Abstract

We demonstrate advantages in terms of trapping force distribution and laser efficiency that come from using a telescopic pair of conical lenses (‘axicon’) to generate a ring-like beam, that in conjunction with a high NA objective is used for direct optical trapping with a focused evanescent field near a surface. Various field geometries are considered and compared. First, a Gaussian beam and a laser beam focused on the back focal plane of the objective are compared with each other, and they are scanned across the inlet aperture of the objective. This allows to detect the point of total internal refraction, and to study the trapping power near the surface. We confirm that the hollow beam generated by the conical lenses can generate an evanescent field after a high NA objective lens, and that micron-sized particles can be trapped stably. Finally, we apply the focused evanescent field to erythrocytes under flow, showing that cells are trapped against the flow and are held horizontally against the surface. This is a different equilibrium condition compared to conventional single beam traps, and it is particularly favorable for monitoring the cell membrane. We foresee the integration of this type of trapping with the imaging techniques based on total internal refraction fluoresence (TIRF).

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. D. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
    [CrossRef] [PubMed]
  3. J. Meiners and S. Quake, "Femtonewton force spectroscopy of single extended dna molecules," Phys. Rev. Lett. 84, 5014-5017 (2000).
    [CrossRef] [PubMed]
  4. Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, "Non-linear mechanical response of the red blood cell," Phys. Biol. 5, 036007 (2008).
    [CrossRef] [PubMed]
  5. D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
    [CrossRef] [PubMed]
  6. G. Seisenberger, M. Ried, T. Endreb, H. Buning, M. Hallek, and C. Brauchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929 (2001).
    [CrossRef] [PubMed]
  7. N. Chronis and L. Lee, "Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall," Lab Chip 4, 125-130 (2004).
    [CrossRef] [PubMed]
  8. J. Wang, N. Bao, L. Paris, R. Geahlen, and C. Lu, "Total internal reflection fluorescence flow cytometry," Anal. Chem. 80, 9840-9844 (2008).
    [CrossRef] [PubMed]
  9. S. Kawata and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam," Opt. Lett. 17, 772-774 (1992).
    [CrossRef] [PubMed]
  10. S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam," Opt. Commun. 108, 133-143 (1994).
    [CrossRef]
  11. E. Almaas and I. Brevik, "Radiation forces on a micrometer-sized sphere in an evanescent field," J. Opt. Soc. Am. B 12, 2429-2438 (1995).
    [CrossRef]
  12. M. Lester and M. Nieto-Vesperinas, "Optical forces on microparticles in an evanescent laser field," Opt. Lett. 24, 936-938 (1999).
    [CrossRef]
  13. S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: A ray optics model," J. Appl. Phys. 97, 083103 (2005).
    [CrossRef]
  14. V. Ruiz-Cortes and J. Vite-Frias, "Lensless optical manipulation with an evanescent field," Opt. Express 16, 6600-6608 (2008).
    [CrossRef] [PubMed]
  15. D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004).
    [CrossRef] [PubMed]
  16. Y. Zhang and J. Bai, "Simple and high efficient optical trapping using a cylindrical lens and a single plane wave of incidence," Opt. Commun. 281, 4824-4828 (2008).
    [CrossRef]
  17. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 - 480 (2007).
    [CrossRef]
  18. L. Huang, S. J. Maerkl, and O. Martin, "Integration of plasmonic trapping in a microfluidic environment," Opt. Express 17, 6018-6024 (2009).
    [CrossRef] [PubMed]
  19. M. Righini, C. Girard, and R. Quidant, "Light-induced manipulation with surface plasmons," J. Opt. A: Pure Appl. Opt. 10, 093001 (2008).
    [CrossRef]
  20. P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
    [CrossRef] [PubMed]
  21. K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
    [CrossRef]
  22. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari and R. Quidant, "Self-induced back-action optical trapping of dielectric nanoparticles," Nat. Phys. 5, 915-919 (2009).
    [CrossRef]
  23. C. Mellor and C. Bain, "Array formation in evanescent waves," ChemPhysChem 7, 329-332 (2006).
    [CrossRef]
  24. M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
    [CrossRef]
  25. B. Jia, X. Gan, and M. Gu, "Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy," App. Phy. Lett. 86, 131110 (2005).
    [CrossRef]
  26. M. Gu, S. Kuriakose, and X. Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007).
    [CrossRef] [PubMed]
  27. I. Manek, Y. Ovchinnikov, and R. Grimm, "Generation of a hollow laser beam for atom trapping using an axicon," Opt. Commun. 147, 67-70 (1998).
    [CrossRef]
  28. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
    [CrossRef] [PubMed]
  29. D. Ivanov, V. Shcheslavskly, I. Markl, M. Leutenegger, and T. Lasser, "High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy," Appl. Phys. Lett. 94, 083902 (2009).
    [CrossRef]

2009 (3)

L. Huang, S. J. Maerkl, and O. Martin, "Integration of plasmonic trapping in a microfluidic environment," Opt. Express 17, 6018-6024 (2009).
[CrossRef] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari and R. Quidant, "Self-induced back-action optical trapping of dielectric nanoparticles," Nat. Phys. 5, 915-919 (2009).
[CrossRef]

D. Ivanov, V. Shcheslavskly, I. Markl, M. Leutenegger, and T. Lasser, "High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy," Appl. Phys. Lett. 94, 083902 (2009).
[CrossRef]

2008 (4)

M. Righini, C. Girard, and R. Quidant, "Light-induced manipulation with surface plasmons," J. Opt. A: Pure Appl. Opt. 10, 093001 (2008).
[CrossRef]

J. Wang, N. Bao, L. Paris, R. Geahlen, and C. Lu, "Total internal reflection fluorescence flow cytometry," Anal. Chem. 80, 9840-9844 (2008).
[CrossRef] [PubMed]

V. Ruiz-Cortes and J. Vite-Frias, "Lensless optical manipulation with an evanescent field," Opt. Express 16, 6600-6608 (2008).
[CrossRef] [PubMed]

Y. Zhang and J. Bai, "Simple and high efficient optical trapping using a cylindrical lens and a single plane wave of incidence," Opt. Commun. 281, 4824-4828 (2008).
[CrossRef]

2007 (2)

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 - 480 (2007).
[CrossRef]

M. Gu, S. Kuriakose, and X. Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007).
[CrossRef] [PubMed]

2006 (1)

C. Mellor and C. Bain, "Array formation in evanescent waves," ChemPhysChem 7, 329-332 (2006).
[CrossRef]

2005 (2)

B. Jia, X. Gan, and M. Gu, "Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy," App. Phy. Lett. 86, 131110 (2005).
[CrossRef]

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: A ray optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

2004 (3)

D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004).
[CrossRef] [PubMed]

N. Chronis and L. Lee, "Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall," Lab Chip 4, 125-130 (2004).
[CrossRef] [PubMed]

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

2003 (1)

D. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

2002 (2)

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef] [PubMed]

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

2001 (2)

D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
[CrossRef] [PubMed]

G. Seisenberger, M. Ried, T. Endreb, H. Buning, M. Hallek, and C. Brauchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929 (2001).
[CrossRef] [PubMed]

2000 (1)

J. Meiners and S. Quake, "Femtonewton force spectroscopy of single extended dna molecules," Phys. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef] [PubMed]

1999 (2)

M. Lester and M. Nieto-Vesperinas, "Optical forces on microparticles in an evanescent laser field," Opt. Lett. 24, 936-938 (1999).
[CrossRef]

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

1998 (1)

I. Manek, Y. Ovchinnikov, and R. Grimm, "Generation of a hollow laser beam for atom trapping using an axicon," Opt. Commun. 147, 67-70 (1998).
[CrossRef]

1995 (1)

1994 (1)

S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam," Opt. Commun. 108, 133-143 (1994).
[CrossRef]

1992 (1)

1970 (1)

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Almaas, E.

Ashkin, A.

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Axelrod, D.

D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
[CrossRef] [PubMed]

Bai, J.

Y. Zhang and J. Bai, "Simple and high efficient optical trapping using a cylindrical lens and a single plane wave of incidence," Opt. Commun. 281, 4824-4828 (2008).
[CrossRef]

Bain, C.

C. Mellor and C. Bain, "Array formation in evanescent waves," ChemPhysChem 7, 329-332 (2006).
[CrossRef]

Bao, N.

J. Wang, N. Bao, L. Paris, R. Geahlen, and C. Lu, "Total internal reflection fluorescence flow cytometry," Anal. Chem. 80, 9840-9844 (2008).
[CrossRef] [PubMed]

Brauchle, C.

G. Seisenberger, M. Ried, T. Endreb, H. Buning, M. Hallek, and C. Brauchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929 (2001).
[CrossRef] [PubMed]

Brevik, I.

Buning, H.

G. Seisenberger, M. Ried, T. Endreb, H. Buning, M. Hallek, and C. Brauchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929 (2001).
[CrossRef] [PubMed]

Chang, S.

S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam," Opt. Commun. 108, 133-143 (1994).
[CrossRef]

Chaumet, P.

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef] [PubMed]

Chon, J. W. M.

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: A ray optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Chronis, N.

N. Chronis and L. Lee, "Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall," Lab Chip 4, 125-130 (2004).
[CrossRef] [PubMed]

Dholakia, K.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari and R. Quidant, "Self-induced back-action optical trapping of dielectric nanoparticles," Nat. Phys. 5, 915-919 (2009).
[CrossRef]

Endreb, T.

G. Seisenberger, M. Ried, T. Endreb, H. Buning, M. Hallek, and C. Brauchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929 (2001).
[CrossRef] [PubMed]

Gan, X.

M. Gu, S. Kuriakose, and X. Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007).
[CrossRef] [PubMed]

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: A ray optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, "Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy," App. Phy. Lett. 86, 131110 (2005).
[CrossRef]

D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004).
[CrossRef] [PubMed]

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Ganic, D.

Garces-Chavez, V.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Geahlen, R.

J. Wang, N. Bao, L. Paris, R. Geahlen, and C. Lu, "Total internal reflection fluorescence flow cytometry," Anal. Chem. 80, 9840-9844 (2008).
[CrossRef] [PubMed]

Girard, C.

M. Righini, C. Girard, and R. Quidant, "Light-induced manipulation with surface plasmons," J. Opt. A: Pure Appl. Opt. 10, 093001 (2008).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 - 480 (2007).
[CrossRef]

Gordon, R.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari and R. Quidant, "Self-induced back-action optical trapping of dielectric nanoparticles," Nat. Phys. 5, 915-919 (2009).
[CrossRef]

Grier, D.

D. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Grimm, R.

I. Manek, Y. Ovchinnikov, and R. Grimm, "Generation of a hollow laser beam for atom trapping using an axicon," Opt. Commun. 147, 67-70 (1998).
[CrossRef]

Gu, M.

M. Gu, S. Kuriakose, and X. Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007).
[CrossRef] [PubMed]

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: A ray optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

B. Jia, X. Gan, and M. Gu, "Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy," App. Phy. Lett. 86, 131110 (2005).
[CrossRef]

D. Ganic, X. Gan, and M. Gu, "Trapping force and optical lifting under focused evanescent wave illumination," Opt. Express 12, 5533-5538 (2004).
[CrossRef] [PubMed]

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Hallek, M.

G. Seisenberger, M. Ried, T. Endreb, H. Buning, M. Hallek, and C. Brauchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929 (2001).
[CrossRef] [PubMed]

Haumonte, J.

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Huang, L.

Ivanov, D.

D. Ivanov, V. Shcheslavskly, I. Markl, M. Leutenegger, and T. Lasser, "High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy," Appl. Phys. Lett. 94, 083902 (2009).
[CrossRef]

Jia, B.

B. Jia, X. Gan, and M. Gu, "Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy," App. Phy. Lett. 86, 131110 (2005).
[CrossRef]

Jo, J. H.

S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam," Opt. Commun. 108, 133-143 (1994).
[CrossRef]

Juan, M. L.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari and R. Quidant, "Self-induced back-action optical trapping of dielectric nanoparticles," Nat. Phys. 5, 915-919 (2009).
[CrossRef]

Kawata, S.

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

S. Kawata and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam," Opt. Lett. 17, 772-774 (1992).
[CrossRef] [PubMed]

Kuriakose, S.

M. Gu, S. Kuriakose, and X. Gan, "A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes," Opt. Express 15, 1369-1375 (2007).
[CrossRef] [PubMed]

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: A ray optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

Lasser, T.

D. Ivanov, V. Shcheslavskly, I. Markl, M. Leutenegger, and T. Lasser, "High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy," Appl. Phys. Lett. 94, 083902 (2009).
[CrossRef]

Lee, L.

N. Chronis and L. Lee, "Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall," Lab Chip 4, 125-130 (2004).
[CrossRef] [PubMed]

Lee, S. S.

S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam," Opt. Commun. 108, 133-143 (1994).
[CrossRef]

Lester, M.

Leutenegger, M.

D. Ivanov, V. Shcheslavskly, I. Markl, M. Leutenegger, and T. Lasser, "High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy," Appl. Phys. Lett. 94, 083902 (2009).
[CrossRef]

Lu, C.

J. Wang, N. Bao, L. Paris, R. Geahlen, and C. Lu, "Total internal reflection fluorescence flow cytometry," Anal. Chem. 80, 9840-9844 (2008).
[CrossRef] [PubMed]

Maerkl, S. J.

Manek, I.

I. Manek, Y. Ovchinnikov, and R. Grimm, "Generation of a hollow laser beam for atom trapping using an axicon," Opt. Commun. 147, 67-70 (1998).
[CrossRef]

Markl, I.

D. Ivanov, V. Shcheslavskly, I. Markl, M. Leutenegger, and T. Lasser, "High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy," Appl. Phys. Lett. 94, 083902 (2009).
[CrossRef]

Martin, O.

McGloin, D.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Meiners, J.

J. Meiners and S. Quake, "Femtonewton force spectroscopy of single extended dna molecules," Phys. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef] [PubMed]

Mellor, C.

C. Mellor and C. Bain, "Array formation in evanescent waves," ChemPhysChem 7, 329-332 (2006).
[CrossRef]

Melville, H.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Micheau, Y.

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Nieto-Vesperinas, M.

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef] [PubMed]

M. Lester and M. Nieto-Vesperinas, "Optical forces on microparticles in an evanescent laser field," Opt. Lett. 24, 936-938 (1999).
[CrossRef]

Okamoto, K.

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Ovchinnikov, Y.

I. Manek, Y. Ovchinnikov, and R. Grimm, "Generation of a hollow laser beam for atom trapping using an axicon," Opt. Commun. 147, 67-70 (1998).
[CrossRef]

Pang, Y.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari and R. Quidant, "Self-induced back-action optical trapping of dielectric nanoparticles," Nat. Phys. 5, 915-919 (2009).
[CrossRef]

Paris, L.

J. Wang, N. Bao, L. Paris, R. Geahlen, and C. Lu, "Total internal reflection fluorescence flow cytometry," Anal. Chem. 80, 9840-9844 (2008).
[CrossRef] [PubMed]

Quake, S.

J. Meiners and S. Quake, "Femtonewton force spectroscopy of single extended dna molecules," Phys. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef] [PubMed]

Quidant, R.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari and R. Quidant, "Self-induced back-action optical trapping of dielectric nanoparticles," Nat. Phys. 5, 915-919 (2009).
[CrossRef]

M. Righini, C. Girard, and R. Quidant, "Light-induced manipulation with surface plasmons," J. Opt. A: Pure Appl. Opt. 10, 093001 (2008).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 - 480 (2007).
[CrossRef]

Rahmani, A.

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef] [PubMed]

Ried, M.

G. Seisenberger, M. Ried, T. Endreb, H. Buning, M. Hallek, and C. Brauchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929 (2001).
[CrossRef] [PubMed]

Righini, M.

M. Righini, C. Girard, and R. Quidant, "Light-induced manipulation with surface plasmons," J. Opt. A: Pure Appl. Opt. 10, 093001 (2008).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 - 480 (2007).
[CrossRef]

Ruiz-Cortes, V.

Seisenberger, G.

G. Seisenberger, M. Ried, T. Endreb, H. Buning, M. Hallek, and C. Brauchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929 (2001).
[CrossRef] [PubMed]

Shcheslavskly, V.

D. Ivanov, V. Shcheslavskly, I. Markl, M. Leutenegger, and T. Lasser, "High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy," Appl. Phys. Lett. 94, 083902 (2009).
[CrossRef]

Sibbett, W.

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

Sugiura, T.

Vite-Frias, J.

Wang, J.

J. Wang, N. Bao, L. Paris, R. Geahlen, and C. Lu, "Total internal reflection fluorescence flow cytometry," Anal. Chem. 80, 9840-9844 (2008).
[CrossRef] [PubMed]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 - 480 (2007).
[CrossRef]

Zhang, Y.

Y. Zhang and J. Bai, "Simple and high efficient optical trapping using a cylindrical lens and a single plane wave of incidence," Opt. Commun. 281, 4824-4828 (2008).
[CrossRef]

Anal. Chem. (1)

J. Wang, N. Bao, L. Paris, R. Geahlen, and C. Lu, "Total internal reflection fluorescence flow cytometry," Anal. Chem. 80, 9840-9844 (2008).
[CrossRef] [PubMed]

App. Phy. Lett. (1)

B. Jia, X. Gan, and M. Gu, "Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy," App. Phy. Lett. 86, 131110 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, "Laser trapping and manipulation under focused evanescent wave illumination," Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

D. Ivanov, V. Shcheslavskly, I. Markl, M. Leutenegger, and T. Lasser, "High volume confinement in two-photon total-internal-reflection fluorescence correlation spectroscopy," Appl. Phys. Lett. 94, 083902 (2009).
[CrossRef]

ChemPhysChem (1)

C. Mellor and C. Bain, "Array formation in evanescent waves," ChemPhysChem 7, 329-332 (2006).
[CrossRef]

J. Appl. Phys. (1)

S. Kuriakose, X. Gan, J. W. M. Chon, and M. Gu, "Optical lifting force under focused evanescent wave illumination: A ray optics model," J. Appl. Phys. 97, 083103 (2005).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. Righini, C. Girard, and R. Quidant, "Light-induced manipulation with surface plasmons," J. Opt. A: Pure Appl. Opt. 10, 093001 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Lab Chip (1)

N. Chronis and L. Lee, "Total internal reflection-based biochip utilizing a polymer-filled cavity with a micromirror sidewall," Lab Chip 4, 125-130 (2004).
[CrossRef] [PubMed]

Nat. Phys. (2)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari and R. Quidant, "Self-induced back-action optical trapping of dielectric nanoparticles," Nat. Phys. 5, 915-919 (2009).
[CrossRef]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nat. Phys. 3, 477 - 480 (2007).
[CrossRef]

Nature (2)

V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature 419, 145-147 (2002).
[CrossRef] [PubMed]

D. Grier, "A revolution in optical manipulation," Nature 424, 810-816 (2003).
[CrossRef] [PubMed]

Opt. Commun. (3)

Y. Zhang and J. Bai, "Simple and high efficient optical trapping using a cylindrical lens and a single plane wave of incidence," Opt. Commun. 281, 4824-4828 (2008).
[CrossRef]

S. Chang, J. H. Jo, and S. S. Lee, "Theoretical calculations of optical force exerted on a dielectric sphere in the evanescent field generated with a totally-reflected focused gaussian beam," Opt. Commun. 108, 133-143 (1994).
[CrossRef]

I. Manek, Y. Ovchinnikov, and R. Grimm, "Generation of a hollow laser beam for atom trapping using an axicon," Opt. Commun. 147, 67-70 (1998).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. Lett. (4)

J. Meiners and S. Quake, "Femtonewton force spectroscopy of single extended dna molecules," Phys. Rev. Lett. 84, 5014-5017 (2000).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

P. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Optical trapping and manipulation of nano-objects with an apertureless probe," Phys. Rev. Lett. 88, 123601 (2002).
[CrossRef] [PubMed]

K. Okamoto and S. Kawata, "Radiation force exerted on subwavelength particles near a nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Science (1)

G. Seisenberger, M. Ried, T. Endreb, H. Buning, M. Hallek, and C. Brauchle, "Real-time single-molecule imaging of the infection pathway of an adeno-associated virus," Science 294, 1929 (2001).
[CrossRef] [PubMed]

Traffic (1)

D. Axelrod, "Total internal reflection fluorescence microscopy in cell biology," Traffic 2, 764-774 (2001).
[CrossRef] [PubMed]

Other (1)

Y. Z. Yoon, J. Kotar, G. Yoon, and P. Cicuta, "Non-linear mechanical response of the red blood cell," Phys. Biol. 5, 036007 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Silica beads of 3μm diameter can be trapped on the bottom of the chamber by various beam geometries: (a) Gaussian beam on-axis and off-axis such that with TIR an evanescent field is generated; (b) Weakly focused beam on the back focal plane, leading to an extended trapping region.

Fig. 2.
Fig. 2.

(a) Schematic diagram of the evanescent-field trapping system using a pair of conical lenses (axicons); (b) Beam intensity from optical simulation of propagation through the axicons, done with Zemax; (c) Image of the beam profile at the objective lens inlet. Scale bar: 2.5mm; (d)-(e) Beam profiles at objective aperture, obtained by simulation. Scale bar: 2.5mm. The axicon A2 is positioned on axis in (d), and off axis by 0.5mm in both horizontal and vertical directions (e), showing a characteristic distortion pattern.

Fig. 3.
Fig. 3.

Comparison between the optical setup geometries. (a) Laser intensity measurements after propagation through the objective and water-filled sample chambers. This is plotted as a function of the inlet laser position, normalized by the aperture radius. The region of TIR (total internal reflection) is highlighted by dotted lines. (b) The in-plane trap stiffness for 3μm diameter silica beads for the experiment with a Gaussian beam (◯: stiffness in x direction, △: stiffness in y direction) and for the focused beam experiment (●: stiffness in x direction, ▲: stiffness in y direction). The trap stiffness obtained with the hollow beam is shown as a constant value for comparison. (c) Trap stiffness with the hollow beam, trapping 3μm and 1.85μm diameter silica beads, as a function of the height z at which the beads are trapped above the bottom surface. (d) Distribution of displacements from center of trap, for the 3μm diameter beads in a hollow beam trap at z = 0. The fit to a Gaussian (solid line) corresponds to eq. 1 and allows the trap stiffness to be determined. The inset shows the “raw data” of displacement as function of time.

Fig. 4.
Fig. 4.

Time sequence images of RBC that are trapped against flow with ν ≃ 0.66μm/s. The thick arrow indicates the cells that are trapped when the laser is on. The small arrows identify flowing cells. In (a) trapping is due to the evanescent field, and the RBC lies flat in the horizontal plane; In (b) the setup is with the standard on-axis Gaussian beam, propagating vertically. The RBC is trapped in the vertical plane.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P ( x ) = 1 σ 2 π exp ( ( x x 0 ) 2 2 σ 2 ) , k = 1 σ 2 k B T ,

Metrics