Abstract

In this paper, we present a novel photoplethysmographic device that operates remotely, i.e. not in contact with the skin. The device allows for real time measurements of heart rate with motion artifact reduction from a distance of a few centimeters up to several meters. High mobility of users is achieved in assessment of vital body signs, such as heart rate.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. B. Hertzman, “Photoelectric plethysmograph of the fingers and toes in man,” Proc. Soc. Exp. Biol. Med. 37, 529 (1937).
  2. T. Aoyagi, “Pulse oximetry: its invention, theory, and future,” J. Anesth. 17(4), 259–266 (2003).
    [CrossRef] [PubMed]
  3. J. W. Severinghaus and P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” J. Clin. Monit. 2(4), 270–288 (1986).
    [CrossRef] [PubMed]
  4. J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987).
    [CrossRef] [PubMed]
  5. W. G. Webster, J. G. Webster, and R. Ed Webster, Design of Pulse Oximeters, (Taylor & Francis Group, 1997).
  6. T. Wu, “PPGI: New Development in Noninvasive and Contactless Diagnosis of Dermal Perfusion Using Near InfraRed Light,” J. GCPD e. 7(1), 17 (2003).
  7. N. Blanik, M. Hülsbusch, M. Herzog, and C. R. Blazek, “Assessment of Human Hemodynamics under Hyper- and Microgravity: Results of two Aachen University Parabolic Flight Experiments,” Acta Polytechnica 47(4), 29 (2007).
  8. J. Zheng, S. Hu, V. Azorin-Peris, A. Echiadis, V. Chouliaras, and R. Summers, “Remote simultaneous dual wavelength imaging photoplethysmography: a further step towards 3-D mapping of skin blood microcirculation,” Multimodal Biomedical Imaging III, Proc. SPIE 6850, 68500S (2008).
  9. K. Humphries, T. Ward, and C. Markham, “A CMOS Camera-Based Pulse Oximetry Imaging System”, in Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, 1–4 September, 2005
  10. K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
    [CrossRef] [PubMed]
  11. F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
    [CrossRef] [PubMed]
  12. W. Verkruysse, L. O. Svaasand, and J. S. Nelson, “Remote plethysmographic imaging using ambient light,” Opt. Express 16(26), 21434–21445 (2008P).
    [CrossRef] [PubMed]
  13. P. Shi, S. Hu, A. Echiadis, V. Azorin-Peris, J. Zheng, and Y. Zhu, “Development of a remote photoplenthysmographic technique for human biometrics,” Design and Quality for Biomedical Technologies II, edited by Ramesh Raghavachari, Rongguang Liang, Proc. SPIE 7170, 717006 2009.
  14. L. H. Norton, B. Squires, N. P. Craig, G. McLeay, P. McGrath, and K. I. Norton, “Accuracy of pulse oximetry during exercise stress testing,” Int. J. Sports Med. 13(7), 523–527 (1992).
    [CrossRef] [PubMed]
  15. H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
    [CrossRef] [PubMed]
  16. M. J. Hayes, P. R. Smith, D. M. Barnett, M. D. L. Morgan, S. Singh, and D. D. Vara, “Quantitative investigation of artifact in photoplethysmography and pulse oximetry for respiratory exercise testing,” in Proceedings of the Seventh International Symposium CNVD Computer-aided Noninvasive Vascular Diagnostics, V. Blažek and U. Schultz-Ehrenburg, ed. (VDIVerlag, Düsseldorf, Germany), 263, 117, 1998.
  17. C. M. Lee, and Y. T. Zhang, “Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach”, Biomedical Engineering, IEEE-EMBS Asian-Pacific Conference,194, 2003.
  18. K. W. Chan and Y. T. Zhang, ““Adaptive Reduction of Motion Artifacts from Photoplethysmography recording using a Variable Step-size LMS Filter”, Sensors 2002,” Proc. IEEE 2, 1343 (2002).
  19. H. Han, M. J. Kim, and J. Kim, “Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography”, in Proceedings of the 29th Annual International Conference of the IEEE EMBS, 1538, 2007.
  20. H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. C. Hutchinson, “Mobile monitoring with wearable photoplethysmographic biosensors,” IEEE Eng. Med. Biol. Mag. 22(3), 28–40 (2003).
    [CrossRef] [PubMed]
  21. http://omlc.ogi.edu/spectra/hemoglobin/index.html
  22. R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics, (Elsevier Academic Press, 2005).
  23. D. Thompson, A. Wareing, D. Day, and S. Warren, “Pulse Oximeter Improvement with an ADC-DAC Feedback Loop and a Radial Reflectance Sensor”', in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 815, 2006.
  24. USB Framework for PIC18, PIC24 $\&$ PIC32, Microchip, http://www.microchip.com
  25. J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication: Third Edition, (Kluwer Academic Publishers, 2004).

2008 (1)

2007 (2)

N. Blanik, M. Hülsbusch, M. Herzog, and C. R. Blazek, “Assessment of Human Hemodynamics under Hyper- and Microgravity: Results of two Aachen University Parabolic Flight Experiments,” Acta Polytechnica 47(4), 29 (2007).

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[CrossRef] [PubMed]

2005 (1)

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[CrossRef] [PubMed]

2003 (3)

T. Aoyagi, “Pulse oximetry: its invention, theory, and future,” J. Anesth. 17(4), 259–266 (2003).
[CrossRef] [PubMed]

T. Wu, “PPGI: New Development in Noninvasive and Contactless Diagnosis of Dermal Perfusion Using Near InfraRed Light,” J. GCPD e. 7(1), 17 (2003).

H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. C. Hutchinson, “Mobile monitoring with wearable photoplethysmographic biosensors,” IEEE Eng. Med. Biol. Mag. 22(3), 28–40 (2003).
[CrossRef] [PubMed]

2002 (1)

K. W. Chan and Y. T. Zhang, ““Adaptive Reduction of Motion Artifacts from Photoplethysmography recording using a Variable Step-size LMS Filter”, Sensors 2002,” Proc. IEEE 2, 1343 (2002).

1997 (1)

H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
[CrossRef] [PubMed]

1992 (1)

L. H. Norton, B. Squires, N. P. Craig, G. McLeay, P. McGrath, and K. I. Norton, “Accuracy of pulse oximetry during exercise stress testing,” Int. J. Sports Med. 13(7), 523–527 (1992).
[CrossRef] [PubMed]

1987 (1)

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987).
[CrossRef] [PubMed]

1986 (1)

J. W. Severinghaus and P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” J. Clin. Monit. 2(4), 270–288 (1986).
[CrossRef] [PubMed]

1937 (1)

A. B. Hertzman, “Photoelectric plethysmograph of the fingers and toes in man,” Proc. Soc. Exp. Biol. Med. 37, 529 (1937).

Aoyagi, T.

T. Aoyagi, “Pulse oximetry: its invention, theory, and future,” J. Anesth. 17(4), 259–266 (2003).
[CrossRef] [PubMed]

Asada, H. H.

H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. C. Hutchinson, “Mobile monitoring with wearable photoplethysmographic biosensors,” IEEE Eng. Med. Biol. Mag. 22(3), 28–40 (2003).
[CrossRef] [PubMed]

Astrup, P. B.

J. W. Severinghaus and P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” J. Clin. Monit. 2(4), 270–288 (1986).
[CrossRef] [PubMed]

Barthélémy, J. C.

H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
[CrossRef] [PubMed]

Benoit, H.

H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
[CrossRef] [PubMed]

Blanik, N.

N. Blanik, M. Hülsbusch, M. Herzog, and C. R. Blazek, “Assessment of Human Hemodynamics under Hyper- and Microgravity: Results of two Aachen University Parabolic Flight Experiments,” Acta Polytechnica 47(4), 29 (2007).

Blazek, C. R.

N. Blanik, M. Hülsbusch, M. Herzog, and C. R. Blazek, “Assessment of Human Hemodynamics under Hyper- and Microgravity: Results of two Aachen University Parabolic Flight Experiments,” Acta Polytechnica 47(4), 29 (2007).

Chan, K. W.

K. W. Chan and Y. T. Zhang, ““Adaptive Reduction of Motion Artifacts from Photoplethysmography recording using a Variable Step-size LMS Filter”, Sensors 2002,” Proc. IEEE 2, 1343 (2002).

Costes, F.

H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
[CrossRef] [PubMed]

Craig, N. P.

L. H. Norton, B. Squires, N. P. Craig, G. McLeay, P. McGrath, and K. I. Norton, “Accuracy of pulse oximetry during exercise stress testing,” Int. J. Sports Med. 13(7), 523–527 (1992).
[CrossRef] [PubMed]

Denis, C.

H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
[CrossRef] [PubMed]

Feasson, L.

H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
[CrossRef] [PubMed]

Geyssant, A.

H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
[CrossRef] [PubMed]

Hertzman, A. B.

A. B. Hertzman, “Photoelectric plethysmograph of the fingers and toes in man,” Proc. Soc. Exp. Biol. Med. 37, 529 (1937).

Herzog, M.

N. Blanik, M. Hülsbusch, M. Herzog, and C. R. Blazek, “Assessment of Human Hemodynamics under Hyper- and Microgravity: Results of two Aachen University Parabolic Flight Experiments,” Acta Polytechnica 47(4), 29 (2007).

Honda, Y.

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987).
[CrossRef] [PubMed]

Hülsbusch, M.

N. Blanik, M. Hülsbusch, M. Herzog, and C. R. Blazek, “Assessment of Human Hemodynamics under Hyper- and Microgravity: Results of two Aachen University Parabolic Flight Experiments,” Acta Polytechnica 47(4), 29 (2007).

Humphreys, K.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[CrossRef] [PubMed]

Hutchinson, R. C.

H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. C. Hutchinson, “Mobile monitoring with wearable photoplethysmographic biosensors,” IEEE Eng. Med. Biol. Mag. 22(3), 28–40 (2003).
[CrossRef] [PubMed]

Lacour, J. R.

H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
[CrossRef] [PubMed]

Markham, C.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[CrossRef] [PubMed]

Mastik, F.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[CrossRef] [PubMed]

McGrath, P.

L. H. Norton, B. Squires, N. P. Craig, G. McLeay, P. McGrath, and K. I. Norton, “Accuracy of pulse oximetry during exercise stress testing,” Int. J. Sports Med. 13(7), 523–527 (1992).
[CrossRef] [PubMed]

McLeay, G.

L. H. Norton, B. Squires, N. P. Craig, G. McLeay, P. McGrath, and K. I. Norton, “Accuracy of pulse oximetry during exercise stress testing,” Int. J. Sports Med. 13(7), 523–527 (1992).
[CrossRef] [PubMed]

Nelson, J. S.

Norton, K. I.

L. H. Norton, B. Squires, N. P. Craig, G. McLeay, P. McGrath, and K. I. Norton, “Accuracy of pulse oximetry during exercise stress testing,” Int. J. Sports Med. 13(7), 523–527 (1992).
[CrossRef] [PubMed]

Norton, L. H.

L. H. Norton, B. Squires, N. P. Craig, G. McLeay, P. McGrath, and K. I. Norton, “Accuracy of pulse oximetry during exercise stress testing,” Int. J. Sports Med. 13(7), 523–527 (1992).
[CrossRef] [PubMed]

Reisner, A.

H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. C. Hutchinson, “Mobile monitoring with wearable photoplethysmographic biosensors,” IEEE Eng. Med. Biol. Mag. 22(3), 28–40 (2003).
[CrossRef] [PubMed]

Rhee, S.

H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. C. Hutchinson, “Mobile monitoring with wearable photoplethysmographic biosensors,” IEEE Eng. Med. Biol. Mag. 22(3), 28–40 (2003).
[CrossRef] [PubMed]

Roche, F.

H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
[CrossRef] [PubMed]

Severinghaus, J. W.

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987).
[CrossRef] [PubMed]

J. W. Severinghaus and P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” J. Clin. Monit. 2(4), 270–288 (1986).
[CrossRef] [PubMed]

Shaltis, P.

H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. C. Hutchinson, “Mobile monitoring with wearable photoplethysmographic biosensors,” IEEE Eng. Med. Biol. Mag. 22(3), 28–40 (2003).
[CrossRef] [PubMed]

Squires, B.

L. H. Norton, B. Squires, N. P. Craig, G. McLeay, P. McGrath, and K. I. Norton, “Accuracy of pulse oximetry during exercise stress testing,” Int. J. Sports Med. 13(7), 523–527 (1992).
[CrossRef] [PubMed]

Svaasand, L. O.

van der Steen, A. F. W.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[CrossRef] [PubMed]

Verkruysse, W.

Ward, T.

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[CrossRef] [PubMed]

Wieringa, F. P.

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[CrossRef] [PubMed]

Wu, T.

T. Wu, “PPGI: New Development in Noninvasive and Contactless Diagnosis of Dermal Perfusion Using Near InfraRed Light,” J. GCPD e. 7(1), 17 (2003).

Zhang, Y. T.

K. W. Chan and Y. T. Zhang, ““Adaptive Reduction of Motion Artifacts from Photoplethysmography recording using a Variable Step-size LMS Filter”, Sensors 2002,” Proc. IEEE 2, 1343 (2002).

Acta Polytechnica (1)

N. Blanik, M. Hülsbusch, M. Herzog, and C. R. Blazek, “Assessment of Human Hemodynamics under Hyper- and Microgravity: Results of two Aachen University Parabolic Flight Experiments,” Acta Polytechnica 47(4), 29 (2007).

Ann. Biomed. Eng. (1)

F. P. Wieringa, F. Mastik, and A. F. W. van der Steen, “Contactless multiple wavelength photoplethysmographic imaging: a first step toward “SpO2 camera” technology,” Ann. Biomed. Eng. 33(8), 1034–1041 (2005).
[CrossRef] [PubMed]

Eur. J. Appl. Physiol. Occup. Physiol. (1)

H. Benoit, F. Costes, L. Feasson, J. R. Lacour, F. Roche, C. Denis, A. Geyssant, and J. C. Barthélémy, “Accuracy of pulse oximetry during intense exercise under severe hypoxic conditions,” Eur. J. Appl. Physiol. Occup. Physiol. 76(3), 260–263 (1997).
[CrossRef] [PubMed]

IEEE Eng. Med. Biol. Mag. (1)

H. H. Asada, P. Shaltis, A. Reisner, S. Rhee, and R. C. Hutchinson, “Mobile monitoring with wearable photoplethysmographic biosensors,” IEEE Eng. Med. Biol. Mag. 22(3), 28–40 (2003).
[CrossRef] [PubMed]

Int. J. Sports Med. (1)

L. H. Norton, B. Squires, N. P. Craig, G. McLeay, P. McGrath, and K. I. Norton, “Accuracy of pulse oximetry during exercise stress testing,” Int. J. Sports Med. 13(7), 523–527 (1992).
[CrossRef] [PubMed]

J. Anesth. (1)

T. Aoyagi, “Pulse oximetry: its invention, theory, and future,” J. Anesth. 17(4), 259–266 (2003).
[CrossRef] [PubMed]

J. Clin. Monit. (2)

J. W. Severinghaus and P. B. Astrup, “History of blood gas analysis. VI. Oximetry,” J. Clin. Monit. 2(4), 270–288 (1986).
[CrossRef] [PubMed]

J. W. Severinghaus and Y. Honda, “History of blood gas analysis. VII. Pulse oximetry,” J. Clin. Monit. 3(2), 135–138 (1987).
[CrossRef] [PubMed]

J. GCPD e. (1)

T. Wu, “PPGI: New Development in Noninvasive and Contactless Diagnosis of Dermal Perfusion Using Near InfraRed Light,” J. GCPD e. 7(1), 17 (2003).

Opt. Express (1)

Proc. IEEE (1)

K. W. Chan and Y. T. Zhang, ““Adaptive Reduction of Motion Artifacts from Photoplethysmography recording using a Variable Step-size LMS Filter”, Sensors 2002,” Proc. IEEE 2, 1343 (2002).

Proc. Soc. Exp. Biol. Med. (1)

A. B. Hertzman, “Photoelectric plethysmograph of the fingers and toes in man,” Proc. Soc. Exp. Biol. Med. 37, 529 (1937).

Rev. Sci. Instrum. (1)

K. Humphreys, T. Ward, and C. Markham, “Noncontact simultaneous dual wavelength photoplethysmography: a further step toward noncontact pulse oximetry,” Rev. Sci. Instrum. 78(4), 044304 (2007).
[CrossRef] [PubMed]

Other (12)

P. Shi, S. Hu, A. Echiadis, V. Azorin-Peris, J. Zheng, and Y. Zhu, “Development of a remote photoplenthysmographic technique for human biometrics,” Design and Quality for Biomedical Technologies II, edited by Ramesh Raghavachari, Rongguang Liang, Proc. SPIE 7170, 717006 2009.

H. Han, M. J. Kim, and J. Kim, “Development of real-time motion artifact reduction algorithm for a wearable photoplethysmography”, in Proceedings of the 29th Annual International Conference of the IEEE EMBS, 1538, 2007.

M. J. Hayes, P. R. Smith, D. M. Barnett, M. D. L. Morgan, S. Singh, and D. D. Vara, “Quantitative investigation of artifact in photoplethysmography and pulse oximetry for respiratory exercise testing,” in Proceedings of the Seventh International Symposium CNVD Computer-aided Noninvasive Vascular Diagnostics, V. Blažek and U. Schultz-Ehrenburg, ed. (VDIVerlag, Düsseldorf, Germany), 263, 117, 1998.

C. M. Lee, and Y. T. Zhang, “Reduction of motion artifacts from photoplethysmographic recordings using a wavelet denoising approach”, Biomedical Engineering, IEEE-EMBS Asian-Pacific Conference,194, 2003.

J. Zheng, S. Hu, V. Azorin-Peris, A. Echiadis, V. Chouliaras, and R. Summers, “Remote simultaneous dual wavelength imaging photoplethysmography: a further step towards 3-D mapping of skin blood microcirculation,” Multimodal Biomedical Imaging III, Proc. SPIE 6850, 68500S (2008).

K. Humphries, T. Ward, and C. Markham, “A CMOS Camera-Based Pulse Oximetry Imaging System”, in Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference Shanghai, China, 1–4 September, 2005

W. G. Webster, J. G. Webster, and R. Ed Webster, Design of Pulse Oximeters, (Taylor & Francis Group, 1997).

http://omlc.ogi.edu/spectra/hemoglobin/index.html

R. Winston, J. C. Miñano, and P. Benítez, Nonimaging Optics, (Elsevier Academic Press, 2005).

D. Thompson, A. Wareing, D. Day, and S. Warren, “Pulse Oximeter Improvement with an ADC-DAC Feedback Loop and a Radial Reflectance Sensor”', in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 815, 2006.

USB Framework for PIC18, PIC24 $\&$ PIC32, Microchip, http://www.microchip.com

J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital Communication: Third Edition, (Kluwer Academic Publishers, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

PPG signal with motion artifacts. The signal was taken at a distance of 30 cm. The first and last parts of

Fig. 2
Fig. 2

Light collector. (a) Scheme of the collector stage: sensors (PIN photodiodes), wavelength filters λ1 and λ2 and CPC on top of the sensors. (b) Photodiode support. (c) Collector stage as implemented in the experiments.

Fig. 3
Fig. 3

Electronics scheme of the device for PPG detection.

Fig. 4
Fig. 4

Measurements set-up. The region of interest is the palm of the hand. The distance bewteen the skin and the detector is 30 cm. Blue and infrared LEDs

Fig. 5
Fig. 5

Results of the motion artifact redution. (a) raw signals from the two photodiodes. (b) frequency spectra of the two raw signals, no clear heart rate component is discernible. (c) compensated signal SC: a clear “PPG-like” signals is displayed. (d) FFT of the compensated signal, with a clearly visible heart rate component.

Fig. 6
Fig. 6

Photoplethysmographyc signal from the subject without motion. (a) raw signals from the two photodiodes. We can note that the blood volume pulses are more enhanced in one channel. (b) frequency spectrum of the signal in Channel 1. The heasured heart rate is 1.2 Hz.

Tables (1)

Tables Icon

Table 1 Heart rate measurements with remote photoplethysmograph

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α H b O / H b ( λ 1 ) α H b O / H b ( λ 2 ) 500

Metrics