Abstract

A model for the fluorescence sensing properties of small-core high-refractive-index fibers (optical nanowires) is developed and compared quantitatively with experiment. For the first time, higher-order modes and loss factors relevant to optical nanowires are included, which allows the model to be compared effectively with experiment via the use of fluorophore filled suspended optical nanowires. Numerical results show that high-index materials are beneficial for fluorescence-based sensing. However, both numerical and experimental results show that the fluorescence signal is relatively insensitive to core size, except for low concentration sensing where nanoscale fiber cores are advantageous due to the increased evanescent field power.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [CrossRef] [PubMed]
  2. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
    [CrossRef] [PubMed]
  3. F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
    [CrossRef] [PubMed]
  4. J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
    [CrossRef]
  5. S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
    [CrossRef] [PubMed]
  6. Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
    [CrossRef] [PubMed]
  7. S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
    [CrossRef] [PubMed]
  8. S. Afshar, Y. Ruan, S. C. Warren-Smith, and T. M. Monro, “Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes,” Opt. Lett. 33(13), 1473–1475 (2008).
    [CrossRef]
  9. S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
    [CrossRef] [PubMed]
  10. Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
    [CrossRef] [PubMed]
  11. Y. N. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
    [CrossRef]
  12. J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
    [CrossRef] [PubMed]
  13. Y. L. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
    [CrossRef] [PubMed]
  14. T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
    [CrossRef]
  15. A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 10501–10503 (2007).
    [CrossRef]
  16. L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  17. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [CrossRef] [PubMed]
  18. T. R. Glass, S. Lackie, and T. Hirschfeld, “Effect of numerical aperture on signal level in cylindrical wave-guide evanescent fluorosensors,” Appl. Opt. 26(11), 2181–2187 (1987).
    [CrossRef] [PubMed]
  19. H. P. Kao, N. Yang, and J. S. Schoeniger, “Enhancement of evanescent fluorescence from fiber-optic sensors by thin-film sol-gel coatings,” J. Opt. Soc. Am. A 15(8), 2163–2171 (1998).
    [CrossRef]
  20. D. Marcuse, “Launching light into fiber cores from sources located in the cladding,” J. Lightwave Technol. 6(8), 1273–1279 (1988).
    [CrossRef]
  21. D. Marcuse, “Excitation of parabolic-index fibers with incoherent sources,” Bell Syst. Tech. J. 54, 1507–1530 (1975).
  22. C. O. Egalon, R. S. Rogowski, and A. C. Tai, “Excitation efficiency of an optical fiber core source,” Opt. Eng. 31(6), 1328–1331 (1992).
    [CrossRef]
  23. C. O. Egalon and R. S. Rogowski, “Efficiency of core light injection from sources in the cladding - bulk distribution,” Opt. Eng. 31(4), 846–851 (1992).
    [CrossRef]
  24. C. O. Egalon and R. S. Rogowski, “Theoretical-model for a thin cylindrical film optical fiber fluorosensor,” Opt. Eng. 31(2), 237–244 (1992).
    [CrossRef]
  25. A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).
  26. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000).
  27. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
    [CrossRef] [PubMed]
  28. G. Y. Zhai and L. M. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15(21), 13805–13816 (2007).
    [CrossRef] [PubMed]
  29. L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
    [CrossRef] [PubMed]
  30. A. Bryant, S. Albin, C. O. Egalon, and R. S. Rogowski, “Changes in the amount of core light injection for fluorescent-clad optical-fiber due to variations in the fiber refractive-index and core radius - experimental results,” J. Opt. Soc. Am. B 12(5), 904–906 (1995).
    [CrossRef]
  31. S. Albin, A. L. Bryant, C. O. Egalon, and R. S. Rogowski, “Injection efficiency from a side-excited thin-film fluorescent cladding of a circular wave-guide,” Opt. Eng. 33(4), 1172–1175 (1994).
    [CrossRef]
  32. F. W. D. Rost, Fluorescence Microscopy (Cambridge University Press, 1992)
  33. E. P. Schartner, R. T. White, S. C. Warren-Smith, and T. M. Monro, “Practical sensitive fluorescence sensing with microstructured fibres,” Proc. SPIE 7503, 75035X (2009).
    [CrossRef]

2009 (2)

E. P. Schartner, R. T. White, S. C. Warren-Smith, and T. M. Monro, “Practical sensitive fluorescence sensing with microstructured fibres,” Proc. SPIE 7503, 75035X (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

2008 (5)

2007 (5)

2006 (3)

2005 (3)

2004 (2)

2003 (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1998 (1)

1995 (1)

1994 (1)

S. Albin, A. L. Bryant, C. O. Egalon, and R. S. Rogowski, “Injection efficiency from a side-excited thin-film fluorescent cladding of a circular wave-guide,” Opt. Eng. 33(4), 1172–1175 (1994).
[CrossRef]

1992 (3)

C. O. Egalon, R. S. Rogowski, and A. C. Tai, “Excitation efficiency of an optical fiber core source,” Opt. Eng. 31(6), 1328–1331 (1992).
[CrossRef]

C. O. Egalon and R. S. Rogowski, “Efficiency of core light injection from sources in the cladding - bulk distribution,” Opt. Eng. 31(4), 846–851 (1992).
[CrossRef]

C. O. Egalon and R. S. Rogowski, “Theoretical-model for a thin cylindrical film optical fiber fluorosensor,” Opt. Eng. 31(2), 237–244 (1992).
[CrossRef]

1988 (1)

D. Marcuse, “Launching light into fiber cores from sources located in the cladding,” J. Lightwave Technol. 6(8), 1273–1279 (1988).
[CrossRef]

1987 (1)

1975 (1)

D. Marcuse, “Excitation of parabolic-index fibers with incoherent sources,” Bell Syst. Tech. J. 54, 1507–1530 (1975).

Afshar, S.

Albin, S.

A. Bryant, S. Albin, C. O. Egalon, and R. S. Rogowski, “Changes in the amount of core light injection for fluorescent-clad optical-fiber due to variations in the fiber refractive-index and core radius - experimental results,” J. Opt. Soc. Am. B 12(5), 904–906 (1995).
[CrossRef]

S. Albin, A. L. Bryant, C. O. Egalon, and R. S. Rogowski, “Injection efficiency from a side-excited thin-film fluorescent cladding of a circular wave-guide,” Opt. Eng. 33(4), 1172–1175 (1994).
[CrossRef]

Argyros, A.

Ashcom, J. B.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Bang, O.

Barth, M.

Benson, O.

Birks, T. A.

Bise, R.

Bise, R. T.

Y. N. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Bjarklev, A.

Bryant, A.

Bryant, A. L.

S. Albin, A. L. Bryant, C. O. Egalon, and R. S. Rogowski, “Injection efficiency from a side-excited thin-film fluorescent cladding of a circular wave-guide,” Opt. Eng. 33(4), 1172–1175 (1994).
[CrossRef]

Chen, J. S. Y.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Couny, F.

Cox, F. M.

Du, H.

Y. N. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
[CrossRef] [PubMed]

Ebendorff-Heidepriem, H.

Egalon, C. O.

A. Bryant, S. Albin, C. O. Egalon, and R. S. Rogowski, “Changes in the amount of core light injection for fluorescent-clad optical-fiber due to variations in the fiber refractive-index and core radius - experimental results,” J. Opt. Soc. Am. B 12(5), 904–906 (1995).
[CrossRef]

S. Albin, A. L. Bryant, C. O. Egalon, and R. S. Rogowski, “Injection efficiency from a side-excited thin-film fluorescent cladding of a circular wave-guide,” Opt. Eng. 33(4), 1172–1175 (1994).
[CrossRef]

C. O. Egalon and R. S. Rogowski, “Efficiency of core light injection from sources in the cladding - bulk distribution,” Opt. Eng. 31(4), 846–851 (1992).
[CrossRef]

C. O. Egalon, R. S. Rogowski, and A. C. Tai, “Excitation efficiency of an optical fiber core source,” Opt. Eng. 31(6), 1328–1331 (1992).
[CrossRef]

C. O. Egalon and R. S. Rogowski, “Theoretical-model for a thin cylindrical film optical fiber fluorosensor,” Opt. Eng. 31(2), 237–244 (1992).
[CrossRef]

Emiliyanov, G.

Euser, T. G.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Farrer, N. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Fini, J. M.

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Foo, T. C.

Gattass, R. R.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Glass, T. R.

Hansen, T. P.

He, J.

He, S. L.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Hirschfeld, T.

Hoffmann, P.

Hoiby, P. E.

Hu, L.

Jensen, J. B.

Kanka, J.

Y. N. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Kao, H. P.

Knight, J. C.

Lackie, S.

Large, M. C. J.

Lou, J.

Lou, J. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Mangan, B. J.

Marcuse, D.

D. Marcuse, “Launching light into fiber cores from sources located in the cladding,” J. Lightwave Technol. 6(8), 1273–1279 (1988).
[CrossRef]

D. Marcuse, “Excitation of parabolic-index fibers with incoherent sources,” Bell Syst. Tech. J. 54, 1507–1530 (1975).

Maxwell, I.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Monro, T. M.

E. P. Schartner, R. T. White, S. C. Warren-Smith, and T. M. Monro, “Practical sensitive fluorescence sensing with microstructured fibres,” Proc. SPIE 7503, 75035X (2009).
[CrossRef]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

S. Afshar, Y. Ruan, S. C. Warren-Smith, and T. M. Monro, “Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes,” Opt. Lett. 33(13), 1473–1475 (2008).
[CrossRef]

S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
[CrossRef] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[CrossRef] [PubMed]

Y. L. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[CrossRef] [PubMed]

Moore, R. C.

Pedersen, L. H.

Peterka, P.

Y. N. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Petersen, J. C.

Poletti, F.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 10501–10503 (2007).
[CrossRef]

Qiu, J.

Richardson, D. J.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 10501–10503 (2007).
[CrossRef]

Ritari, T.

Roberts, P. J.

Rogowski, R. S.

A. Bryant, S. Albin, C. O. Egalon, and R. S. Rogowski, “Changes in the amount of core light injection for fluorescent-clad optical-fiber due to variations in the fiber refractive-index and core radius - experimental results,” J. Opt. Soc. Am. B 12(5), 904–906 (1995).
[CrossRef]

S. Albin, A. L. Bryant, C. O. Egalon, and R. S. Rogowski, “Injection efficiency from a side-excited thin-film fluorescent cladding of a circular wave-guide,” Opt. Eng. 33(4), 1172–1175 (1994).
[CrossRef]

C. O. Egalon and R. S. Rogowski, “Efficiency of core light injection from sources in the cladding - bulk distribution,” Opt. Eng. 31(4), 846–851 (1992).
[CrossRef]

C. O. Egalon, R. S. Rogowski, and A. C. Tai, “Excitation efficiency of an optical fiber core source,” Opt. Eng. 31(6), 1328–1331 (1992).
[CrossRef]

C. O. Egalon and R. S. Rogowski, “Theoretical-model for a thin cylindrical film optical fiber fluorosensor,” Opt. Eng. 31(2), 237–244 (1992).
[CrossRef]

Ruan, Y.

Ruan, Y. L.

Russell, P. S.

Russell, P. St. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Sabert, H.

Sadler, P. J.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Sahu, J. K.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 10501–10503 (2007).
[CrossRef]

Scharrer, M.

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

Schartner, E. P.

E. P. Schartner, R. T. White, S. C. Warren-Smith, and T. M. Monro, “Practical sensitive fluorescence sensing with microstructured fibres,” Proc. SPIE 7503, 75035X (2009).
[CrossRef]

Y. L. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[CrossRef] [PubMed]

Schoeniger, J. S.

Shen, M. Y.

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Shen, Y.

Simonsen, H. R.

Smolka, S.

Sørensen, T.

Tai, A. C.

C. O. Egalon, R. S. Rogowski, and A. C. Tai, “Excitation efficiency of an optical fiber core source,” Opt. Eng. 31(6), 1328–1331 (1992).
[CrossRef]

Tong, L.

Tong, L. M.

G. Y. Zhai and L. M. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15(21), 13805–13816 (2007).
[CrossRef] [PubMed]

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tuominen, J.

Warren-Smith, S. C.

Webb, A. S.

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 10501–10503 (2007).
[CrossRef]

White, R. T.

E. P. Schartner, R. T. White, S. C. Warren-Smith, and T. M. Monro, “Practical sensitive fluorescence sensing with microstructured fibres,” Proc. SPIE 7503, 75035X (2009).
[CrossRef]

Yang, N.

Yang, Q.

Ye, Z.

Zhai, G. Y.

Zhang, J.

Zhu, Y.

Zhu, Y. N.

Y. N. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

D. Marcuse, “Excitation of parabolic-index fibers with incoherent sources,” Bell Syst. Tech. J. 54, 1507–1530 (1975).

J. Appl. Phys. (1)

T. G. Euser, J. S. Y. Chen, M. Scharrer, P. St. J. Russell, N. J. Farrer, and P. J. Sadler, “Quantitative broadband chemical sensing in air-suspended solid-core fibers,” J. Appl. Phys. 103(10), 103108 (2008).
[CrossRef]

J. Lightwave Technol. (1)

D. Marcuse, “Launching light into fiber cores from sources located in the cladding,” J. Lightwave Technol. 6(8), 1273–1279 (1988).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

J. M. Fini, “Microstructure fibres for optical sensing in gases and liquids,” Meas. Sci. Technol. 15(6), 1120–1128 (2004).
[CrossRef]

Nature (1)

L. M. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

Y. N. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Opt. Eng. (5)

A. S. Webb, F. Poletti, D. J. Richardson, and J. K. Sahu, “Suspended-core holey fiber for evanescent-field sensing,” Opt. Eng. 46(1), 10501–10503 (2007).
[CrossRef]

C. O. Egalon, R. S. Rogowski, and A. C. Tai, “Excitation efficiency of an optical fiber core source,” Opt. Eng. 31(6), 1328–1331 (1992).
[CrossRef]

C. O. Egalon and R. S. Rogowski, “Efficiency of core light injection from sources in the cladding - bulk distribution,” Opt. Eng. 31(4), 846–851 (1992).
[CrossRef]

C. O. Egalon and R. S. Rogowski, “Theoretical-model for a thin cylindrical film optical fiber fluorosensor,” Opt. Eng. 31(2), 237–244 (1992).
[CrossRef]

S. Albin, A. L. Bryant, C. O. Egalon, and R. S. Rogowski, “Injection efficiency from a side-excited thin-film fluorescent cladding of a circular wave-guide,” Opt. Eng. 33(4), 1172–1175 (1994).
[CrossRef]

Opt. Express (14)

Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
[CrossRef] [PubMed]

J. Lou, L. Tong, and Z. Ye, “Modeling of silica nanowires for optical sensing,” Opt. Express 13(6), 2135–2140 (2005).
[CrossRef] [PubMed]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, T. A. Birks, J. C. Knight, and P. S. Russell, “Loss in solid-core photonic crystal fibers due to interface roughness scattering,” Opt. Express 13(20), 7779–7793 (2005).
[CrossRef] [PubMed]

L. Tong, L. Hu, J. Zhang, J. Qiu, Q. Yang, J. Lou, Y. Shen, J. He, and Z. Ye, “Photonic nanowires directly drawn from bulk glasses,” Opt. Express 14(1), 82–87 (2006).
[CrossRef] [PubMed]

Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
[CrossRef] [PubMed]

F. M. Cox, A. Argyros, and M. C. J. Large, “Liquid-filled hollow core microstructured polymer optical fiber,” Opt. Express 14(9), 4135–4140 (2006).
[CrossRef] [PubMed]

S. Smolka, M. Barth, and O. Benson, “Highly efficient fluorescence sensing with hollow core photonic crystal fibers,” Opt. Express 15(20), 12783–12791 (2007).
[CrossRef] [PubMed]

G. Y. Zhai and L. M. Tong, “Roughness-induced radiation losses in optical micro or nanofibers,” Opt. Express 15(21), 13805–13816 (2007).
[CrossRef] [PubMed]

Y. L. Ruan, E. P. Schartner, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Detection of quantum-dot labelled proteins using soft glass microstructured optical fibers,” Opt. Express 15(26), 17819–17826 (2007).
[CrossRef] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[CrossRef] [PubMed]

S. C. Warren-Smith, S. Afshar, and T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
[CrossRef] [PubMed]

Opt. Lett. (1)

Proc. SPIE (1)

E. P. Schartner, R. T. White, S. C. Warren-Smith, and T. M. Monro, “Practical sensitive fluorescence sensing with microstructured fibres,” Proc. SPIE 7503, 75035X (2009).
[CrossRef]

Other (3)

F. W. D. Rost, Fluorescence Microscopy (Cambridge University Press, 1992)

A. W. Snyder, and J. D. Love, Optical Waveguide Theory (Chapman and Hall, 1983).

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Comparison of the wave-optics derived fluorescence capture fraction (FCF) for an on-axis in-core fluorophore (black) and the ray-tracing equivalent (red). The optical fiber V-number used for the wave-optics method is displayed in the figure for each corresponding curve. FCF = 0.5 (i.e. 50% capture) has been marked with a dashed line.

Fig. 2
Fig. 2

Convergence of the wave-optics approach to the ray-optics approach for increasing optical fiber V-number. The difference in refractive index between the core and cladding (Δn) is 0.01 (a) and 1.0 (b).

Fig. 3
Fig. 3

(a) Fraction of fundamental mode evanescent field power located in the water for water-clad step-index fibers made from three different glass types. (b) Fluorescence capture into the fundamental mode only (thin lines) and into all guided modes (thick lines) for three different glasses where the cladding is Rhodamine B dissolved in water.

Fig. 4
Fig. 4

Back scattered fluorescence signal for a silica fiber (a) and bismuth fiber (b) of length 1m, where the cladding contains varying concentrations of Rhodamine B.

Fig. 5
Fig. 5

Confinement loss of a W-fiber with a cladding to core ratio of 10, a wavelength of 590nm, and glass material silica (a), F2 (b), and bismuth (c). Mode labeling is shown for the silica material (a). The mode labeling is similar for F2 and bismuth but has not been displayed for clarity.

Fig. 6
Fig. 6

Fluorescence capture into all modes of a step-index fiber with core material bismuth (black), F2 (red), and silica (green). The results of Fig. 3(b) have been shown again for the case of no confinement loss (thin lines), and then confinement loss has been included at both excitation and fluorescence wavelengths (thick lines). The fiber length has been set at 1 m, with fluorescence measured in the forward direction.

Fig. 7
Fig. 7

(a) Measured loss at 633nm for small-core silicate tapers [29] (Corning 0215, n = 1.52, black data points) and F2 suspended-core fibers [17] (F2 Schott glass, n = 1.62, red data points). (b) Forwards fluorescence capture fraction for a 1 m F2 fiber with small-core loss considered (red) or small-core loss neglected (black). Confinement loss has also been included for both.

Fig. 8
Fig. 8

Predicted forward fluorescence signal for 0.26 m long F2 step-index fibers (solid lines) and measured signal for equivalent suspended-core fibers (data points). For the predicted curves small-core loss and confinement loss has been included. The excitation wavelength was 532 nm and fluorescence wavelength for the theory was 590 nm. The rhodamine B concentrations were 50 μM (black), 25 μM (red), 1 μM (green), 100 nM (blue), and 10 nM (orange). The vertical error bars refer to signal fluctuation during measurement (≈10 s), and horizontal error bars relative to SEM resolution.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

F C F j = ξ λ 2 16 π n F H 2 ν N O I j ν A e f f , ν γ j H e γ ν L γ ν γ j [ e ( γ ν γ j ) L 1 ]
N O I j ν = n F H ( ε 0 μ 0 ) 1 / 2 [ A | s ν ( r ) | d A H s j ( r ) d A ] [ H | e ν | 2 s j ( r ) d A A | s ν ( r ) | 2 d A ]
A e f f , ν = | A s ν ( r ) d A | 2 A | s ν ( r ) | 2 d A

Metrics