Abstract

Abstract: On-axis monochromatic higher-order aberrations increase with age. Few studies have been made of peripheral refraction along the horizontal meridian of older eyes, and none of their off-axis higher-order aberrations. We measured wave aberrations over the central 42°x32° visual field for a 5mm pupil in 10 young and 7 older emmetropes. Patterns of peripheral refraction were similar in the two groups. Coma increased linearly with field angle at a significantly higher rate in older than in young emmetropes (−0.018±0.007 versus −0.006±0.002 µm/deg). Spherical aberrationC40was almost constant over the measured field in both age groups and mean values across the field were significantly higher in older than in young emmetropes (+0.08±0.05 versus +0.02±0.04 µm). Total root-mean-square and higher-order aberrations increased more rapidly with field angle in the older emmetropes. However, the limits to monochromatic peripheral retinal image quality are largely determined by the second-order aberrations, which do not change markedly with age, and under normal conditions the relative importance of the increased higher-order aberrations in older eyes is lessened by the reduction in pupil diameter with age. Therefore it is unlikely that peripheral visual performance deficits observed in normal older individuals are primarily attributable to the increased impact of higher-order aberration.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Owsley, R. Sekuler, and D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23(7), 689–699 (1983).
    [CrossRef] [PubMed]
  2. D. B. Elliott, “Contrast sensitivity decline with ageing: a neural or optical phenomenon?” Ophthalmic Physiol. Opt. 7(4), 415–419 (1987).
    [CrossRef] [PubMed]
  3. D. Elliott, D. Whitaker, and D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes,” Vision Res. 30(4), 541–547 (1990).
    [CrossRef] [PubMed]
  4. D. B. Elliott, K. C. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom. Vis. Sci. 72(3), 186–191 (1995).
    [CrossRef] [PubMed]
  5. D. G. Pitts, “The effects of aging on selected visual functions: dark adaptation, visual acuity, stereopsis and brightness contrast,” in Aging and Human Visual Function, R. Sekuler, D. Kline, and K. Dismukes, eds., (A.R. Liss, New York, 1982), pp. 131–159.
  6. P. Artal, M. Ferro, I. Miranda, and R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10(7), 1656–1662 (1993).
    [CrossRef] [PubMed]
  7. T. Kuroda, T. Fujikado, S. Ninomiya, N. Maeda, Y. Hirohara, and T. Mihashi, “Effect of aging on ocular light scatter and higher order aberrations,” J. Refract. Surg. 18(5), S598–S602 (2002).
    [PubMed]
  8. T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
    [PubMed]
  9. R. I. Calver, M. J. Cox, and D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16(9), 2069–2078 (1999).
    [CrossRef]
  10. S. Marcos, “Are changes in ocular aberrations with age a significant problem for refractive surgery?” J. Refract. Surg. 18(5), S572–S578 (2002).
    [PubMed]
  11. J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42(6), 1390–1395 (2001).
    [PubMed]
  12. R. A. Applegate, W. J. Donnelly, J. D. Marsack, D. E. Koenig, and K. Pesudovs, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A 24(3), 578–587 (2007).
    [CrossRef]
  13. D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48(21), 2224–2231 (2008).
    [CrossRef] [PubMed]
  14. S. Plainis and I. G. Pallikaris, “Ocular monochromatic aberration statistics in a large emmetropic population,” J. Mod. Opt. 55(4), 759–772 (2008).
    [CrossRef]
  15. P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
    [CrossRef]
  16. G. Westheimer and J. Liang, “Influence of ocular light scatter on the eye's optical performance,” J. Opt. Soc. Am. A 12(7), 1417–1424 (1995).
    [CrossRef]
  17. J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30(5), 699–707 (1990).
    [CrossRef] [PubMed]
  18. S. L. Elliott, S. S. Choi, N. Doble, J. L. Hardy, J. W. Evans, and J. S. Werner, “Role of high-order aberrations in senescent changes in spatial vision,” J. Vis. 9(2), 1–16 (2009).
    [CrossRef] [PubMed]
  19. F. J. Slataper, “Age norms of refraction and vision,” Arch. Ophthal. 43, 466–481 (1950).
  20. H. Saunders, “Age-dependence of human refractive errors,” Ophthalmic Physiol. Opt. 1(3), 159–174 (1981).
    [CrossRef] [PubMed]
  21. H. Saunders, “A longitudinal study of the age-dependence of human ocular refraction--I. Age-dependent changes in the equivalent sphere,” Ophthalmic Physiol. Opt. 6(1), 39–46 (1986).
    [PubMed]
  22. H. C. Fledelius and M. Stubgaard, “Changes in refraction and corneal curvature during growth and adult life,” Acta Ophthalmol. (Copenh.) 64(5), 487–491 (1986).
    [CrossRef]
  23. F. A. Young, and G. A. Leary, “Chapter 2. Refractive error in relation to the development of the eye,” in Vision and Visual Dysfunction (Macmillan, Basingstoke, 1991), pp. 29–44.
  24. J. M. Wood, “Age and visual impairment decrease driving performance as measured on a closed-road circuit,” Hum. Factors 44(3), 482–494 (2002).
    [CrossRef] [PubMed]
  25. J. M. Wood and M. A. Bullimore, “Changes in the lower displacement limit for motion with age,” Ophthalmic Physiol. Opt. 15(1), 31–36 (1995).
    [CrossRef] [PubMed]
  26. K. Ball, C. Owsley, M. E. Sloane, D. L. Roenker, and J. R. Bruni, “Visual attention problems as a predictor of vehicle crashes in older drivers,” Invest. Ophthalmol. Vis. Sci. 34(11), 3110–3123 (1993).
    [PubMed]
  27. D. W. Kline, T. J. B. Kline, J. L. Fozard, W. Kosnik, F. Schieber, and R. Sekuler, “Vision, aging, and driving: The problems of older drivers,” J. Gerontol. 47, 27–34 (1992).
  28. R. Weale, A biography of the eye: development, growth, age, (H K Lewis, London, 1982).
  29. F. N. Low, “Studies on peripheral visual acuity,” Science 97(2530), 586–587 (1943).
    [CrossRef] [PubMed]
  30. F. Rempt, J. Hoogerheide, and W. P. Hoogenboom, “Influence of correction of peripheral refractive errors on peripheral static vision,” Int J Ophthalmol 173, 128–135 (1976).
    [CrossRef]
  31. M. Millodot, C. A. Johnson, A. Lamont, and H. W. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
    [CrossRef] [PubMed]
  32. R. S. Anderson, “The selective effect of optical defocus on detection and resolution acuity in peripheral vision,” Curr. Eye Res. 15(3), 351–353 (1996).
    [CrossRef] [PubMed]
  33. Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
    [PubMed]
  34. L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vis. Sci. 84(11), 1046–1052 (2007).
    [CrossRef] [PubMed]
  35. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, “Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye,” Opt. Express 15(20), 12654–12661 (2007).
    [CrossRef] [PubMed]
  36. L. Ronchi, “Absolute threshold before and after correction of oblique-ray astigmatism,” J. Opt. Soc. Am. 61(12), 1705–1709 (1971).
    [CrossRef] [PubMed]
  37. F. Fankhauser and J. M. Enoch, “The effects of blur upon perimetric thresholds. A method for determining a quantitative estimate of retinal contour,” Arch. Ophthalmol. 68, 240–251 (1962).
    [PubMed]
  38. H. W. Leibowitz, C. A. Johnson, and E. Isabelle, “Peripheral motion detection and refractive error,” Science 177(4055), 1207–1208 (1972).
    [CrossRef] [PubMed]
  39. J. A. Jennings and W. N. Charman, “Off-axis image quality in the human eye,” Vision Res. 21(4), 445–455 (1981).
    [CrossRef] [PubMed]
  40. P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35(7), 939–947 (1995).
    [CrossRef] [PubMed]
  41. R. S. Anderson, D. R. McDowell, and F. A. Ennis, “Effect of localized defocus on detection thresholds for different sized targets in the fovea and periphery,” Acta Ophthalmol. Scand. 79(1), 60–63 (2001).
    [CrossRef] [PubMed]
  42. M. Millodot, “Peripheral refraction in aphakic eyes,” Am. J. Optom. Physiol. Opt. 61(9), 586–589 (1984).
    [PubMed]
  43. C. T. Scialfa, H. W. Leibowitz, and K. W. Gish, “Age differences in peripheral refractive error,” Psychol. Aging 4(3), 372–375 (1989).
    [CrossRef] [PubMed]
  44. D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
    [CrossRef] [PubMed]
  45. W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006).
    [CrossRef] [PubMed]
  46. A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9, 1–12 (2009).
    [PubMed]
  47. A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33(8), 863–865 (2008).
    [CrossRef] [PubMed]
  48. ANSI, “American National Standards Institute. American National Standard for Ophthalmics - Methods for reporting optical aberrations of the eye,” ANSI Z80.28–2004 (2004).
  49. ISO, “International Organization for Standardization. Ophthalmic optics and instruments–Reporting aberrations of the human eye,” ISO 24157, 2008 (2008).
  50. D. A. Atchison, D. H. Scott, and W. Neil Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry,” J. Opt. Soc. Am. A 24(9), 2963–2973 (2007).
    [CrossRef]
  51. D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry: errata,” J. Opt. Soc. Am. A 25(10), 2467 (2008).
    [CrossRef]
  52. W. Neil Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009).
    [CrossRef] [PubMed]
  53. P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
    [CrossRef] [PubMed]
  54. A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11(4), 385–390 (1991).
    [CrossRef] [PubMed]
  55. D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 1–20 (2008).
    [CrossRef] [PubMed]
  56. H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
    [CrossRef]
  57. G. P. Smith, P. B. Bedggood, R. P. Ashman, M. B. Daaboul, and A. P. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
    [CrossRef] [PubMed]
  58. A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007).
    [CrossRef]

2009 (3)

S. L. Elliott, S. S. Choi, N. Doble, J. L. Hardy, J. W. Evans, and J. S. Werner, “Role of high-order aberrations in senescent changes in spatial vision,” J. Vis. 9(2), 1–16 (2009).
[CrossRef] [PubMed]

A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9, 1–12 (2009).
[PubMed]

W. Neil Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009).
[CrossRef] [PubMed]

2008 (7)

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 1–20 (2008).
[CrossRef] [PubMed]

G. P. Smith, P. B. Bedggood, R. P. Ashman, M. B. Daaboul, and A. P. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33(8), 863–865 (2008).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry: errata,” J. Opt. Soc. Am. A 25(10), 2467 (2008).
[CrossRef]

D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48(21), 2224–2231 (2008).
[CrossRef] [PubMed]

S. Plainis and I. G. Pallikaris, “Ocular monochromatic aberration statistics in a large emmetropic population,” J. Mod. Opt. 55(4), 759–772 (2008).
[CrossRef]

ISO, “International Organization for Standardization. Ophthalmic optics and instruments–Reporting aberrations of the human eye,” ISO 24157, 2008 (2008).

2007 (5)

2006 (1)

W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006).
[CrossRef] [PubMed]

2005 (1)

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

2002 (4)

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[CrossRef]

J. M. Wood, “Age and visual impairment decrease driving performance as measured on a closed-road circuit,” Hum. Factors 44(3), 482–494 (2002).
[CrossRef] [PubMed]

T. Kuroda, T. Fujikado, S. Ninomiya, N. Maeda, Y. Hirohara, and T. Mihashi, “Effect of aging on ocular light scatter and higher order aberrations,” J. Refract. Surg. 18(5), S598–S602 (2002).
[PubMed]

S. Marcos, “Are changes in ocular aberrations with age a significant problem for refractive surgery?” J. Refract. Surg. 18(5), S572–S578 (2002).
[PubMed]

2001 (2)

J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42(6), 1390–1395 (2001).
[PubMed]

R. S. Anderson, D. R. McDowell, and F. A. Ennis, “Effect of localized defocus on detection thresholds for different sized targets in the fovea and periphery,” Acta Ophthalmol. Scand. 79(1), 60–63 (2001).
[CrossRef] [PubMed]

1999 (2)

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

R. I. Calver, M. J. Cox, and D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16(9), 2069–2078 (1999).
[CrossRef]

1997 (2)

H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
[CrossRef]

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
[PubMed]

1996 (1)

R. S. Anderson, “The selective effect of optical defocus on detection and resolution acuity in peripheral vision,” Curr. Eye Res. 15(3), 351–353 (1996).
[CrossRef] [PubMed]

1995 (4)

J. M. Wood and M. A. Bullimore, “Changes in the lower displacement limit for motion with age,” Ophthalmic Physiol. Opt. 15(1), 31–36 (1995).
[CrossRef] [PubMed]

D. B. Elliott, K. C. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom. Vis. Sci. 72(3), 186–191 (1995).
[CrossRef] [PubMed]

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35(7), 939–947 (1995).
[CrossRef] [PubMed]

G. Westheimer and J. Liang, “Influence of ocular light scatter on the eye's optical performance,” J. Opt. Soc. Am. A 12(7), 1417–1424 (1995).
[CrossRef]

1993 (2)

P. Artal, M. Ferro, I. Miranda, and R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10(7), 1656–1662 (1993).
[CrossRef] [PubMed]

K. Ball, C. Owsley, M. E. Sloane, D. L. Roenker, and J. R. Bruni, “Visual attention problems as a predictor of vehicle crashes in older drivers,” Invest. Ophthalmol. Vis. Sci. 34(11), 3110–3123 (1993).
[PubMed]

1992 (1)

D. W. Kline, T. J. B. Kline, J. L. Fozard, W. Kosnik, F. Schieber, and R. Sekuler, “Vision, aging, and driving: The problems of older drivers,” J. Gerontol. 47, 27–34 (1992).

1991 (1)

A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11(4), 385–390 (1991).
[CrossRef] [PubMed]

1990 (2)

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30(5), 699–707 (1990).
[CrossRef] [PubMed]

D. Elliott, D. Whitaker, and D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes,” Vision Res. 30(4), 541–547 (1990).
[CrossRef] [PubMed]

1989 (1)

C. T. Scialfa, H. W. Leibowitz, and K. W. Gish, “Age differences in peripheral refractive error,” Psychol. Aging 4(3), 372–375 (1989).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

D. B. Elliott, “Contrast sensitivity decline with ageing: a neural or optical phenomenon?” Ophthalmic Physiol. Opt. 7(4), 415–419 (1987).
[CrossRef] [PubMed]

1986 (2)

H. Saunders, “A longitudinal study of the age-dependence of human ocular refraction--I. Age-dependent changes in the equivalent sphere,” Ophthalmic Physiol. Opt. 6(1), 39–46 (1986).
[PubMed]

H. C. Fledelius and M. Stubgaard, “Changes in refraction and corneal curvature during growth and adult life,” Acta Ophthalmol. (Copenh.) 64(5), 487–491 (1986).
[CrossRef]

1984 (1)

M. Millodot, “Peripheral refraction in aphakic eyes,” Am. J. Optom. Physiol. Opt. 61(9), 586–589 (1984).
[PubMed]

1983 (1)

C. Owsley, R. Sekuler, and D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23(7), 689–699 (1983).
[CrossRef] [PubMed]

1981 (2)

H. Saunders, “Age-dependence of human refractive errors,” Ophthalmic Physiol. Opt. 1(3), 159–174 (1981).
[CrossRef] [PubMed]

J. A. Jennings and W. N. Charman, “Off-axis image quality in the human eye,” Vision Res. 21(4), 445–455 (1981).
[CrossRef] [PubMed]

1976 (1)

F. Rempt, J. Hoogerheide, and W. P. Hoogenboom, “Influence of correction of peripheral refractive errors on peripheral static vision,” Int J Ophthalmol 173, 128–135 (1976).
[CrossRef]

1975 (1)

M. Millodot, C. A. Johnson, A. Lamont, and H. W. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[CrossRef] [PubMed]

1972 (1)

H. W. Leibowitz, C. A. Johnson, and E. Isabelle, “Peripheral motion detection and refractive error,” Science 177(4055), 1207–1208 (1972).
[CrossRef] [PubMed]

1971 (1)

1962 (1)

F. Fankhauser and J. M. Enoch, “The effects of blur upon perimetric thresholds. A method for determining a quantitative estimate of retinal contour,” Arch. Ophthalmol. 68, 240–251 (1962).
[PubMed]

1950 (1)

F. J. Slataper, “Age norms of refraction and vision,” Arch. Ophthal. 43, 466–481 (1950).

1943 (1)

F. N. Low, “Studies on peripheral visual acuity,” Science 97(2530), 586–587 (1943).
[CrossRef] [PubMed]

Anderson, R. S.

R. S. Anderson, D. R. McDowell, and F. A. Ennis, “Effect of localized defocus on detection thresholds for different sized targets in the fovea and periphery,” Acta Ophthalmol. Scand. 79(1), 60–63 (2001).
[CrossRef] [PubMed]

R. S. Anderson, “The selective effect of optical defocus on detection and resolution acuity in peripheral vision,” Curr. Eye Res. 15(3), 351–353 (1996).
[CrossRef] [PubMed]

Applegate, R. A.

R. A. Applegate, W. J. Donnelly, J. D. Marsack, D. E. Koenig, and K. Pesudovs, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A 24(3), 578–587 (2007).
[CrossRef]

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

Artal, P.

Ashman, R. P.

G. P. Smith, P. B. Bedggood, R. P. Ashman, M. B. Daaboul, and A. P. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Atchison, D. A.

A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9, 1–12 (2009).
[PubMed]

W. Neil Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 1–20 (2008).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry: errata,” J. Opt. Soc. Am. A 25(10), 2467 (2008).
[CrossRef]

D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48(21), 2224–2231 (2008).
[CrossRef] [PubMed]

A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33(8), 863–865 (2008).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, and W. Neil Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry,” J. Opt. Soc. Am. A 24(9), 2963–2973 (2007).
[CrossRef]

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

Ayala, D. B.

Ball, K.

K. Ball, C. Owsley, M. E. Sloane, D. L. Roenker, and J. R. Bruni, “Visual attention problems as a predictor of vehicle crashes in older drivers,” Invest. Ophthalmol. Vis. Sci. 34(11), 3110–3123 (1993).
[PubMed]

Bedggood, P. B.

G. P. Smith, P. B. Bedggood, R. P. Ashman, M. B. Daaboul, and A. P. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Berrio, E.

Bradley, A.

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
[PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[CrossRef] [PubMed]

Brennan, N. A.

Bruni, J. R.

K. Ball, C. Owsley, M. E. Sloane, D. L. Roenker, and J. R. Bruni, “Visual attention problems as a predictor of vehicle crashes in older drivers,” Invest. Ophthalmol. Vis. Sci. 34(11), 3110–3123 (1993).
[PubMed]

Bullimore, M. A.

J. M. Wood and M. A. Bullimore, “Changes in the lower displacement limit for motion with age,” Ophthalmic Physiol. Opt. 15(1), 31–36 (1995).
[CrossRef] [PubMed]

Burns, S. A.

J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42(6), 1390–1395 (2001).
[PubMed]

Calver, R. I.

Charman, W. N.

A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9, 1–12 (2009).
[PubMed]

D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry: errata,” J. Opt. Soc. Am. A 25(10), 2467 (2008).
[CrossRef]

W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006).
[CrossRef] [PubMed]

A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11(4), 385–390 (1991).
[CrossRef] [PubMed]

J. A. Jennings and W. N. Charman, “Off-axis image quality in the human eye,” Vision Res. 21(4), 445–455 (1981).
[CrossRef] [PubMed]

Choi, S. S.

S. L. Elliott, S. S. Choi, N. Doble, J. L. Hardy, J. W. Evans, and J. S. Werner, “Role of high-order aberrations in senescent changes in spatial vision,” J. Vis. 9(2), 1–16 (2009).
[CrossRef] [PubMed]

Colombo, E.

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35(7), 939–947 (1995).
[CrossRef] [PubMed]

Cox, M. J.

Daaboul, M. B.

G. P. Smith, P. B. Bedggood, R. P. Ashman, M. B. Daaboul, and A. P. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Dainty, C.

de Jong, P. T.

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30(5), 699–707 (1990).
[CrossRef] [PubMed]

de Waard, P. W.

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30(5), 699–707 (1990).
[CrossRef] [PubMed]

Derrington, A. M.

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35(7), 939–947 (1995).
[CrossRef] [PubMed]

Doble, N.

S. L. Elliott, S. S. Choi, N. Doble, J. L. Hardy, J. W. Evans, and J. S. Werner, “Role of high-order aberrations in senescent changes in spatial vision,” J. Vis. 9(2), 1–16 (2009).
[CrossRef] [PubMed]

Donnelly, W. J.

Elliott, D.

D. Elliott, D. Whitaker, and D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes,” Vision Res. 30(4), 541–547 (1990).
[CrossRef] [PubMed]

Elliott, D. B.

R. I. Calver, M. J. Cox, and D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16(9), 2069–2078 (1999).
[CrossRef]

D. B. Elliott, K. C. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom. Vis. Sci. 72(3), 186–191 (1995).
[CrossRef] [PubMed]

D. B. Elliott, “Contrast sensitivity decline with ageing: a neural or optical phenomenon?” Ophthalmic Physiol. Opt. 7(4), 415–419 (1987).
[CrossRef] [PubMed]

Elliott, S. L.

S. L. Elliott, S. S. Choi, N. Doble, J. L. Hardy, J. W. Evans, and J. S. Werner, “Role of high-order aberrations in senescent changes in spatial vision,” J. Vis. 9(2), 1–16 (2009).
[CrossRef] [PubMed]

Ennis, F. A.

R. S. Anderson, D. R. McDowell, and F. A. Ennis, “Effect of localized defocus on detection thresholds for different sized targets in the fovea and periphery,” Acta Ophthalmol. Scand. 79(1), 60–63 (2001).
[CrossRef] [PubMed]

Enoch, J. M.

F. Fankhauser and J. M. Enoch, “The effects of blur upon perimetric thresholds. A method for determining a quantitative estimate of retinal contour,” Arch. Ophthalmol. 68, 240–251 (1962).
[PubMed]

Evans, J. W.

S. L. Elliott, S. S. Choi, N. Doble, J. L. Hardy, J. W. Evans, and J. S. Werner, “Role of high-order aberrations in senescent changes in spatial vision,” J. Vis. 9(2), 1–16 (2009).
[CrossRef] [PubMed]

Fankhauser, F.

F. Fankhauser and J. M. Enoch, “The effects of blur upon perimetric thresholds. A method for determining a quantitative estimate of retinal contour,” Arch. Ophthalmol. 68, 240–251 (1962).
[PubMed]

Ferro, M.

Fledelius, H. C.

H. C. Fledelius and M. Stubgaard, “Changes in refraction and corneal curvature during growth and adult life,” Acta Ophthalmol. (Copenh.) 64(5), 487–491 (1986).
[CrossRef]

Fozard, J. L.

D. W. Kline, T. J. B. Kline, J. L. Fozard, W. Kosnik, F. Schieber, and R. Sekuler, “Vision, aging, and driving: The problems of older drivers,” J. Gerontol. 47, 27–34 (1992).

Fujikado, T.

T. Kuroda, T. Fujikado, S. Ninomiya, N. Maeda, Y. Hirohara, and T. Mihashi, “Effect of aging on ocular light scatter and higher order aberrations,” J. Refract. Surg. 18(5), S598–S602 (2002).
[PubMed]

Gish, K. W.

C. T. Scialfa, H. W. Leibowitz, and K. W. Gish, “Age differences in peripheral refractive error,” Psychol. Aging 4(3), 372–375 (1989).
[CrossRef] [PubMed]

Goncharov, A. V.

Gorceix, N.

Griffiths, A. M.

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

Guirao, A.

Gustafsson, J.

Hardy, J. L.

S. L. Elliott, S. S. Choi, N. Doble, J. L. Hardy, J. W. Evans, and J. S. Werner, “Role of high-order aberrations in senescent changes in spatial vision,” J. Vis. 9(2), 1–16 (2009).
[CrossRef] [PubMed]

Hirohara, Y.

T. Kuroda, T. Fujikado, S. Ninomiya, N. Maeda, Y. Hirohara, and T. Mihashi, “Effect of aging on ocular light scatter and higher order aberrations,” J. Refract. Surg. 18(5), S598–S602 (2002).
[PubMed]

Hoogenboom, W. P.

F. Rempt, J. Hoogerheide, and W. P. Hoogenboom, “Influence of correction of peripheral refractive errors on peripheral static vision,” Int J Ophthalmol 173, 128–135 (1976).
[CrossRef]

Hoogerheide, J.

F. Rempt, J. Hoogerheide, and W. P. Hoogenboom, “Influence of correction of peripheral refractive errors on peripheral static vision,” Int J Ophthalmol 173, 128–135 (1976).
[CrossRef]

Howarth, P. A.

Howland, H. C.

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

Ijspeert, J. K.

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30(5), 699–707 (1990).
[CrossRef] [PubMed]

Isabelle, E.

H. W. Leibowitz, C. A. Johnson, and E. Isabelle, “Peripheral motion detection and refractive error,” Science 177(4055), 1207–1208 (1972).
[CrossRef] [PubMed]

Jennings, J. A.

W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006).
[CrossRef] [PubMed]

J. A. Jennings and W. N. Charman, “Off-axis image quality in the human eye,” Vision Res. 21(4), 445–455 (1981).
[CrossRef] [PubMed]

Johnson, C. A.

M. Millodot, C. A. Johnson, A. Lamont, and H. W. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[CrossRef] [PubMed]

H. W. Leibowitz, C. A. Johnson, and E. Isabelle, “Peripheral motion detection and refractive error,” Science 177(4055), 1207–1208 (1972).
[CrossRef] [PubMed]

Kasthurirangan, S.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 1–20 (2008).
[CrossRef] [PubMed]

Kline, D. W.

D. W. Kline, T. J. B. Kline, J. L. Fozard, W. Kosnik, F. Schieber, and R. Sekuler, “Vision, aging, and driving: The problems of older drivers,” J. Gerontol. 47, 27–34 (1992).

Kline, T. J. B.

D. W. Kline, T. J. B. Kline, J. L. Fozard, W. Kosnik, F. Schieber, and R. Sekuler, “Vision, aging, and driving: The problems of older drivers,” J. Gerontol. 47, 27–34 (1992).

Klyce, S. D.

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

Koenig, D. E.

Kosnik, W.

D. W. Kline, T. J. B. Kline, J. L. Fozard, W. Kosnik, F. Schieber, and R. Sekuler, “Vision, aging, and driving: The problems of older drivers,” J. Gerontol. 47, 27–34 (1992).

Kuroda, T.

T. Kuroda, T. Fujikado, S. Ninomiya, N. Maeda, Y. Hirohara, and T. Mihashi, “Effect of aging on ocular light scatter and higher order aberrations,” J. Refract. Surg. 18(5), S598–S602 (2002).
[PubMed]

Lamont, A.

M. Millodot, C. A. Johnson, A. Lamont, and H. W. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[CrossRef] [PubMed]

Leibowitz, H. W.

C. T. Scialfa, H. W. Leibowitz, and K. W. Gish, “Age differences in peripheral refractive error,” Psychol. Aging 4(3), 372–375 (1989).
[CrossRef] [PubMed]

M. Millodot, C. A. Johnson, A. Lamont, and H. W. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[CrossRef] [PubMed]

H. W. Leibowitz, C. A. Johnson, and E. Isabelle, “Peripheral motion detection and refractive error,” Science 177(4055), 1207–1208 (1972).
[CrossRef] [PubMed]

Liang, J.

Liou, H.-L.

Low, F. N.

F. N. Low, “Studies on peripheral visual acuity,” Science 97(2530), 586–587 (1943).
[CrossRef] [PubMed]

Lundström, L.

MacVeigh, D.

D. Elliott, D. Whitaker, and D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes,” Vision Res. 30(4), 541–547 (1990).
[CrossRef] [PubMed]

Maeda, N.

T. Kuroda, T. Fujikado, S. Ninomiya, N. Maeda, Y. Hirohara, and T. Mihashi, “Effect of aging on ocular light scatter and higher order aberrations,” J. Refract. Surg. 18(5), S598–S602 (2002).
[PubMed]

Manzanera, S.

Marcos, S.

S. Marcos, “Are changes in ocular aberrations with age a significant problem for refractive surgery?” J. Refract. Surg. 18(5), S572–S578 (2002).
[PubMed]

J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42(6), 1390–1395 (2001).
[PubMed]

Markwell, E. L.

D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48(21), 2224–2231 (2008).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 1–20 (2008).
[CrossRef] [PubMed]

Marsack, J. D.

Mathur, A.

A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9, 1–12 (2009).
[PubMed]

A. Mathur, D. A. Atchison, and D. H. Scott, “Ocular aberrations in the peripheral visual field,” Opt. Lett. 33(8), 863–865 (2008).
[CrossRef] [PubMed]

McDowell, D. R.

R. S. Anderson, D. R. McDowell, and F. A. Ennis, “Effect of localized defocus on detection thresholds for different sized targets in the fovea and periphery,” Acta Ophthalmol. Scand. 79(1), 60–63 (2001).
[CrossRef] [PubMed]

McLellan, J. S.

J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42(6), 1390–1395 (2001).
[PubMed]

Metha, A. P.

G. P. Smith, P. B. Bedggood, R. P. Ashman, M. B. Daaboul, and A. P. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Mihashi, T.

T. Kuroda, T. Fujikado, S. Ninomiya, N. Maeda, Y. Hirohara, and T. Mihashi, “Effect of aging on ocular light scatter and higher order aberrations,” J. Refract. Surg. 18(5), S598–S602 (2002).
[PubMed]

Millodot, M.

M. Millodot, “Peripheral refraction in aphakic eyes,” Am. J. Optom. Physiol. Opt. 61(9), 586–589 (1984).
[PubMed]

M. Millodot, C. A. Johnson, A. Lamont, and H. W. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[CrossRef] [PubMed]

Miranda, I.

Morrell, A.

A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11(4), 385–390 (1991).
[CrossRef] [PubMed]

Navarro, R.

Neil Charman, W.

W. Neil Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, and W. Neil Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry,” J. Opt. Soc. Am. A 24(9), 2963–2973 (2007).
[CrossRef]

Ninomiya, S.

T. Kuroda, T. Fujikado, S. Ninomiya, N. Maeda, Y. Hirohara, and T. Mihashi, “Effect of aging on ocular light scatter and higher order aberrations,” J. Refract. Surg. 18(5), S598–S602 (2002).
[PubMed]

Oshika, T.

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

Owsley, C.

K. Ball, C. Owsley, M. E. Sloane, D. L. Roenker, and J. R. Bruni, “Visual attention problems as a predictor of vehicle crashes in older drivers,” Invest. Ophthalmol. Vis. Sci. 34(11), 3110–3123 (1993).
[PubMed]

C. Owsley, R. Sekuler, and D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23(7), 689–699 (1983).
[CrossRef] [PubMed]

Pallikaris, I. G.

S. Plainis and I. G. Pallikaris, “Ocular monochromatic aberration statistics in a large emmetropic population,” J. Mod. Opt. 55(4), 759–772 (2008).
[CrossRef]

Pesudovs, K.

Piers, P.

Plainis, S.

S. Plainis and I. G. Pallikaris, “Ocular monochromatic aberration statistics in a large emmetropic population,” J. Mod. Opt. 55(4), 759–772 (2008).
[CrossRef]

Pope, J. M.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 1–20 (2008).
[CrossRef] [PubMed]

Prieto, P. M.

Pritchard, N.

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

Rempt, F.

F. Rempt, J. Hoogerheide, and W. P. Hoogenboom, “Influence of correction of peripheral refractive errors on peripheral static vision,” Int J Ophthalmol 173, 128–135 (1976).
[CrossRef]

Roenker, D. L.

K. Ball, C. Owsley, M. E. Sloane, D. L. Roenker, and J. R. Bruni, “Visual attention problems as a predictor of vehicle crashes in older drivers,” Invest. Ophthalmol. Vis. Sci. 34(11), 3110–3123 (1993).
[PubMed]

Ronchi, L.

Saunders, H.

H. Saunders, “A longitudinal study of the age-dependence of human ocular refraction--I. Age-dependent changes in the equivalent sphere,” Ophthalmic Physiol. Opt. 6(1), 39–46 (1986).
[PubMed]

H. Saunders, “Age-dependence of human refractive errors,” Ophthalmic Physiol. Opt. 1(3), 159–174 (1981).
[CrossRef] [PubMed]

Schieber, F.

D. W. Kline, T. J. B. Kline, J. L. Fozard, W. Kosnik, F. Schieber, and R. Sekuler, “Vision, aging, and driving: The problems of older drivers,” J. Gerontol. 47, 27–34 (1992).

Scialfa, C. T.

C. T. Scialfa, H. W. Leibowitz, and K. W. Gish, “Age differences in peripheral refractive error,” Psychol. Aging 4(3), 372–375 (1989).
[CrossRef] [PubMed]

Scott, D. H.

Sekuler, R.

D. W. Kline, T. J. B. Kline, J. L. Fozard, W. Kosnik, F. Schieber, and R. Sekuler, “Vision, aging, and driving: The problems of older drivers,” J. Gerontol. 47, 27–34 (1992).

C. Owsley, R. Sekuler, and D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23(7), 689–699 (1983).
[CrossRef] [PubMed]

Siemsen, D.

C. Owsley, R. Sekuler, and D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23(7), 689–699 (1983).
[CrossRef] [PubMed]

Slataper, F. J.

F. J. Slataper, “Age norms of refraction and vision,” Arch. Ophthal. 43, 466–481 (1950).

Sloane, M. E.

K. Ball, C. Owsley, M. E. Sloane, D. L. Roenker, and J. R. Bruni, “Visual attention problems as a predictor of vehicle crashes in older drivers,” Invest. Ophthalmol. Vis. Sci. 34(11), 3110–3123 (1993).
[PubMed]

Smith, G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 1–20 (2008).
[CrossRef] [PubMed]

Smith, G. P.

G. P. Smith, P. B. Bedggood, R. P. Ashman, M. B. Daaboul, and A. P. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

Still, D. L.

Stubgaard, M.

H. C. Fledelius and M. Stubgaard, “Changes in refraction and corneal curvature during growth and adult life,” Acta Ophthalmol. (Copenh.) 64(5), 487–491 (1986).
[CrossRef]

Swann, P. G.

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 1–20 (2008).
[CrossRef] [PubMed]

Thibos, L. N.

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
[PubMed]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[CrossRef] [PubMed]

Unsbo, P.

van den Berg, T. J.

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30(5), 699–707 (1990).
[CrossRef] [PubMed]

Wang, Y. Z.

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
[PubMed]

Werner, J. S.

S. L. Elliott, S. S. Choi, N. Doble, J. L. Hardy, J. W. Evans, and J. S. Werner, “Role of high-order aberrations in senescent changes in spatial vision,” J. Vis. 9(2), 1–16 (2009).
[CrossRef] [PubMed]

Westheimer, G.

Whitaker, D.

D. B. Elliott, K. C. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom. Vis. Sci. 72(3), 186–191 (1995).
[CrossRef] [PubMed]

D. Elliott, D. Whitaker, and D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes,” Vision Res. 30(4), 541–547 (1990).
[CrossRef] [PubMed]

White, S. D.

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

Whitefoot, H. D.

A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11(4), 385–390 (1991).
[CrossRef] [PubMed]

Wood, J. M.

J. M. Wood, “Age and visual impairment decrease driving performance as measured on a closed-road circuit,” Hum. Factors 44(3), 482–494 (2002).
[CrossRef] [PubMed]

J. M. Wood and M. A. Bullimore, “Changes in the lower displacement limit for motion with age,” Ophthalmic Physiol. Opt. 15(1), 31–36 (1995).
[CrossRef] [PubMed]

Yang, K. C.

D. B. Elliott, K. C. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom. Vis. Sci. 72(3), 186–191 (1995).
[CrossRef] [PubMed]

Zhang, X. X.

Acta Ophthalmol. (Copenh.) (1)

H. C. Fledelius and M. Stubgaard, “Changes in refraction and corneal curvature during growth and adult life,” Acta Ophthalmol. (Copenh.) 64(5), 487–491 (1986).
[CrossRef]

Acta Ophthalmol. Scand. (1)

R. S. Anderson, D. R. McDowell, and F. A. Ennis, “Effect of localized defocus on detection thresholds for different sized targets in the fovea and periphery,” Acta Ophthalmol. Scand. 79(1), 60–63 (2001).
[CrossRef] [PubMed]

Am. J. Optom. Physiol. Opt. (1)

M. Millodot, “Peripheral refraction in aphakic eyes,” Am. J. Optom. Physiol. Opt. 61(9), 586–589 (1984).
[PubMed]

Arch. Ophthal. (1)

F. J. Slataper, “Age norms of refraction and vision,” Arch. Ophthal. 43, 466–481 (1950).

Arch. Ophthalmol. (1)

F. Fankhauser and J. M. Enoch, “The effects of blur upon perimetric thresholds. A method for determining a quantitative estimate of retinal contour,” Arch. Ophthalmol. 68, 240–251 (1962).
[PubMed]

Curr. Eye Res. (1)

R. S. Anderson, “The selective effect of optical defocus on detection and resolution acuity in peripheral vision,” Curr. Eye Res. 15(3), 351–353 (1996).
[CrossRef] [PubMed]

Hum. Factors (1)

J. M. Wood, “Age and visual impairment decrease driving performance as measured on a closed-road circuit,” Hum. Factors 44(3), 482–494 (2002).
[CrossRef] [PubMed]

Int J Ophthalmol (1)

F. Rempt, J. Hoogerheide, and W. P. Hoogenboom, “Influence of correction of peripheral refractive errors on peripheral static vision,” Int J Ophthalmol 173, 128–135 (1976).
[CrossRef]

Invest. Ophthalmol. Vis. Sci. (4)

K. Ball, C. Owsley, M. E. Sloane, D. L. Roenker, and J. R. Bruni, “Visual attention problems as a predictor of vehicle crashes in older drivers,” Invest. Ophthalmol. Vis. Sci. 34(11), 3110–3123 (1993).
[PubMed]

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
[PubMed]

T. Oshika, S. D. Klyce, R. A. Applegate, and H. C. Howland, “Changes in corneal wavefront aberrations with aging,” Invest. Ophthalmol. Vis. Sci. 40(7), 1351–1355 (1999).
[PubMed]

J. S. McLellan, S. Marcos, and S. A. Burns, “Age-related changes in monochromatic wave aberrations of the human eye,” Invest. Ophthalmol. Vis. Sci. 42(6), 1390–1395 (2001).
[PubMed]

ISO (1)

ISO, “International Organization for Standardization. Ophthalmic optics and instruments–Reporting aberrations of the human eye,” ISO 24157, 2008 (2008).

J. Gerontol. (1)

D. W. Kline, T. J. B. Kline, J. L. Fozard, W. Kosnik, F. Schieber, and R. Sekuler, “Vision, aging, and driving: The problems of older drivers,” J. Gerontol. 47, 27–34 (1992).

J. Mod. Opt. (1)

S. Plainis and I. G. Pallikaris, “Ocular monochromatic aberration statistics in a large emmetropic population,” J. Mod. Opt. 55(4), 759–772 (2008).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (10)

P. Artal, E. Berrio, A. Guirao, and P. Piers, “Contribution of the cornea and internal surfaces to the change of ocular aberrations with age,” J. Opt. Soc. Am. A 19(1), 137–143 (2002).
[CrossRef]

R. A. Applegate, W. J. Donnelly, J. D. Marsack, D. E. Koenig, and K. Pesudovs, “Three-dimensional relationship between high-order root-mean-square wavefront error, pupil diameter, and aging,” J. Opt. Soc. Am. A 24(3), 578–587 (2007).
[CrossRef]

A. V. Goncharov and C. Dainty, “Wide-field schematic eye models with gradient-index lens,” J. Opt. Soc. Am. A 24(8), 2157–2174 (2007).
[CrossRef]

D. A. Atchison, D. H. Scott, and W. Neil Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry,” J. Opt. Soc. Am. A 24(9), 2963–2973 (2007).
[CrossRef]

R. I. Calver, M. J. Cox, and D. B. Elliott, “Effect of aging on the monochromatic aberrations of the human eye,” J. Opt. Soc. Am. A 16(9), 2069–2078 (1999).
[CrossRef]

H.-L. Liou and N. A. Brennan, “Anatomically accurate, finite model eye for optical modeling,” J. Opt. Soc. Am. A 14(8), 1684–1695 (1997).
[CrossRef]

P. A. Howarth, X. X. Zhang, A. Bradley, D. L. Still, and L. N. Thibos, “Does the chromatic aberration of the eye vary with age?” J. Opt. Soc. Am. A 5(12), 2087–2092 (1988).
[CrossRef] [PubMed]

P. Artal, M. Ferro, I. Miranda, and R. Navarro, “Effects of aging in retinal image quality,” J. Opt. Soc. Am. A 10(7), 1656–1662 (1993).
[CrossRef] [PubMed]

G. Westheimer and J. Liang, “Influence of ocular light scatter on the eye's optical performance,” J. Opt. Soc. Am. A 12(7), 1417–1424 (1995).
[CrossRef]

D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry: errata,” J. Opt. Soc. Am. A 25(10), 2467 (2008).
[CrossRef]

J. Refract. Surg. (2)

S. Marcos, “Are changes in ocular aberrations with age a significant problem for refractive surgery?” J. Refract. Surg. 18(5), S572–S578 (2002).
[PubMed]

T. Kuroda, T. Fujikado, S. Ninomiya, N. Maeda, Y. Hirohara, and T. Mihashi, “Effect of aging on ocular light scatter and higher order aberrations,” J. Refract. Surg. 18(5), S598–S602 (2002).
[PubMed]

J. Vis. (3)

S. L. Elliott, S. S. Choi, N. Doble, J. L. Hardy, J. W. Evans, and J. S. Werner, “Role of high-order aberrations in senescent changes in spatial vision,” J. Vis. 9(2), 1–16 (2009).
[CrossRef] [PubMed]

D. A. Atchison, E. L. Markwell, S. Kasthurirangan, J. M. Pope, G. Smith, and P. G. Swann, “Age-related changes in optical and biometric characteristics of emmetropic eyes,” J. Vis. 8(4), 1–20 (2008).
[CrossRef] [PubMed]

A. Mathur, D. A. Atchison, and W. N. Charman, “Myopia and peripheral ocular aberrations,” J. Vis. 9, 1–12 (2009).
[PubMed]

Ophthalmic Physiol. Opt. (6)

W. N. Charman and J. A. Jennings, “Longitudinal changes in peripheral refraction with age,” Ophthalmic Physiol. Opt. 26(5), 447–455 (2006).
[CrossRef] [PubMed]

A. Morrell, H. D. Whitefoot, and W. N. Charman, “Ocular chromatic aberration and age,” Ophthalmic Physiol. Opt. 11(4), 385–390 (1991).
[CrossRef] [PubMed]

H. Saunders, “Age-dependence of human refractive errors,” Ophthalmic Physiol. Opt. 1(3), 159–174 (1981).
[CrossRef] [PubMed]

H. Saunders, “A longitudinal study of the age-dependence of human ocular refraction--I. Age-dependent changes in the equivalent sphere,” Ophthalmic Physiol. Opt. 6(1), 39–46 (1986).
[PubMed]

J. M. Wood and M. A. Bullimore, “Changes in the lower displacement limit for motion with age,” Ophthalmic Physiol. Opt. 15(1), 31–36 (1995).
[CrossRef] [PubMed]

D. B. Elliott, “Contrast sensitivity decline with ageing: a neural or optical phenomenon?” Ophthalmic Physiol. Opt. 7(4), 415–419 (1987).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optom. Vis. Sci. (3)

G. P. Smith, P. B. Bedggood, R. P. Ashman, M. B. Daaboul, and A. P. Metha, “Exploring ocular aberrations with a schematic human eye model,” Optom. Vis. Sci. 85(5), 330–340 (2008).
[CrossRef] [PubMed]

D. B. Elliott, K. C. Yang, and D. Whitaker, “Visual acuity changes throughout adulthood in normal, healthy eyes: seeing beyond 6/6,” Optom. Vis. Sci. 72(3), 186–191 (1995).
[CrossRef] [PubMed]

L. Lundström, J. Gustafsson, and P. Unsbo, “Vision evaluation of eccentric refractive correction,” Optom. Vis. Sci. 84(11), 1046–1052 (2007).
[CrossRef] [PubMed]

Psychol. Aging (1)

C. T. Scialfa, H. W. Leibowitz, and K. W. Gish, “Age differences in peripheral refractive error,” Psychol. Aging 4(3), 372–375 (1989).
[CrossRef] [PubMed]

Science (2)

H. W. Leibowitz, C. A. Johnson, and E. Isabelle, “Peripheral motion detection and refractive error,” Science 177(4055), 1207–1208 (1972).
[CrossRef] [PubMed]

F. N. Low, “Studies on peripheral visual acuity,” Science 97(2530), 586–587 (1943).
[CrossRef] [PubMed]

Vision Res. (9)

D. Elliott, D. Whitaker, and D. MacVeigh, “Neural contribution to spatiotemporal contrast sensitivity decline in healthy ageing eyes,” Vision Res. 30(4), 541–547 (1990).
[CrossRef] [PubMed]

J. A. Jennings and W. N. Charman, “Off-axis image quality in the human eye,” Vision Res. 21(4), 445–455 (1981).
[CrossRef] [PubMed]

P. Artal, A. M. Derrington, and E. Colombo, “Refraction, aliasing, and the absence of motion reversals in peripheral vision,” Vision Res. 35(7), 939–947 (1995).
[CrossRef] [PubMed]

D. A. Atchison, N. Pritchard, S. D. White, and A. M. Griffiths, “Influence of age on peripheral refraction,” Vision Res. 45(6), 715–720 (2005).
[CrossRef] [PubMed]

C. Owsley, R. Sekuler, and D. Siemsen, “Contrast sensitivity throughout adulthood,” Vision Res. 23(7), 689–699 (1983).
[CrossRef] [PubMed]

M. Millodot, C. A. Johnson, A. Lamont, and H. W. Leibowitz, “Effect of dioptrics on peripheral visual acuity,” Vision Res. 15(12), 1357–1362 (1975).
[CrossRef] [PubMed]

J. K. Ijspeert, P. W. de Waard, T. J. van den Berg, and P. T. de Jong, “The intraocular straylight function in 129 healthy volunteers; dependence on angle, age and pigmentation,” Vision Res. 30(5), 699–707 (1990).
[CrossRef] [PubMed]

D. A. Atchison and E. L. Markwell, “Aberrations of emmetropic subjects at different ages,” Vision Res. 48(21), 2224–2231 (2008).
[CrossRef] [PubMed]

W. Neil Charman and D. A. Atchison, “Decentred optical axes and aberrations along principal visual field meridians,” Vision Res. 49(14), 1869–1876 (2009).
[CrossRef] [PubMed]

Other (4)

ANSI, “American National Standards Institute. American National Standard for Ophthalmics - Methods for reporting optical aberrations of the eye,” ANSI Z80.28–2004 (2004).

F. A. Young, and G. A. Leary, “Chapter 2. Refractive error in relation to the development of the eye,” in Vision and Visual Dysfunction (Macmillan, Basingstoke, 1991), pp. 29–44.

R. Weale, A biography of the eye: development, growth, age, (H K Lewis, London, 1982).

D. G. Pitts, “The effects of aging on selected visual functions: dark adaptation, visual acuity, stereopsis and brightness contrast,” in Aging and Human Visual Function, R. Sekuler, D. Kline, and K. Dismukes, eds., (A.R. Liss, New York, 1982), pp. 131–159.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Mean refractive components (a) oblique astigmatism J45, (b) spherical equivalent M relative to the axial value (i.e. relative peripheral refractive error, RPRE) (c) with/against the rule astigmatism J180 in A) young emmetropes and B) older emmetropes across the visual field. (C) shows the differences B − A between the mean values in the two age groups (note that scales differ from those in A and B). The color scales represent the magnitude of each refractive component in diopters and are same for a given refractive component and for both groups. S, I, N and T represent superior, inferior, nasal and temporal visual fields. Pupil size 5 mm.

Fig. 2
Fig. 2

Higher order aberration elliptical wavefront maps at each visual field location for (a) young emmetropes (b) older emmetropes and (c) the difference (b)–(a). Third to sixth Zernike aberrations are included. The minor axis of the elliptical wavefront maps is cosine of visual field angle times the major axis. I, N, S and T represent inferior, nasal, superior and temporal visual fields. Axial pupil diameter 5 mm.

Fig. 3
Fig. 3

Individual higher-order aberration coefficients across the visual field for A) young emmetropes, B) older emmetropes and C) the difference between B and A. (a) trefoil coefficient C 3 3 , (b) vertical coma coefficient C 3 1 , (c) horizontal coma coefficient C 3 1 , (d) spherical aberration coefficient C 4 0 , (e) higher-order root-mean-square aberration (HORMS) and (f) total root-mean-square aberration (Total RMS). The color scales represent the magnitude of aberration coefficient in micrometers (μm) and are the same for a given aberration and both groups. Pupil size is 5 mm.

Fig. 4
Fig. 4

Vertical coma coefficient C 3 1 and horizontal coma coefficient C 3 1 , respectively, along vertical and horizontal visual field meridians for young and older emmetropes. Different symbols represent different subjects. As there were no measurements along the horizontal visual field, horizontal coma for the horizontal visual field was obtained by averaging results at vertical field angles of ± 3.3°.

Fig. 5
Fig. 5

False-color representations of monochromatic point spread functions (PSFs) at different horizontal visual field angles for young emmetropes and older emmetropes. Mean aberration coefficients for the groups have been used to derive PSFs. The Zernike defocus coefficient has been altered for each case so that it is zero at fixation for each age group. The color scales have been normalized for each point spread function and the numbers under the functions are the Strehl intensity ratios. As there were no actual horizontal positions, the functions were determined from the mean coefficients at 3.3° above and below the horizontal visual field meridian. The point spread functions were produced with simulations in the optical design package Zemax.

Fig. 6
Fig. 6

Vertical coma coefficient C 3 1 and horizontal coma coefficient C 3 1 slopes along the vertical and horizontal meridians, respectively, as a function of (a) anterior corneal radius of curvature, (b) corneal asphericity, and (c) age for the individual young and older emmetropes.

Fig. 7
Fig. 7

Theoretical effects of changes in anterior corneal asphericity on (a) coma coefficient and (b) spherical aberration coefficient when the Liou-Brennan model eye is used. Plots derived from the fits to the experimental data for the young and older emmetropes are included; for coma, means of vertical fit for C 3 1 and horizontal fit for C 3 1 . The observed mean asphericities were −0.08 for the young subjects and −0.18 for the older subjects.

Fig. 8
Fig. 8

Aberration coefficients according to some schematic eyes with ageing effects for (a) coma and (b) spherical aberration coefficient. Plots derived from the fits to the young emmetropes (25±3 years) and older emmetropes (63 ± 6 years) are included; for coma, means of vertical fit for C 3 1 and horizontal fit for C 3 1 .

Tables (3)

Tables Icon

Table 1 The p values of repeated measures ANOVA for refraction components, Zernike aberration coefficients and root-mean-squared aberrations for the between-subjects variable of age group and within-subjects factor of field position. The defocus coefficient is relative to its central field value for each subject. Asterisks indicate significant effects.

Tables Icon

Table 2 Mean values of the rate of change of coma with field angle and of spherical aberration across the visual field in the two age groups (coma slopes are averages for vertical and horizontal meridians).

Tables Icon

Table 3 Means and SDs of the characteristics of the anterior corneas of the different age groups.

Metrics