Abstract

We present a method to speed up the acquisition of multispectral photoacoustic data sets by using unipolar orthogonal Golay codes as excitation sequences for the irradiation system. Multispectral photoacoustic coded excitation (MS-PACE) allows acquiring photoacoustic data sets for two irradiation wavelengths simultaneously and separating them afterwards, thus improving the SNR or speeding up the measurement. We derive an analytical estimation of the SNR improvement using MS-PACE compared to time equivalent averaging. We demonstrate the feasibility of the method by successfully imaging a phantom composed of two dyes using unipolar orthogonal Golay codes as excitation sequence for two high power laser diodes operating at two different wavelengths. The experimental results show very good agreement with the theoretical predictions.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
    [CrossRef] [PubMed]
  2. J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
    [CrossRef] [PubMed]
  3. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
    [CrossRef] [PubMed]
  4. I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express 17(9), 7285–7294 (2009).
    [CrossRef] [PubMed]
  5. M. P. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent,” Biomed. Eng. (N.Y.) 54, 83–88 (2009).
  6. S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer,” Nano Lett. 9(8), 2825–2831 (2009).
    [CrossRef] [PubMed]
  7. K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
    [CrossRef] [PubMed]
  8. D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
    [CrossRef]
  9. M. P. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, and G. Schmitz, “Simulation Study of Photoacoustic Coded Excitation using Golay Codes,” in Proceedings of IEEE International Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York,2008), pp. 1242–1245.
  10. M. P. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Feasibility Study of Multispectral Photoacoustic Coded Excitation using Orthogonal Unipolar Golay Codes,” in Proceedings of IEEE International Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York,2009), in press.
  11. T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
    [CrossRef] [PubMed]
  12. R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
    [CrossRef] [PubMed]
  13. R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer’s perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005).
    [CrossRef] [PubMed]
  14. M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
    [CrossRef]
  15. A. Sheinfeld, E. Bergman, S. Gilead, and A. Eyal, “The use of pulse synthesis for optimization of photoacoustic measurements,” Opt. Express 17(9), 7328–7338 (2009).
    [CrossRef] [PubMed]
  16. C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Trans. Inf. Theory 18(5), 644–652 (1972).
    [CrossRef]

2009 (8)

I. Y. Petrova, Y. Y. Petrov, R. O. Esenaliev, D. J. Deyo, I. Cicenaite, and D. S. Prough, “Noninvasive monitoring of cerebral blood oxygenation in ovine superior sagittal sinus with novel multi-wavelength optoacoustic system,” Opt. Express 17(9), 7285–7294 (2009).
[CrossRef] [PubMed]

M. P. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent,” Biomed. Eng. (N.Y.) 54, 83–88 (2009).

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[CrossRef] [PubMed]

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

J. Laufer, E. Zhang, G. Raivich, and P. Beard, “Three-dimensional noninvasive imaging of the vasculature in the mouse brain using a high resolution photoacoustic scanner,” Appl. Opt. 48(10), D299–D306 (2009).
[CrossRef] [PubMed]

A. Sheinfeld, E. Bergman, S. Gilead, and A. Eyal, “The use of pulse synthesis for optimization of photoacoustic measurements,” Opt. Express 17(9), 7328–7338 (2009).
[CrossRef] [PubMed]

2006 (2)

T. J. Allen and P. C. Beard, “Pulsed near-infrared laser diode excitation system for biomedical photoacoustic imaging,” Opt. Lett. 31(23), 3462–3464 (2006).
[CrossRef] [PubMed]

R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[CrossRef] [PubMed]

2005 (1)

R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer’s perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005).
[CrossRef] [PubMed]

2003 (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

1989 (1)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[CrossRef]

1972 (1)

C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Trans. Inf. Theory 18(5), 644–652 (1972).
[CrossRef]

Allen, T. J.

Beard, P.

Beard, P. C.

Bergman, E.

Chiao, R. Y.

R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer’s perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005).
[CrossRef] [PubMed]

Cicenaite, I.

Deyo, D. J.

Distel, M.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Emelianov, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Esenaliev, R. O.

Eyal, A.

Foster, S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[CrossRef]

Friedrich, C.-S.

M. P. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent,” Biomed. Eng. (N.Y.) 54, 83–88 (2009).

Gerhardt, N. C.

M. P. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent,” Biomed. Eng. (N.Y.) 54, 83–88 (2009).

Giffard, R. P.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[CrossRef]

Gilead, S.

Hao, X.

R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer’s perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005).
[CrossRef] [PubMed]

Hensel, K.

M. P. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent,” Biomed. Eng. (N.Y.) 54, 83–88 (2009).

Hofmann, M. R.

M. P. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent,” Biomed. Eng. (N.Y.) 54, 83–88 (2009).

Joshi, P. P.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Karpiouk, A.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Kim, C.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[CrossRef] [PubMed]

Kolkman, R. G.

R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[CrossRef] [PubMed]

Koster, R. W.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Ku, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Larson, T.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Laufer, J.

Li, C.

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Liu, C. L.

C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Trans. Inf. Theory 18(5), 644–652 (1972).
[CrossRef]

Ma, R.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Mallidi, S.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Maslov, K.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[CrossRef] [PubMed]

Mienkina, M. P.

M. P. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent,” Biomed. Eng. (N.Y.) 54, 83–88 (2009).

Moberly, D. S.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[CrossRef]

Nazarathy, M.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[CrossRef]

Newton, S. A.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[CrossRef]

Ntziachristos, V.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Perrimon, N.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Petrov, Y. Y.

Petrova, I. Y.

Prough, D. S.

Raivich, G.

Razansky, D.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Schmitz, G.

M. P. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent,” Biomed. Eng. (N.Y.) 54, 83–88 (2009).

Sheinfeld, A.

Sischka, F.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[CrossRef]

Sokolov, K.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Song, K. H.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[CrossRef] [PubMed]

Steenbergen, W.

R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[CrossRef] [PubMed]

Stoica, G.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Tam, J.

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Trutna, W. R.

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[CrossRef]

Tseng, C.-C.

C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Trans. Inf. Theory 18(5), 644–652 (1972).
[CrossRef]

van Leeuwen, T. G.

R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[CrossRef] [PubMed]

Vinegoni, C.

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Wang, L. V.

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[CrossRef] [PubMed]

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Wang, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Xie, X.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Zhang, E.

Appl. Opt. (1)

Biomed. Eng. (N.Y.) (1)

M. P. Mienkina, C.-S. Friedrich, K. Hensel, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Evaluation of Ferucarbotran (Resovist®) as a photoacoustic contrast agent,” Biomed. Eng. (N.Y.) 54, 83–88 (2009).

Eur. J. Radiol. (1)

K. H. Song, C. Kim, K. Maslov, and L. V. Wang, “Noninvasive in vivo spectroscopic nanorod-contrast photoacoustic mapping of sentinel lymph nodes,” Eur. J. Radiol. 70(2), 227–231 (2009).
[CrossRef] [PubMed]

IEEE Trans. Inf. Theory (1)

C.-C. Tseng and C. L. Liu, “Complementary sets of sequences,” IEEE Trans. Inf. Theory 18(5), 644–652 (1972).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

R. Y. Chiao and X. Hao, “Coded excitation for diagnostic ultrasound: a system developer’s perspective,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(2), 160–170 (2005).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

M. Nazarathy, S. A. Newton, R. P. Giffard, D. S. Moberly, F. Sischka, W. R. Trutna, and S. Foster, “Real-time long range complementary correlation optical time domain reflectometer,” J. Lightwave Technol. 7(1), 24–38 (1989).
[CrossRef]

Lasers Med. Sci. (1)

R. G. Kolkman, W. Steenbergen, and T. G. van Leeuwen, “In vivo photoacoustic imaging of blood vessels with a pulsed laser diode,” Lasers Med. Sci. 21(3), 134–139 (2006).
[CrossRef] [PubMed]

Nano Lett. (1)

S. Mallidi, T. Larson, J. Tam, P. P. Joshi, A. Karpiouk, K. Sokolov, and S. Emelianov, “Multiwavelength Photoacoustic Imaging and Plasmon Resonance Coupling of Gold Nanoparticles for Selective Detection of Cancer,” Nano Lett. 9(8), 2825–2831 (2009).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21(7), 803–806 (2003).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. Razansky, M. Distel, C. Vinegoni, R. Ma, N. Perrimon, R. W. Koster, and V. Ntziachristos, “Multispectral opto-acoustic tomography of deep-seated fluorescent proteins in vivo,” Nat. Photonics 3(7), 412–417 (2009).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Med. Biol. (1)

C. Li and L. V. Wang, “Photoacoustic tomography and sensing in biomedicine,” Phys. Med. Biol. 54(19), R59–R97 (2009).
[CrossRef] [PubMed]

Other (2)

M. P. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. Hofmann, and G. Schmitz, “Simulation Study of Photoacoustic Coded Excitation using Golay Codes,” in Proceedings of IEEE International Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York,2008), pp. 1242–1245.

M. P. Mienkina, A. Eder, C.-S. Friedrich, N. C. Gerhardt, M. R. Hofmann, and G. Schmitz, “Feasibility Study of Multispectral Photoacoustic Coded Excitation using Orthogonal Unipolar Golay Codes,” in Proceedings of IEEE International Ultrasonics Symposium (Institute of Electrical and Electronics Engineers, New York,2009), in press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Timing diagram for the excitation of both light sources. The code length is set to N = 4 for this example.

Fig. 2
Fig. 2

Signal processing model of MS-PACE using UOGC for W = 1

Fig. 3
Fig. 3

Experimental setup for MS-PACE

Fig. 4
Fig. 4

Comparison of MS-PACE and time equivalent averaging for both excitation wavelengths. (a) photoacoustic image for averaging as many acquisitions as possible during the coding procedure for W=1, termed time-equivalent averaging. (b) photoacoustic image using MS-PACE for W=1. (c) photoacoustic image using time-equivalent averaging for W=2. (d) photoacoustic image using MS-PACE for W=2.

Fig. 5
Fig. 5

The coding gain for MS-PACE using UOGC is shown as a function of the code length and the PRF of the laser diodes. ‘T’ denotes the theoretical prediction based on Eq. (10), ‘E’ denotes the experimental results. The PRF of the laser diodes was varied between 125 kHz and 500 kHz for MS-PACE. The number of averages was adjusted for each parameter set according to Eq. (8). The maximum code length was limited by the maximum acquisition duration of the ultrasound system.

Fig. 6
Fig. 6

The coding gain is displayed as a function of the distance between the ultrasound receiver and the farthest photoacoustic source. For each distance the number of acquisitions for averaging was adjusted based on Eq. (8). ‘T’ denotes theoretical estimations, cf. Eq. (10), ‘E’ denotes experimental results. The PRF and the code length for MS-PACE were set to 500 kHz and 512 bit, respectively.

Fig. 7
Fig. 7

The theoretical coding gain is shown as a function of the PRF of the laser diodes for MS-PACE using UOGC and distance za . A constant code length of 512 bit is assumed for all calculations. The dashed line (–) indicates the 0 dB coding gain isoline.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A ( k ) = m = 0 N 1 a m δ ( k m T ) , B ( k ) = m = 0 N 1 b m δ ( k m T ) ,
A ( k ) * A ( k ) + B ( k ) * B ( k ) = 2 N δ ( k ) ,
A 1 ( k ) * A 2 ( k ) + B 1 ( k ) * B 2 ( k ) = 0 , A 1 ( k ) * A 1 ( k ) + B 1 ( k ) * B 1 ( k ) = 2 N δ ( k ) , A 2 ( k ) * A 2 ( k ) + B 2 ( k ) * B 2 ( k ) = 2 N δ ( k ) .
A p , W ( k ) = ( A W ( k ) + 1 ) / 2 , A n , W ( k ) = ( A W ( k ) + 1 ) / 2 B p , W ( k ) = ( B W ( k ) + 1 ) / 2 , B n , W ( k ) = ( B W ( k ) + 1 ) / 2 .
T U O G C = 4 ( ( N 1 ) τ L + τ E )
y 1 ( k ) =       [ A p , 1 ( k ) * h P A , 1 ( k ) + A p , 2 ( k ) * h P A , 2 ( k ) + n 1 ( k ) A n , 1 ( k ) * h P A , 1 ( k ) A n , 2 ( k ) * h P A , 2 ( k ) n 2 ( k ) ] * A 1 ( k ) + [ B p , 1 ( k ) * h P A , 1 ( k ) + B p , 2 ( k ) * h P A , 2 ( k ) + n 3 ( k ) B n , 1 ( k ) * h P A , 1 ( k ) B n , 2 ( k ) * h P A , 2 ( k ) n 4 ( k ) ] * B 1 ( k ) = [ A 1 ( k ) * h P A , 1 ( k ) + A 2 ( k ) * h P A , 2 ( k ) + n 1 ( k ) n 2 ( k ) ] * A 1 ( k ) + [ B 1 ( k ) * h P A , 1 ( k ) + B 2 ( k ) * h P A , 2 ( k ) + n 3 ( k ) n 4 ( k ) ] * B 1 ( k ) , = ( A 1 ( k ) * A 1 ( k ) + B 1 ( k ) * B 1 ( k ) ) * h P A , 1 ( k ) + ( A 2 ( k ) * A 1 ( k ) + B 2 ( k ) * B 1 ( k ) ) * h P A , 2 ( k ) + n 1 ( k ) * A 1 ( k ) n 2 ( k ) * A 1 ( k ) + n 3 ( k ) * B 1 ( k ) n 4 ( k ) * B 1 ( k ) = 2 N h P A , 1 ( k ) + n 1 ( k ) * A 1 ( k ) n 2 ( k ) * A 1 ( k ) + n 3 ( k ) * B 1 ( k ) n 4 ( k ) * B 1 ( k ) = 2 N h P A , 1 ( k ) + R ( k )
MSE UOGC, W = E { ( R ( k ) 2 N ) 2 } = σ 2 N ,
N AVG = T UOGC τ E = 4 ( ( N 1 ) τ L τ E + 1 ) .
MSE AVG, W = σ 2 N AVG / 2 = σ 2 2 ( ( N 1 ) τ L τ E + 1 ) .
G UOGC =10 log 10 ( MSE AVG, W MSE UOGC, W ) = 10 log 10 ( N / ( 2 ( ( N 1 ) τ L c 0 z a + 1 ) ) ) .

Metrics