Abstract

This paper describes a statistical approach that improves the detection accuracy in simulated experimental surface plasmon resonance (SPR) systems operated in a conventional angular readout scheme. Two SPR system have been investigated: a conventional one and a second one, containing absorbing metallic nanoparticles within the sensing layer. The modified Maxwell-Garnett model that optimally describes the experimental literature results was applied to modeling of the nanoparticle-inclusive sensor. Statistical hypothesis testing was then used to determine the limit of detection of the analyte and nanoparticles. Analyte concentrations as low as 1 pM, corresponding to the refractive index change of 4x10−8 have been detected with optimized metal layers operated close to the nanoparticle absorption maximum. This is about one order of magnitude smaller than the values obtained in conventional SPR systems with nanoparticles and comparable to the phase-sensitive surface plasmon resonance detection.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Wu, H. P. Ho, W. C. Law, C. L. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
    [CrossRef] [PubMed]
  2. Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30(12), 1488–1490 (2005).
    [CrossRef] [PubMed]
  3. C. Chou, H. T. Wu, Y. C. Huang, W. C. Kuo, and Y. L. Chen, “Characteristics of a paired surface plasma waves biosensor,” Opt. Express 14(10), 4307–4315 (2006).
    [CrossRef] [PubMed]
  4. W. C. Kuo, C. Chou, and H. T. Wu, “Optical heterodyne surface-plasmon resonance biosensor,” Opt. Lett. 28(15), 1329–1331 (2003).
    [CrossRef] [PubMed]
  5. M. H. Chiu, S. F. Wang, and R. S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30(3), 233–235 (2005).
    [CrossRef] [PubMed]
  6. F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
    [CrossRef] [PubMed]
  7. X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).
  8. C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
    [CrossRef]
  9. N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
    [CrossRef]
  10. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]
  11. E. F. A. de Vries, R. B. M. Schasfoort, J. Vanderplas, and J. Greve, “Nucleic-Acid Detection with Surface-Plasmon Resonance Using Cationic Latex,” Biosens. Bioelectron. 9(7), 509–514 (1994).
    [CrossRef]
  12. J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998).
    [CrossRef] [PubMed]
  13. Y. Sato, Y. Sato, A. Okumura, K. Suzuki, and H. Kawaguchi, “Flow-stress-induced discrimination of a K-ras point mutation by sandwiched polymer microsphere-enhanced surface plasmon resonance,” J. Biomater. Sci. Polym. Ed. 15(3), 297–310 (2004).
    [CrossRef] [PubMed]
  14. Y. Sato, S. Ikegaki, K. Suzuki, and H. Kawaguchi, “Hydrogel-microsphere-enhanced surface plasmon resonance for the detection of a K-ras point mutation employing peptide nucleic acid,” J. Biomater. Sci. Polym. Ed. 14(8), 803–820 (2003).
    [CrossRef] [PubMed]
  15. T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
    [CrossRef] [PubMed]
  16. T. Kume, N. Nakagawa, S. Hayashi, and K. Yamamoto, “Interaction between localized and propagating surface plasmons - Ag fine particles on Al surface,” Solid State Commun. 93(2), 171–175 (1995).
    [CrossRef]
  17. T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
    [CrossRef]
  18. L. He, E. A. Smith, M. J. Natan, and C. D. Keating, “The distance dependence of colloidal Au-amplified surface plasmon resonance,” J. Phys. Chem. B 108(30), 10973–10980 (2004).
    [CrossRef]
  19. E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001).
    [CrossRef]
  20. E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
    [CrossRef]
  21. L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
    [CrossRef] [PubMed]
  22. L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
    [CrossRef]
  23. L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B Chem. 54(1-2), 1–2, 118–124 (1999).
    [CrossRef]
  24. N. Zhang, Z. Z. Chen, and B. Tang, “Recent applications of fluorescence imaging in bioanalysis,” Chinese J. Anal. Chem. 34(7), 1030–1034 (2006).
  25. K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis,” in Photonics West: Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., 5703, pp. 61–70, Proceedings of SPIE, (2005).
  26. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 1–2, 3–15 (1999).
    [CrossRef]
  27. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 1–2, 16–24 (1999).
    [CrossRef]
  28. J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 1–3, 207–211 (1997).
    [CrossRef]
  29. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 6–7, 635–649 (1996).
    [CrossRef]
  30. B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006).
    [CrossRef] [PubMed]
  31. A. Barnett, E. M. Goldys, and K. Dybek, “ Detection limit improvement of surface plasmon resonance based biosensors using statistical hypothesis testing”, Proceedings of SPIE-The International Society for Optical Engineering, 5703 (Plasmonics in Biology and Medicine II), 71–78. (2005)
  32. X. H. Li, K. Tamada, A. Baba, W. Knoll, and M. Hara, “Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance,” J. Phys. Chem. B 110(32), 15755–15762 (2006).
    [CrossRef] [PubMed]
  33. C. D. Xiao and S. F. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66, 1–3, 174–177 (2000).
  34. D. Roy, “Optical characterisation of multi-layer thin films using the surface plasmon resonance method: A six-phase model based on the Kretschmann formalism,” Opt. Commun. 200(1-6), 119–130 (2001).
    [CrossRef]
  35. X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91, 1–3, 285–290 (2003).
  36. T. M. Inc., “Matlab . technical development software.
  37. M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5-6), 5–6, 313–320 (1999).
    [CrossRef]
  38. J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. 203(1), 385–420 (1904).
    [CrossRef]
  39. K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002).
    [CrossRef] [PubMed]
  40. E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007).
    [CrossRef] [PubMed]
  41. http://www.biacore.com/catalog/ , “System specification and performance.
  42. R. Karlsson and R. Ståhlberg, “Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities,” Anal. Biochem. 228(2), 274–280 (1995).
    [CrossRef] [PubMed]

2007

E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007).
[CrossRef] [PubMed]

2006

N. Zhang, Z. Z. Chen, and B. Tang, “Recent applications of fluorescence imaging in bioanalysis,” Chinese J. Anal. Chem. 34(7), 1030–1034 (2006).

X. H. Li, K. Tamada, A. Baba, W. Knoll, and M. Hara, “Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance,” J. Phys. Chem. B 110(32), 15755–15762 (2006).
[CrossRef] [PubMed]

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).

C. Chou, H. T. Wu, Y. C. Huang, W. C. Kuo, and Y. L. Chen, “Characteristics of a paired surface plasma waves biosensor,” Opt. Express 14(10), 4307–4315 (2006).
[CrossRef] [PubMed]

B. Ran and S. G. Lipson, “Comparison between sensitivities of phase and intensity detection in surface plasmon resonance,” Opt. Express 14(12), 5641–5650 (2006).
[CrossRef] [PubMed]

2005

2004

Y. Sato, Y. Sato, A. Okumura, K. Suzuki, and H. Kawaguchi, “Flow-stress-induced discrimination of a K-ras point mutation by sandwiched polymer microsphere-enhanced surface plasmon resonance,” J. Biomater. Sci. Polym. Ed. 15(3), 297–310 (2004).
[CrossRef] [PubMed]

L. He, E. A. Smith, M. J. Natan, and C. D. Keating, “The distance dependence of colloidal Au-amplified surface plasmon resonance,” J. Phys. Chem. B 108(30), 10973–10980 (2004).
[CrossRef]

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[CrossRef] [PubMed]

S. Y. Wu, H. P. Ho, W. C. Law, C. L. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
[CrossRef] [PubMed]

2003

Y. Sato, S. Ikegaki, K. Suzuki, and H. Kawaguchi, “Hydrogel-microsphere-enhanced surface plasmon resonance for the detection of a K-ras point mutation employing peptide nucleic acid,” J. Biomater. Sci. Polym. Ed. 14(8), 803–820 (2003).
[CrossRef] [PubMed]

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
[CrossRef]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

W. C. Kuo, C. Chou, and H. T. Wu, “Optical heterodyne surface-plasmon resonance biosensor,” Opt. Lett. 28(15), 1329–1331 (2003).
[CrossRef] [PubMed]

X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91, 1–3, 285–290 (2003).

2002

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002).
[CrossRef] [PubMed]

2001

D. Roy, “Optical characterisation of multi-layer thin films using the surface plasmon resonance method: A six-phase model based on the Kretschmann formalism,” Opt. Commun. 200(1-6), 119–130 (2001).
[CrossRef]

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001).
[CrossRef]

E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[CrossRef]

2000

C. D. Xiao and S. F. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66, 1–3, 174–177 (2000).

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 1–2, 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 1–2, 16–24 (1999).
[CrossRef]

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5-6), 5–6, 313–320 (1999).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
[CrossRef]

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B Chem. 54(1-2), 1–2, 118–124 (1999).
[CrossRef]

1998

J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998).
[CrossRef] [PubMed]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[CrossRef] [PubMed]

1997

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[CrossRef]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 1–3, 207–211 (1997).
[CrossRef]

T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
[CrossRef]

1996

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 6–7, 635–649 (1996).
[CrossRef]

1995

R. Karlsson and R. Ståhlberg, “Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities,” Anal. Biochem. 228(2), 274–280 (1995).
[CrossRef] [PubMed]

T. Kume, N. Nakagawa, S. Hayashi, and K. Yamamoto, “Interaction between localized and propagating surface plasmons - Ag fine particles on Al surface,” Solid State Commun. 93(2), 171–175 (1995).
[CrossRef]

1994

E. F. A. de Vries, R. B. M. Schasfoort, J. Vanderplas, and J. Greve, “Nucleic-Acid Detection with Surface-Plasmon Resonance Using Cationic Latex,” Biosens. Bioelectron. 9(7), 509–514 (1994).
[CrossRef]

1904

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. 203(1), 385–420 (1904).
[CrossRef]

Baba, A.

X. H. Li, K. Tamada, A. Baba, W. Knoll, and M. Hara, “Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance,” J. Phys. Chem. B 110(32), 15755–15762 (2006).
[CrossRef] [PubMed]

Bassil, N.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
[CrossRef]

Bult, A.

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[CrossRef] [PubMed]

Canva, M.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
[CrossRef]

Cha, S.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001).
[CrossRef]

Chang, R. S.

Chen, J.

E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007).
[CrossRef] [PubMed]

Chen, S. J.

Y. D. Su, S. J. Chen, and T. L. Yeh, “Common-path phase-shift interferometry surface plasmon resonance imaging system,” Opt. Lett. 30(12), 1488–1490 (2005).
[CrossRef] [PubMed]

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[CrossRef] [PubMed]

Chen, Y. L.

Chen, Z. Z.

N. Zhang, Z. Z. Chen, and B. Tang, “Recent applications of fluorescence imaging in bioanalysis,” Chinese J. Anal. Chem. 34(7), 1030–1034 (2006).

Chien, F. C.

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[CrossRef] [PubMed]

Chinowsky, T. M.

E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007).
[CrossRef] [PubMed]

Chiu, M. H.

Chou, C.

Corn, R. M.

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[CrossRef]

Davey, C. L.

J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998).
[CrossRef] [PubMed]

de las Nieves, F. J.

J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998).
[CrossRef] [PubMed]

de Vries, E. F. A.

E. F. A. de Vries, R. B. M. Schasfoort, J. Vanderplas, and J. Greve, “Nucleic-Acid Detection with Surface-Plasmon Resonance Using Cationic Latex,” Biosens. Bioelectron. 9(7), 509–514 (1994).
[CrossRef]

Fendler, J. H.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001).
[CrossRef]

E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[CrossRef]

Frutos, A. G.

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[CrossRef]

Fu, E.

E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007).
[CrossRef] [PubMed]

García, M. A.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5-6), 5–6, 313–320 (1999).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 1–2, 3–15 (1999).
[CrossRef]

Goossens, M.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
[CrossRef]

Greve, J.

E. F. A. de Vries, R. B. M. Schasfoort, J. Vanderplas, and J. Greve, “Nucleic-Acid Detection with Surface-Plasmon Resonance Using Cationic Latex,” Biosens. Bioelectron. 9(7), 509–514 (1994).
[CrossRef]

Gutova, M.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).

Hara, M.

X. H. Li, K. Tamada, A. Baba, W. Knoll, and M. Hara, “Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance,” J. Phys. Chem. B 110(32), 15755–15762 (2006).
[CrossRef] [PubMed]

Hayashi, S.

T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
[CrossRef]

T. Kume, N. Nakagawa, S. Hayashi, and K. Yamamoto, “Interaction between localized and propagating surface plasmons - Ag fine particles on Al surface,” Solid State Commun. 93(2), 171–175 (1995).
[CrossRef]

He, L.

L. He, E. A. Smith, M. J. Natan, and C. D. Keating, “The distance dependence of colloidal Au-amplified surface plasmon resonance,” J. Phys. Chem. B 108(30), 10973–10980 (2004).
[CrossRef]

Hidalgo-Álvarez, R.

J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998).
[CrossRef] [PubMed]

Ho, H. P.

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 1–2, 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 1–2, 3–15 (1999).
[CrossRef]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 1–3, 207–211 (1997).
[CrossRef]

Huang, Y. C.

Hutter, E.

E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[CrossRef]

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001).
[CrossRef]

Ikegaki, S.

Y. Sato, S. Ikegaki, K. Suzuki, and H. Kawaguchi, “Hydrogel-microsphere-enhanced surface plasmon resonance for the detection of a K-ras point mutation employing peptide nucleic acid,” J. Biomater. Sci. Polym. Ed. 14(8), 803–820 (2003).
[CrossRef] [PubMed]

Jordan, C. E.

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[CrossRef]

Karlsson, R.

R. Karlsson and R. Ståhlberg, “Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities,” Anal. Biochem. 228(2), 274–280 (1995).
[CrossRef] [PubMed]

Kawaguchi, H.

Y. Sato, Y. Sato, A. Okumura, K. Suzuki, and H. Kawaguchi, “Flow-stress-induced discrimination of a K-ras point mutation by sandwiched polymer microsphere-enhanced surface plasmon resonance,” J. Biomater. Sci. Polym. Ed. 15(3), 297–310 (2004).
[CrossRef] [PubMed]

Y. Sato, S. Ikegaki, K. Suzuki, and H. Kawaguchi, “Hydrogel-microsphere-enhanced surface plasmon resonance for the detection of a K-ras point mutation employing peptide nucleic acid,” J. Biomater. Sci. Polym. Ed. 14(8), 803–820 (2003).
[CrossRef] [PubMed]

Keating, C. D.

L. He, E. A. Smith, M. J. Natan, and C. D. Keating, “The distance dependence of colloidal Au-amplified surface plasmon resonance,” J. Phys. Chem. B 108(30), 10973–10980 (2004).
[CrossRef]

Knoll, W.

X. H. Li, K. Tamada, A. Baba, W. Knoll, and M. Hara, “Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance,” J. Phys. Chem. B 110(32), 15755–15762 (2006).
[CrossRef] [PubMed]

Kong, S. K.

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 1–2, 16–24 (1999).
[CrossRef]

Kume, T.

T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
[CrossRef]

T. Kume, N. Nakagawa, S. Hayashi, and K. Yamamoto, “Interaction between localized and propagating surface plasmons - Ag fine particles on Al surface,” Solid State Commun. 93(2), 171–175 (1995).
[CrossRef]

Kuo, W. C.

Kurihara, K.

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002).
[CrossRef] [PubMed]

Law, W. C.

Levy, Y.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
[CrossRef]

Li, X.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).

Li, X. H.

X. H. Li, K. Tamada, A. Baba, W. Knoll, and M. Hara, “Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance,” J. Phys. Chem. B 110(32), 15755–15762 (2006).
[CrossRef] [PubMed]

Lin, C. L.

Lipson, S. G.

Liu, J. F.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001).
[CrossRef]

Llopis, J.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5-6), 5–6, 313–320 (1999).
[CrossRef]

Lyon, L. A.

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
[CrossRef]

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B Chem. 54(1-2), 1–2, 118–124 (1999).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Maillart, E.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
[CrossRef]

Maxwell-Garnett, J. C.

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. 203(1), 385–420 (1904).
[CrossRef]

Millot, M. C.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
[CrossRef]

Monmand, J.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).

Musick, M. D.

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B Chem. 54(1-2), 1–2, 118–124 (1999).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Nakagawa, N.

T. Kume, N. Nakagawa, S. Hayashi, and K. Yamamoto, “Interaction between localized and propagating surface plasmons - Ag fine particles on Al surface,” Solid State Commun. 93(2), 171–175 (1995).
[CrossRef]

Narwa, R.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
[CrossRef]

Natan, M. J.

L. He, E. A. Smith, M. J. Natan, and C. D. Keating, “The distance dependence of colloidal Au-amplified surface plasmon resonance,” J. Phys. Chem. B 108(30), 10973–10980 (2004).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
[CrossRef]

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B Chem. 54(1-2), 1–2, 118–124 (1999).
[CrossRef]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

Newman, D. J.

J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998).
[CrossRef] [PubMed]

Okumura, A.

Y. Sato, Y. Sato, A. Okumura, K. Suzuki, and H. Kawaguchi, “Flow-stress-induced discrimination of a K-ras point mutation by sandwiched polymer microsphere-enhanced surface plasmon resonance,” J. Biomater. Sci. Polym. Ed. 15(3), 297–310 (2004).
[CrossRef] [PubMed]

Ortega-Vinuesa, J. L.

J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998).
[CrossRef] [PubMed]

Paje, S. E.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5-6), 5–6, 313–320 (1999).
[CrossRef]

Park, J.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001).
[CrossRef]

Pena, D. J.

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B Chem. 54(1-2), 1–2, 118–124 (1999).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
[CrossRef]

Pissard, S.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
[CrossRef]

Price, C. P.

J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998).
[CrossRef] [PubMed]

Price., C. P.

J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998).
[CrossRef] [PubMed]

Ramsey, S. A.

E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007).
[CrossRef] [PubMed]

Ran, B.

Reiss, B. D.

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B Chem. 54(1-2), 1–2, 118–124 (1999).
[CrossRef]

Roy, D.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001).
[CrossRef]

D. Roy, “Optical characterisation of multi-layer thin films using the surface plasmon resonance method: A six-phase model based on the Kretschmann formalism,” Opt. Commun. 200(1-6), 119–130 (2001).
[CrossRef]

E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[CrossRef]

Sato, Y.

Y. Sato, Y. Sato, A. Okumura, K. Suzuki, and H. Kawaguchi, “Flow-stress-induced discrimination of a K-ras point mutation by sandwiched polymer microsphere-enhanced surface plasmon resonance,” J. Biomater. Sci. Polym. Ed. 15(3), 297–310 (2004).
[CrossRef] [PubMed]

Y. Sato, Y. Sato, A. Okumura, K. Suzuki, and H. Kawaguchi, “Flow-stress-induced discrimination of a K-ras point mutation by sandwiched polymer microsphere-enhanced surface plasmon resonance,” J. Biomater. Sci. Polym. Ed. 15(3), 297–310 (2004).
[CrossRef] [PubMed]

Y. Sato, S. Ikegaki, K. Suzuki, and H. Kawaguchi, “Hydrogel-microsphere-enhanced surface plasmon resonance for the detection of a K-ras point mutation employing peptide nucleic acid,” J. Biomater. Sci. Polym. Ed. 14(8), 803–820 (2003).
[CrossRef] [PubMed]

Schasfoort, R. B. M.

E. F. A. de Vries, R. B. M. Schasfoort, J. Vanderplas, and J. Greve, “Nucleic-Acid Detection with Surface-Plasmon Resonance Using Cationic Latex,” Biosens. Bioelectron. 9(7), 509–514 (1994).
[CrossRef]

Smith, E. A.

L. He, E. A. Smith, M. J. Natan, and C. D. Keating, “The distance dependence of colloidal Au-amplified surface plasmon resonance,” J. Phys. Chem. B 108(30), 10973–10980 (2004).
[CrossRef]

Smith, P. C.

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B Chem. 54(1-2), 1–2, 118–124 (1999).
[CrossRef]

Ståhlberg, R.

R. Karlsson and R. Ståhlberg, “Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities,” Anal. Biochem. 228(2), 274–280 (1995).
[CrossRef] [PubMed]

Su, Y. D.

Sui, S. F.

C. D. Xiao and S. F. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66, 1–3, 174–177 (2000).

Suzuki, K.

Y. Sato, Y. Sato, A. Okumura, K. Suzuki, and H. Kawaguchi, “Flow-stress-induced discrimination of a K-ras point mutation by sandwiched polymer microsphere-enhanced surface plasmon resonance,” J. Biomater. Sci. Polym. Ed. 15(3), 297–310 (2004).
[CrossRef] [PubMed]

Y. Sato, S. Ikegaki, K. Suzuki, and H. Kawaguchi, “Hydrogel-microsphere-enhanced surface plasmon resonance for the detection of a K-ras point mutation employing peptide nucleic acid,” J. Biomater. Sci. Polym. Ed. 14(8), 803–820 (2003).
[CrossRef] [PubMed]

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002).
[CrossRef] [PubMed]

Tamada, K.

X. H. Li, K. Tamada, A. Baba, W. Knoll, and M. Hara, “Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance,” J. Phys. Chem. B 110(32), 15755–15762 (2006).
[CrossRef] [PubMed]

Tang, B.

N. Zhang, Z. Z. Chen, and B. Tang, “Recent applications of fluorescence imaging in bioanalysis,” Chinese J. Anal. Chem. 34(7), 1030–1034 (2006).

Thiel, A. J.

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[CrossRef]

Toledo, F.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).

van Bennekom, W. P.

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[CrossRef] [PubMed]

van Zuilen, S. J.

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[CrossRef] [PubMed]

Vanderplas, J.

E. F. A. de Vries, R. B. M. Schasfoort, J. Vanderplas, and J. Greve, “Nucleic-Acid Detection with Surface-Plasmon Resonance Using Cationic Latex,” Biosens. Bioelectron. 9(7), 509–514 (1994).
[CrossRef]

Wang, D. X.

X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91, 1–3, 285–290 (2003).

Wang, S. F.

Wiley, B.

E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007).
[CrossRef] [PubMed]

Wink, T.

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[CrossRef] [PubMed]

Wu, H. T.

Wu, S. Y.

Xia, Y.

E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007).
[CrossRef] [PubMed]

Xiao, C. D.

C. D. Xiao and S. F. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66, 1–3, 174–177 (2000).

Yager, P.

E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007).
[CrossRef] [PubMed]

Yamamoto, K.

T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
[CrossRef]

T. Kume, N. Nakagawa, S. Hayashi, and K. Yamamoto, “Interaction between localized and propagating surface plasmons - Ag fine particles on Al surface,” Solid State Commun. 93(2), 171–175 (1995).
[CrossRef]

Yan, Z. B.

X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91, 1–3, 285–290 (2003).

Yao, X.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 6–7, 635–649 (1996).
[CrossRef]

Yee, S. S.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 1–2, 16–24 (1999).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 1–2, 3–15 (1999).
[CrossRef]

Yeh, T. L.

Yi, J.

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001).
[CrossRef]

Yu, X. L.

X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91, 1–3, 285–290 (2003).

Zhang, N.

N. Zhang, Z. Z. Chen, and B. Tang, “Recent applications of fluorescence imaging in bioanalysis,” Chinese J. Anal. Chem. 34(7), 1030–1034 (2006).

Zhou, F.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).

Zurita-Lopez, C.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).

Anal. Bioanal. Chem.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Anal. Biochem.

R. Karlsson and R. Ståhlberg, “Surface plasmon resonance detection and multispot sensing for direct monitoring of interactions involving low-molecular-weight analytes and for determination of low affinities,” Anal. Biochem. 228(2), 274–280 (1995).
[CrossRef] [PubMed]

Anal. Chem.

X. Yao, X. Li, F. Toledo, C. Zurita-Lopez, M. Gutova, J. Monmand, and F. Zhou, “Sub-attomole oligonucleotide and p53 cDNA determinations via a high resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification,” Anal. Chem. 354, 220–228 (2006).

C. E. Jordan, A. G. Frutos, A. J. Thiel, and R. M. Corn, “Surface plasmon resonance imaging measurements of DNA hybridisation adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces,” Anal. Chem. 69(24), 4939–4947 (1997).
[CrossRef]

T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Liposome-mediated enhancement of the sensitivity in immunoassays of proteins and peptides in surface plasmon resonance spectrometry,” Anal. Chem. 70(5), 827–832 (1998).
[CrossRef] [PubMed]

L. A. Lyon, M. D. Musick, and M. J. Natan, “Colloidal Au-enhanced surface plasmon resonance immunosensing,” Anal. Chem. 70(24), 5177–5183 (1998).
[CrossRef] [PubMed]

K. Kurihara and K. Suzuki, “Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann’s theory,” Anal. Chem. 74(3), 696–701 (2002).
[CrossRef] [PubMed]

Biosens. Bioelectron.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosens. Bioelectron. 11(6-7), 6–7, 635–649 (1996).
[CrossRef]

F. C. Chien and S. J. Chen, “A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes,” Biosens. Bioelectron. 20(3), 633–642 (2004).
[CrossRef] [PubMed]

E. F. A. de Vries, R. B. M. Schasfoort, J. Vanderplas, and J. Greve, “Nucleic-Acid Detection with Surface-Plasmon Resonance Using Cationic Latex,” Biosens. Bioelectron. 9(7), 509–514 (1994).
[CrossRef]

Chem. Phys. Lett.

M. A. García, J. Llopis, and S. E. Paje, “A simple model for evaluating the optical absorption spectrum from small Au-colloids in sol-gel films,” Chem. Phys. Lett. 315(5-6), 5–6, 313–320 (1999).
[CrossRef]

Chinese J. Anal. Chem.

N. Zhang, Z. Z. Chen, and B. Tang, “Recent applications of fluorescence imaging in bioanalysis,” Chinese J. Anal. Chem. 34(7), 1030–1034 (2006).

J. Biomater. Sci. Polym. Ed.

Y. Sato, Y. Sato, A. Okumura, K. Suzuki, and H. Kawaguchi, “Flow-stress-induced discrimination of a K-ras point mutation by sandwiched polymer microsphere-enhanced surface plasmon resonance,” J. Biomater. Sci. Polym. Ed. 15(3), 297–310 (2004).
[CrossRef] [PubMed]

Y. Sato, S. Ikegaki, K. Suzuki, and H. Kawaguchi, “Hydrogel-microsphere-enhanced surface plasmon resonance for the detection of a K-ras point mutation employing peptide nucleic acid,” J. Biomater. Sci. Polym. Ed. 14(8), 803–820 (2003).
[CrossRef] [PubMed]

J. Colloid Interface Sci.

J. L. Ortega-Vinuesa, R. Hidalgo-Álvarez, C. L. Davey, D. J. Newman, C. P. Price, C. P. Price., and F. J. de las Nieves, “Characterization of immunoglobulin G bound to latex particles using surface plasmon resonance and electrophoretic mobility,” J. Colloid Interface Sci. 204(2), 300–311 (1998).
[CrossRef] [PubMed]

J. Phys. Chem. B

L. He, E. A. Smith, M. J. Natan, and C. D. Keating, “The distance dependence of colloidal Au-amplified surface plasmon resonance,” J. Phys. Chem. B 108(30), 10973–10980 (2004).
[CrossRef]

E. Hutter, S. Cha, J. F. Liu, J. Park, J. Yi, J. H. Fendler, and D. Roy, “Role of substrate metal in gold nanoparticle enhanced surface plasmon resonance imaging,” J. Phys. Chem. B 105(1), 8–12 (2001).
[CrossRef]

E. Hutter, J. H. Fendler, and D. Roy, “Surface plasmon resonance studies of gold and silver nanoparticles linked to gold and silver substrates by 2-aminoethanethiol and 1,6-hexanedithiol,” J. Phys. Chem. B 105(45), 11159–11168 (2001).
[CrossRef]

L. A. Lyon, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of Au colloid-modified Au films: particle size dependence,” J. Phys. Chem. B 103(28), 5826–5831 (1999).
[CrossRef]

X. H. Li, K. Tamada, A. Baba, W. Knoll, and M. Hara, “Estimation of dielectric function of biotin-capped gold nanoparticles via signal enhancement on surface plasmon resonance,” J. Phys. Chem. B 110(32), 15755–15762 (2006).
[CrossRef] [PubMed]

Opt. Commun.

D. Roy, “Optical characterisation of multi-layer thin films using the surface plasmon resonance method: A six-phase model based on the Kretschmann formalism,” Opt. Commun. 200(1-6), 119–130 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Philos. Trans. R. Soc. Lond.

J. C. Maxwell-Garnett, “Colours in metal glasses and in metallic films,” Philos. Trans. R. Soc. Lond. 203(1), 385–420 (1904).
[CrossRef]

Phys. Rev. B

T. Kume, S. Hayashi, and K. Yamamoto, “Light emission from surface plasmon polaritons mediated by metallic particles,” Phys. Rev. B 55(7), 4774–4782 (1997).
[CrossRef]

Sens. Actuators B Chem.

N. Bassil, E. Maillart, M. Canva, Y. Levy, M. C. Millot, S. Pissard, R. Narwa, and M. Goossens, “One hundred spots parallel monitoring of DNA interactions by SPR imaging of polymer-functionalised surfaces applied to the detection of cystic fibrosis mutations,” Sens. Actuators B Chem. 94(3), 313–323 (2003).
[CrossRef]

E. Fu, S. A. Ramsey, J. Chen, T. M. Chinowsky, B. Wiley, Y. Xia, and P. Yager, “Resonance wavelength-dependent signal of absorptive particles in surface plasmon resonance-based detection,” Sens. Actuators B Chem. 123(1), 606–613 (2007).
[CrossRef] [PubMed]

X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91, 1–3, 285–290 (2003).

C. D. Xiao and S. F. Sui, “Characterization of surface plasmon resonance biosensor,” Sens. Actuators B Chem. 66, 1–3, 174–177 (2000).

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 1–2, 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison,” Sens. Actuators B Chem. 54(1-2), 1–2, 16–24 (1999).
[CrossRef]

J. Homola, “On the sensitivity of surface plasmon resonance sensors with spectral interrogation,” Sens. Actuators B Chem. 41(1-3), 1–3, 207–211 (1997).
[CrossRef]

L. A. Lyon, M. D. Musick, P. C. Smith, B. D. Reiss, D. J. Pena, and M. J. Natan, “Surface plasmon resonance of colloidal Au-modified gold films,” Sens. Actuators B Chem. 54(1-2), 1–2, 118–124 (1999).
[CrossRef]

Solid State Commun.

T. Kume, N. Nakagawa, S. Hayashi, and K. Yamamoto, “Interaction between localized and propagating surface plasmons - Ag fine particles on Al surface,” Solid State Commun. 93(2), 171–175 (1995).
[CrossRef]

Other

K. M. Byun, D. Kim, and S. J. Kim, “Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled-wave analysis,” in Photonics West: Plasmonics in Biology and Medicine II, T. Vo-Dinh, J. R. Lakowicz, and Z. K. Gryczynski, eds., 5703, pp. 61–70, Proceedings of SPIE, (2005).

A. Barnett, E. M. Goldys, and K. Dybek, “ Detection limit improvement of surface plasmon resonance based biosensors using statistical hypothesis testing”, Proceedings of SPIE-The International Society for Optical Engineering, 5703 (Plasmonics in Biology and Medicine II), 71–78. (2005)

T. M. Inc., “Matlab . technical development software.

http://www.biacore.com/catalog/ , “System specification and performance.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Multilayer system under consideration in the modeling

Fig. 2
Fig. 2

Reflectance curves with region definitions. Insert: Simulated 5% isopropanol reflectance difference curve from water showing a positive data region.

Fig. 3
Fig. 3

a) Difference plots for various sample refractive indes differences as shown. b) Hypothesis test Z values for simulations of a conventional SPR system.

Fig. 4
Fig. 4

Reflectance difference curves calculated using modified Maxwell-Garnett theory at 632.8nm, for various volume fill fractions. Insert: Raw SPR reflectance curves.

Fig. 5
Fig. 5

Calculated hypothesis testing Z values for nanoparticle simulations at 632.8nm

Fig. 6
Fig. 6

Reflectance difference curves calculated using modified Maxwell-Garnett theory at 543 nm for a 47 nm gold SPR layer, at various volume fill fractions. Insert: Raw SPR reflectance curves.

Fig. 8
Fig. 8

Calculated hypothesis testing Z values for nanoparticle simulations at 543 nm.

Fig. 7
Fig. 7

Reflectance difference curves calculated using modified Maxwell-Garnett theory at 543 nm for a 38 nm silver −8 nm gold SPR layer, at various volume fill fractions. Insert: Raw SPR reflectance curves.

Tables (2)

Tables Icon

Table 1 Summary of layers in multi-layered nanoparticle simulation system at λ = 632.8 nm.

Tables Icon

Table 2 Summary of layers in multi-layered nanoparticle simulation system at λ = 543 nm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R j , l = | r j , j + 1 + r j + 1 , l exp ( 2 i d j + 1 k z , j + 1 ) 1 + r j , j + 1 r j + 1 , l exp ( 2 i d j + 1 k z , j + 1 ) | 2
r k , m = r k , k + 1 + r k + 1 , m exp ( 2 i d k + 1 k z , k + 1 ) 1 + r k , k + 1 r k + 1 , m exp ( 2 i d k + 1 k z , k + 1 )
r m , m + 1 = ε m + 1 / k z , m + 1 ε m / k z , m ε m + 1 / k z , m + 1 + ε m / k z , m
k z , m = ε m ω 2 c 2 k / / 2
ε ' e f f = ε ' m + A C + B D C 2 + D 2
ε ' ' e f f = B C A D C 2 + D 2
γ = 1 3 ε ' m + K 4 π ε ' m
N = n s i g n a l + n d a r k 2 + n r e a d o u t 2
F i = f ( θ i ) + ε i i = 1 , ... , n
G i = g ( θ i ) + η i i = 1 , ... , n
Z = D ˜ s / n

Metrics