the photoluminescence of polyfluoren copolymers is enhanced by 4 to 5.4 times at different wavelengths compared to enhancement by either single mode.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  3. J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
    [CrossRef] [PubMed]
  4. C. D. Geddes and J. R. Lakowiczl, “The Changing Face of Fluorescence: Addressing the Changes,” J. Fluoresc. 12, 2 (2002).
  5. S. Link and M. A. El-Sayed, “Steady state and time resolved optical properties of metallic nanoparticles the surface plasmon absorption as an analytical tool to inverstigate particle properties,” Int. Rev. Phys. Chem. 19, 409 (2000).
    [CrossRef]
  6. G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surface,” Phys. Rep. 113(4), 195–287 (1984).
    [CrossRef]
  7. P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
    [CrossRef]
  8. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
    [CrossRef]
  9. C. W. Wu and H. C. Lin, “Synthesis and Characterization of Kinked and Hyperbranched Carbazole/Fluorene-Based Copolymers,” Macromolecules 39(21), 7232–7240 (2006).
    [CrossRef]
  10. Po-I Lee, Steve Lien-Chung Hsu, and Jung-Feng Lee, “Pure white light emitting diodes from phosphorescent single polymer systems,” J. Polym. Sci. A Polym. Chem. 46, 464 (2008).
    [CrossRef]
  11. R. Grisorio, G. P. Suranna, P. Mastrorilli, and C. F. Nobile, “Insight into the role of oxidation in the thermally induced green band in fluorene based systems,” Adv. Funct. Mater. 17(4), 538–548 (2007).
    [CrossRef]
  12. W. C. Wu, C. L. Liu, and W. C. Chen, “Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications,” Polymer (Guildf.) 47(2), 527–538 (2006).
    [CrossRef]
  13. I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
    [CrossRef]
  14. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of ingangan quantum wells probed by time resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
    [CrossRef]
  15. T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K. Y. Jen, “Time resolved photoluminescence spectroscopy of surface plasmon enhanced light emission from conjugate polymers,” Appl. Phys. Lett. 89(22), 221106 (2006).
    [CrossRef]
  16. T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritions,” Appl. Phys. Lett. 86(14), 141105 (2005).
    [CrossRef]
  17. Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal enhanced fluorescence surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
    [CrossRef]

2008

Po-I Lee, Steve Lien-Chung Hsu, and Jung-Feng Lee, “Pure white light emitting diodes from phosphorescent single polymer systems,” J. Polym. Sci. A Polym. Chem. 46, 464 (2008).
[CrossRef]

2007

R. Grisorio, G. P. Suranna, P. Mastrorilli, and C. F. Nobile, “Insight into the role of oxidation in the thermally induced green band in fluorene based systems,” Adv. Funct. Mater. 17(4), 538–548 (2007).
[CrossRef]

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal enhanced fluorescence surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[CrossRef]

2006

W. C. Wu, C. L. Liu, and W. C. Chen, “Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications,” Polymer (Guildf.) 47(2), 527–538 (2006).
[CrossRef]

C. W. Wu and H. C. Lin, “Synthesis and Characterization of Kinked and Hyperbranched Carbazole/Fluorene-Based Copolymers,” Macromolecules 39(21), 7232–7240 (2006).
[CrossRef]

T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K. Y. Jen, “Time resolved photoluminescence spectroscopy of surface plasmon enhanced light emission from conjugate polymers,” Appl. Phys. Lett. 89(22), 221106 (2006).
[CrossRef]

2005

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritions,” Appl. Phys. Lett. 86(14), 141105 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of ingangan quantum wells probed by time resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
[CrossRef]

2002

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

C. D. Geddes and J. R. Lakowiczl, “The Changing Face of Fluorescence: Addressing the Changes,” J. Fluoresc. 12, 2 (2002).

2000

S. Link and M. A. El-Sayed, “Steady state and time resolved optical properties of metallic nanoparticles the surface plasmon absorption as an analytical tool to inverstigate particle properties,” Int. Rev. Phys. Chem. 19, 409 (2000).
[CrossRef]

1984

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surface,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Aslan, K.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal enhanced fluorescence surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[CrossRef]

Atay, T.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Barrera, R. G.

I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
[CrossRef]

Chen, W. C.

W. C. Wu, C. L. Liu, and W. C. Chen, “Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications,” Polymer (Guildf.) 47(2), 527–538 (2006).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, “Steady state and time resolved optical properties of metallic nanoparticles the surface plasmon absorption as an analytical tool to inverstigate particle properties,” Int. Rev. Phys. Chem. 19, 409 (2000).
[CrossRef]

Ford, G. W.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surface,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Geddes, C. D.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal enhanced fluorescence surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[CrossRef]

C. D. Geddes and J. R. Lakowiczl, “The Changing Face of Fluorescence: Addressing the Changes,” J. Fluoresc. 12, 2 (2002).

Gray, S. K.

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritions,” Appl. Phys. Lett. 86(14), 141105 (2005).
[CrossRef]

Grisorio, R.

R. Grisorio, G. P. Suranna, P. Mastrorilli, and C. F. Nobile, “Insight into the role of oxidation in the thermally induced green band in fluorene based systems,” Adv. Funct. Mater. 17(4), 538–548 (2007).
[CrossRef]

Hobson, P. A.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Hsu, Steve Lien-Chung

Po-I Lee, Steve Lien-Chung Hsu, and Jung-Feng Lee, “Pure white light emitting diodes from phosphorescent single polymer systems,” J. Polym. Sci. A Polym. Chem. 46, 464 (2008).
[CrossRef]

Jen, A. K. Y.

T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K. Y. Jen, “Time resolved photoluminescence spectroscopy of surface plasmon enhanced light emission from conjugate polymers,” Appl. Phys. Lett. 89(22), 221106 (2006).
[CrossRef]

Kawakami, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of ingangan quantum wells probed by time resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Lakowiczl, J. R.

C. D. Geddes and J. R. Lakowiczl, “The Changing Face of Fluorescence: Addressing the Changes,” J. Fluoresc. 12, 2 (2002).

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Lee, Jung-Feng

Po-I Lee, Steve Lien-Chung Hsu, and Jung-Feng Lee, “Pure white light emitting diodes from phosphorescent single polymer systems,” J. Polym. Sci. A Polym. Chem. 46, 464 (2008).
[CrossRef]

Lee, Po-I

Po-I Lee, Steve Lien-Chung Hsu, and Jung-Feng Lee, “Pure white light emitting diodes from phosphorescent single polymer systems,” J. Polym. Sci. A Polym. Chem. 46, 464 (2008).
[CrossRef]

Lee, T. W.

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritions,” Appl. Phys. Lett. 86(14), 141105 (2005).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Lin, H. C.

C. W. Wu and H. C. Lin, “Synthesis and Characterization of Kinked and Hyperbranched Carbazole/Fluorene-Based Copolymers,” Macromolecules 39(21), 7232–7240 (2006).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, “Steady state and time resolved optical properties of metallic nanoparticles the surface plasmon absorption as an analytical tool to inverstigate particle properties,” Int. Rev. Phys. Chem. 19, 409 (2000).
[CrossRef]

Liu, C. L.

W. C. Wu, C. L. Liu, and W. C. Chen, “Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications,” Polymer (Guildf.) 47(2), 527–538 (2006).
[CrossRef]

Liu, M. S.

T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K. Y. Jen, “Time resolved photoluminescence spectroscopy of surface plasmon enhanced light emission from conjugate polymers,” Appl. Phys. Lett. 89(22), 221106 (2006).
[CrossRef]

Mastrorilli, P.

R. Grisorio, G. P. Suranna, P. Mastrorilli, and C. F. Nobile, “Insight into the role of oxidation in the thermally induced green band in fluorene based systems,” Adv. Funct. Mater. 17(4), 538–548 (2007).
[CrossRef]

Mukai, T.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of ingangan quantum wells probed by time resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Narukawa, Y.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of ingangan quantum wells probed by time resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Neal, T. D.

T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K. Y. Jen, “Time resolved photoluminescence spectroscopy of surface plasmon enhanced light emission from conjugate polymers,” Appl. Phys. Lett. 89(22), 221106 (2006).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of ingangan quantum wells probed by time resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nobile, C. F.

R. Grisorio, G. P. Suranna, P. Mastrorilli, and C. F. Nobile, “Insight into the role of oxidation in the thermally induced green band in fluorene based systems,” Adv. Funct. Mater. 17(4), 538–548 (2007).
[CrossRef]

Noguez, C.

I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
[CrossRef]

Nurmikko, A. V.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

Okamoto, K.

T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K. Y. Jen, “Time resolved photoluminescence spectroscopy of surface plasmon enhanced light emission from conjugate polymers,” Appl. Phys. Lett. 89(22), 221106 (2006).
[CrossRef]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of ingangan quantum wells probed by time resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Previte, M. J. R.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal enhanced fluorescence surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Sage, I.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Scherer, A.

T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K. Y. Jen, “Time resolved photoluminescence spectroscopy of surface plasmon enhanced light emission from conjugate polymers,” Appl. Phys. Lett. 89(22), 221106 (2006).
[CrossRef]

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of ingangan quantum wells probed by time resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Shi, S.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Song, J. H.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

Sosa, I. O.

I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
[CrossRef]

Suranna, G. P.

R. Grisorio, G. P. Suranna, P. Mastrorilli, and C. F. Nobile, “Insight into the role of oxidation in the thermally induced green band in fluorene based systems,” Adv. Funct. Mater. 17(4), 538–548 (2007).
[CrossRef]

Urabe, H.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

Wasey, J. A. E.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Weber, W. H.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surface,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Wedge, S.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Wu, C. W.

C. W. Wu and H. C. Lin, “Synthesis and Characterization of Kinked and Hyperbranched Carbazole/Fluorene-Based Copolymers,” Macromolecules 39(21), 7232–7240 (2006).
[CrossRef]

Wu, W. C.

W. C. Wu, C. L. Liu, and W. C. Chen, “Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications,” Polymer (Guildf.) 47(2), 527–538 (2006).
[CrossRef]

Zhang, Y.

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal enhanced fluorescence surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[CrossRef]

Adv. Funct. Mater.

R. Grisorio, G. P. Suranna, P. Mastrorilli, and C. F. Nobile, “Insight into the role of oxidation in the thermally induced green band in fluorene based systems,” Adv. Funct. Mater. 17(4), 538–548 (2007).
[CrossRef]

Adv. Mater.

P. A. Hobson, S. Wedge, J. A. E. Wasey, I. Sage, and W. L. Barnes, “Surface plasmon mediated emission from organic light-emitting diodes,” Adv. Mater. 14(19), 1393–1396 (2002).
[CrossRef]

Appl. Phys. Lett.

K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, “Surface plasmon enhanced spontaneous emission rate of ingangan quantum wells probed by time resolved photoluminescence spectroscopy,” Appl. Phys. Lett. 87(7), 071102 (2005).
[CrossRef]

T. D. Neal, K. Okamoto, A. Scherer, M. S. Liu, and A. K. Y. Jen, “Time resolved photoluminescence spectroscopy of surface plasmon enhanced light emission from conjugate polymers,” Appl. Phys. Lett. 89(22), 221106 (2006).
[CrossRef]

T. W. Lee and S. K. Gray, “Regenerated surface plasmon polaritions,” Appl. Phys. Lett. 86(14), 141105 (2005).
[CrossRef]

Y. Zhang, K. Aslan, M. J. R. Previte, and C. D. Geddes, “Metal enhanced fluorescence surface plasmons can radiate a fluorophore’s structured emission,” Appl. Phys. Lett. 90(5), 053107 (2007).
[CrossRef]

Int. Rev. Phys. Chem.

S. Link and M. A. El-Sayed, “Steady state and time resolved optical properties of metallic nanoparticles the surface plasmon absorption as an analytical tool to inverstigate particle properties,” Int. Rev. Phys. Chem. 19, 409 (2000).
[CrossRef]

J. Fluoresc.

C. D. Geddes and J. R. Lakowiczl, “The Changing Face of Fluorescence: Addressing the Changes,” J. Fluoresc. 12, 2 (2002).

J. Phys. Chem. B

I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” J. Phys. Chem. B 107(26), 6269–6275 (2003).
[CrossRef]

J. Polym. Sci. A Polym. Chem.

Po-I Lee, Steve Lien-Chung Hsu, and Jung-Feng Lee, “Pure white light emitting diodes from phosphorescent single polymer systems,” J. Polym. Sci. A Polym. Chem. 46, 464 (2008).
[CrossRef]

Macromolecules

C. W. Wu and H. C. Lin, “Synthesis and Characterization of Kinked and Hyperbranched Carbazole/Fluorene-Based Copolymers,” Macromolecules 39(21), 7232–7240 (2006).
[CrossRef]

Nano Lett.

J. H. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5(8), 1557–1561 (2005).
[CrossRef] [PubMed]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003).
[CrossRef]

Phys. Rep.

G. W. Ford and W. H. Weber, “Electromagnetic interactions of molecules with metal surface,” Phys. Rep. 113(4), 195–287 (1984).
[CrossRef]

Polymer (Guildf.)

W. C. Wu, C. L. Liu, and W. C. Chen, “Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications,” Polymer (Guildf.) 47(2), 527–538 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic illustrates experimental geometry used as enhanced PL measurements of multiple plasmons (left) and LSPR only (right). The sizes are not in proportion. (b) SEM images of Ag cylinder array with the same constant height of 75nm and different diameters of 200nm, 250nm and 300nm on silicon substrates.

Fig. 2
Fig. 2

The UV-VIS absorption and PL emission spectrum reveal the optical properties of PF copolymer. The absorption spectrum of the PF copolymer is dominated by an intense peak at about 390nm, which comes from the fluorene unit serving as the backbone in the copolymer. The PL emissions at 438nm and 465nm are contributed by the fluorene segment, and the emission peak at 533nm is due to the oxidation of the fluorene.13 The green emission at 500nm is from the NTI segment, but the red emission at around 590nm is not obvious as the amount of the IR complex is low. The upper insert shows the structure of PF copolymer.

Fig. 3
Fig. 3

(a) PL spectrum of PF copolymer coupling with 400nm, 500nm and 600nm-period Ag cylinder arrays on Si substrate. (b) PL enhancement factors transformed from Fig. 3(a) by normalizing with the intensity of PF copolymer alone.

Fig. 4
Fig. 4

The absorption efficiency of Ag cylinder in PF copolymer using DDA calculation.

Fig. 5
Fig. 5

(a) PL spectrum of PF copolymer coupling with 300nm, 350nm and 400nm-period Ag cylinder arrays on 50nm Ag thin film. (b) PL enhancement factors transformed from Fig. 5(a) by normalizing with the intensity of PF copolymer alone.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ζ = λ 2 π ε d ' + ε m ' ε d ' 2
k x = ω c ε m ε d ε m + ε d

Metrics