Abstract

We demonstrate the operation of a cascaded continuous wave (CW) mode-locked Raman oscillator. The output pulses were compressed from 28 ps at 532 nm down to 6.5 ps at 559 nm (first Stokes) and 5.5 ps at 589 nm (second Stokes). The maximum output was 2.5 W at 559 nm and 1.4 W at 589 nm with slope efficiencies up to 52%. This technique allows simple and efficient generation of short-pulse radiation to the cascaded Stokes wavelengths, extending the mode-locked operation of Raman lasers to a wider range of visible wavelengths between 500 – 650 nm based on standard inexpensive picosecond Nd:YAG oscillators.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005).
    [CrossRef] [PubMed]
  2. G. McConnell, G. L. Smith, J. M. Girkin, A. M. Gurney, and A. I. Ferguson, “Two-photon microscopy of fura-2-loaded cardiac myocytes with an all-solid-state tunable and visible femtosecond laser source,” Opt. Lett. 28(19), 1742–1744 (2003).
    [CrossRef] [PubMed]
  3. J. Palero, V. Boer, J. Vijverberg, H. Gerritsen, and H. J. C. M. Sterenborg, “Short-wavelength two-photon excitation fluorescence microscopy of tryptophan with a photonic crystal fiber based light source,” Opt. Express 13(14), 5363–5368 (2005).
    [CrossRef] [PubMed]
  4. H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
    [CrossRef]
  5. R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
    [CrossRef] [PubMed]
  6. E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
    [CrossRef] [PubMed]
  7. G. G. Grigoryan and S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing an LiIO3 crystal,” Sov. J. Quantum Electron. , 1402 (1989).
    [CrossRef]
  8. E. Granados, A. Fuerbach, D. Coutts, and D. Spence, “Asynchronous cross-correlation for weak ultrafast deep ultraviolet laser pulses,” Appl. Phys. B 97(4), 759–763 (2009).
    [CrossRef]
  9. A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
    [CrossRef]
  10. T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. A. Sobol’, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).
    [CrossRef]
  11. L. Lefort, K. Puech, S. D. Butterworth, Y. P. Svirko, and D. C. Hanna, “Generation of femtosecond pulses from order-of-magnitude pulse compression in a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 24(1), 28–30 (1999).
    [CrossRef]

2009 (2)

E. Granados, A. Fuerbach, D. Coutts, and D. Spence, “Asynchronous cross-correlation for weak ultrafast deep ultraviolet laser pulses,” Appl. Phys. B 97(4), 759–763 (2009).
[CrossRef]

E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
[CrossRef] [PubMed]

2008 (1)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

2005 (2)

2004 (2)

R. Mildren, M. Convery, H. Pask, J. Piper, and T. McKay, “Efficient, all-solid-state, Raman laser in the yellow, orange and red,” Opt. Express 12(5), 785–790 (2004).
[CrossRef] [PubMed]

T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. A. Sobol’, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).
[CrossRef]

2003 (1)

1999 (1)

1989 (1)

G. G. Grigoryan and S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing an LiIO3 crystal,” Sov. J. Quantum Electron. , 1402 (1989).
[CrossRef]

1979 (1)

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[CrossRef]

Basiev, T.

T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. A. Sobol’, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).
[CrossRef]

Boer, V.

Butterworth, S. D.

Chunaev, D. S.

T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. A. Sobol’, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).
[CrossRef]

Convery, M.

Coutts, D.

E. Granados, A. Fuerbach, D. Coutts, and D. Spence, “Asynchronous cross-correlation for weak ultrafast deep ultraviolet laser pulses,” Appl. Phys. B 97(4), 759–763 (2009).
[CrossRef]

Dekker, P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Ferguson, A. I.

Fuerbach, A.

E. Granados, A. Fuerbach, D. Coutts, and D. Spence, “Asynchronous cross-correlation for weak ultrafast deep ultraviolet laser pulses,” Appl. Phys. B 97(4), 759–763 (2009).
[CrossRef]

Gerritsen, H.

Girkin, J. M.

Granados, E.

E. Granados, A. Fuerbach, D. Coutts, and D. Spence, “Asynchronous cross-correlation for weak ultrafast deep ultraviolet laser pulses,” Appl. Phys. B 97(4), 759–763 (2009).
[CrossRef]

E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
[CrossRef] [PubMed]

Grigoryan, G. G.

G. G. Grigoryan and S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing an LiIO3 crystal,” Sov. J. Quantum Electron. , 1402 (1989).
[CrossRef]

Gurney, A. M.

Hanna, D. C.

Kaiser, W.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[CrossRef]

Karasik, A.

T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. A. Sobol’, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).
[CrossRef]

Laubereau, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[CrossRef]

Lefort, L.

McConnell, G.

McKay, T.

Mildren, R.

Mildren, R. P.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Osiko, V.

T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. A. Sobol’, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).
[CrossRef]

Palero, J.

Pask, H.

Pask, H. M.

E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Penzkofer, A.

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[CrossRef]

Piper, J.

Piper, J. A.

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Puech, K.

Smith, G. L.

Sobol’, A. A.

T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. A. Sobol’, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).
[CrossRef]

Sogomonyan, S. B.

G. G. Grigoryan and S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing an LiIO3 crystal,” Sov. J. Quantum Electron. , 1402 (1989).
[CrossRef]

Spence, D.

E. Granados, A. Fuerbach, D. Coutts, and D. Spence, “Asynchronous cross-correlation for weak ultrafast deep ultraviolet laser pulses,” Appl. Phys. B 97(4), 759–763 (2009).
[CrossRef]

Spence, D. J.

E. Granados, H. M. Pask, and D. J. Spence, “Synchronously pumped continuous-wave mode-locked yellow Raman laser at 559 nm,” Opt. Express 17(2), 569–574 (2009).
[CrossRef] [PubMed]

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

Sterenborg, H. J. C. M.

Svirko, Y. P.

Vijverberg, J.

Zverev, P.

T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. A. Sobol’, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).
[CrossRef]

Appl. Phys. B (1)

E. Granados, A. Fuerbach, D. Coutts, and D. Spence, “Asynchronous cross-correlation for weak ultrafast deep ultraviolet laser pulses,” Appl. Phys. B 97(4), 759–763 (2009).
[CrossRef]

J. Exp. Theor. Phys. (1)

T. Basiev, P. Zverev, A. Karasik, V. Osiko, A. A. Sobol’, and D. S. Chunaev, “Picosecond stimulated Raman scattering in crystals,” J. Exp. Theor. Phys. 99(5), 934–941 (2004).
[CrossRef]

Microsc. Res. Tech. (1)

J. M. Girkin and G. McConnell, “Advances in laser sources for confocal and multiphoton microscopy,” Microsc. Res. Tech. 67(1), 8–14 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Prog. Quantum Electron. (2)

H. M. Pask, P. Dekker, R. P. Mildren, D. J. Spence, and J. A. Piper, “Wavelength-versatile visible and UV sources based on crystalline Raman lasers,” Prog. Quantum Electron. 32(3-4), 121–158 (2008).
[CrossRef]

A. Penzkofer, A. Laubereau, and W. Kaiser, “High intensity Raman interactions,” Prog. Quantum Electron. 6(2), 55–140 (1979).
[CrossRef]

Sov. J. Quantum Electron. (1)

G. G. Grigoryan and S. B. Sogomonyan, “Synchronously pumped picosecond Raman laser utilizing an LiIO3 crystal,” Sov. J. Quantum Electron. , 1402 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup for the multi-cavity continuous-wave mode-locked Raman oscillator.

Fig. 2
Fig. 2

Slope efficiencies for optimized resonators for 1st Stokes (open circles) and 2nd Stokes (open squares)

Fig. 3
Fig. 3

Output pulse duration (filled circles) and Output power (open squares) changing the cavity length of the resonator optimized for 1st Stokes. (inset) Cross correlations of the output yellow pulses for different cavity length detunings.

Fig. 4
Fig. 4

Output pulse duration (filled circles) and Output power (open squares) changing the cavity length of the resonator optimized for 2nd Stokes. (inset) Cross correlations of the output orange pulses for different cavity length detunings.

Tables (1)

Tables Icon

Table 1 Summary of results

Metrics