Abstract

We demonstrate an optimization of continuum generation in a commercially available photonic crystal fiber and show that this continuum can be used to simultaneously measure vibrational dephasing times over an unprecedented frequency range of Raman modes. The dephasing time measurement is based on 2-pulse 3-color coherent anti-Stokes Raman scattering (CARS), and requires a continuum pulse that is coherent over a broad spectral bandwidth. We demonstrate that a continuum with the required characteristics can be generated from a photonic crystal fiber by appropriately conditioning the chirp of the excitation pulse and controlling its pulse energy. We are able to simultaneously measure vibrational dephasing times of multiple Raman modes (covering 500 cm−1 to 3100 cm−1) of acetonitrile and benzonitrile using the optimized continuum with broadband time-resolved CARS.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, “Real-time tissue characterization on the basis of in vivo Raman spectra,” J. Raman Spectrosc. 33(7), 580–585 (2002).
    [CrossRef]
  2. T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
    [CrossRef] [PubMed]
  3. H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004).
    [CrossRef]
  4. Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32(22), 3370–3372 (2007).
    [CrossRef] [PubMed]
  5. Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(4), 041108 (2008).
    [CrossRef]
  6. A. Laubereau and W. Kaiser, “Vibrational Dynamics of Liquids and Solids Investigated by Picosecond Light-Pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
    [CrossRef]
  7. A. Morresi, L. Mariani, M. R. Distefano, and M. G. Giorgini, “Vibrational-Relaxation Processes in Isotropic Molecular Liquids - A Critical Comparison,” J. Raman Spectrosc. 26(3), 179–216 (1995).
    [CrossRef]
  8. H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37(1-3), 411–415 (2006).
    [CrossRef]
  9. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
    [CrossRef] [PubMed]
  10. B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
    [CrossRef] [PubMed]
  11. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [CrossRef]
  12. J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
    [CrossRef] [PubMed]
  13. K. B. Shi, P. Li, and Z. W. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
    [CrossRef]
  14. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  15. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22(3), 687–693 (2005).
    [CrossRef]
  16. M. A. Foster, A. L. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13(18), 6848–6855 (2005).
    [CrossRef] [PubMed]
  17. N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007).
    [CrossRef]
  18. L. B. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
    [CrossRef] [PubMed]
  19. Certain equipment is identified in this Letter to specify adequately the experimental details. Such identification does not imply recommendation by the National Institute of Standards and Technology, nor does it imply that the equipment is necessarily the best available for this purpose.
  20. http://nktphotonics.com/files/files/datasheet_fw-800.pdf
  21. J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002).
    [CrossRef]
  22. J. B. Guild, C. Xu, and W. W. Webb, “Measurement of group delay dispersion of high numerical aperture objective lenses using two-photon excited fluorescence,” Appl. Opt. 36(1), 397–401 (1997).
    [CrossRef] [PubMed]
  23. H. W. Hubble, T. S. Lai, and M. A. Berg, “Raman free-induction-decay measurements in low viscosity and supercooled toluene: Vibrational dephasing by shear fluctuations,” J. Chem. Phys. 114(8), 3662–3673 (2001).
    [CrossRef]
  24. R. Inaba, H. Okamoto, K. Yoshihara, and M. Tasumi, “Observation of the dephasing of the C.tplbond.N stretching vibration in liquid nitriles by femtosecond time-resolved coherent anti-Stokes Raman scattering,” J. Phys. Chem. 96(21), 8385–8390 (1992).
    [CrossRef]
  25. D. Vanden Bout, L. Muller, and M. Berg, “Ultrafast Raman echoes in liquid acetonitrile,” Phys. Rev. Lett. 67(26), 3700–3703 (1991).
    [CrossRef] [PubMed]
  26. M. Fickenscher and A. Laubereau, “High-Precision Femtosecond CARS of Simple Liquids,” J. Raman Spectrosc. 21(12), 857–861 (1990).
    [CrossRef]
  27. R. Inaba, K. Tominaga, M. Tasumi, K. A. Nelson, and K. Yoshihara, “Observation of Homogeneous Vibrational Dephasing in Benzonitrile by Ultrafast Raman Echoes,” Chem. Phys. Lett. 211(2-3), 183–188 (1993).
    [CrossRef]
  28. H. Okamoto, R. Inaba, K. Yoshihara, and M. Tasumi, “Femtosecond Time-Resolved Polarized Coherent Anti-Stokes Raman Studies on Reorientational Relaxation in Benzonitrile,” Chem. Phys. Lett. 202(1-2), 161–166 (1993).
    [CrossRef]
  29. H. Hamaguchi and T. L. Gustafson, “Ultrafast Time-Resolved Spontaneous and Coherent Raman-Spectroscopy - the Structure and Dynamics of Photogenerated Transient Species,” Annu. Rev. Phys. Chem. 45(1), 593–622 (1994).
    [CrossRef]
  30. J. C. Deäk, L. K. Iwaki, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: Ultrafast IR-Raman spectroscopy of acetonitrile,” J. Phys. Chem. A 102(42), 8193–8201 (1998).
    [CrossRef]
  31. D. Bhattacharjee, A. G. Purkayastha, T. N. Misra, and S. K. Nandy, “Raman Spectral Study of Vibrational Relaxation of the CN Stretching Band of Acetonitrile and Benzonitrile,” Journal of Raman Spectroscopy 27(6), 457–461 (1996).
    [CrossRef]
  32. B. Dick, “Response Function-Theory of Time-Resolved CARS and CSRS of Rotating Molecules in Liquids Under General Polarization Conditions,” Chem. Phys. 113(1), 131–147 (1987).
    [CrossRef]

2008 (3)

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(4), 041108 (2008).
[CrossRef]

B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

L. B. Fu, B. K. Thomas, and L. Dong, “Efficient supercontinuum generations in silica suspended core fibers,” Opt. Express 16(24), 19629–19642 (2008).
[CrossRef] [PubMed]

2007 (4)

N. Nishizawa and J. Takayanagi, “Octave spanning high-quality supercontinuum generation in all-fiber system,” J. Opt. Soc. Am. B 24(8), 1786–1792 (2007).
[CrossRef]

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

K. B. Shi, P. Li, and Z. W. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32(22), 3370–3372 (2007).
[CrossRef] [PubMed]

2006 (3)

H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37(1-3), 411–415 (2006).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

J. P. Ogilvie, E. Beaurepaire, A. Alexandrou, and M. Joffre, “Fourier-transform coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31(4), 480–482 (2006).
[CrossRef] [PubMed]

2005 (2)

2004 (2)

T. W. Kee and M. T. Cicerone, “Simple approach to one-laser, broadband coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 29(23), 2701–2703 (2004).
[CrossRef] [PubMed]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004).
[CrossRef]

2002 (3)

T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, “Real-time tissue characterization on the basis of in vivo Raman spectra,” J. Raman Spectrosc. 33(7), 580–585 (2002).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002).
[CrossRef]

2001 (1)

H. W. Hubble, T. S. Lai, and M. A. Berg, “Raman free-induction-decay measurements in low viscosity and supercooled toluene: Vibrational dephasing by shear fluctuations,” J. Chem. Phys. 114(8), 3662–3673 (2001).
[CrossRef]

1998 (1)

J. C. Deäk, L. K. Iwaki, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: Ultrafast IR-Raman spectroscopy of acetonitrile,” J. Phys. Chem. A 102(42), 8193–8201 (1998).
[CrossRef]

1997 (1)

1996 (1)

D. Bhattacharjee, A. G. Purkayastha, T. N. Misra, and S. K. Nandy, “Raman Spectral Study of Vibrational Relaxation of the CN Stretching Band of Acetonitrile and Benzonitrile,” Journal of Raman Spectroscopy 27(6), 457–461 (1996).
[CrossRef]

1995 (1)

A. Morresi, L. Mariani, M. R. Distefano, and M. G. Giorgini, “Vibrational-Relaxation Processes in Isotropic Molecular Liquids - A Critical Comparison,” J. Raman Spectrosc. 26(3), 179–216 (1995).
[CrossRef]

1994 (1)

H. Hamaguchi and T. L. Gustafson, “Ultrafast Time-Resolved Spontaneous and Coherent Raman-Spectroscopy - the Structure and Dynamics of Photogenerated Transient Species,” Annu. Rev. Phys. Chem. 45(1), 593–622 (1994).
[CrossRef]

1993 (2)

R. Inaba, K. Tominaga, M. Tasumi, K. A. Nelson, and K. Yoshihara, “Observation of Homogeneous Vibrational Dephasing in Benzonitrile by Ultrafast Raman Echoes,” Chem. Phys. Lett. 211(2-3), 183–188 (1993).
[CrossRef]

H. Okamoto, R. Inaba, K. Yoshihara, and M. Tasumi, “Femtosecond Time-Resolved Polarized Coherent Anti-Stokes Raman Studies on Reorientational Relaxation in Benzonitrile,” Chem. Phys. Lett. 202(1-2), 161–166 (1993).
[CrossRef]

1992 (1)

R. Inaba, H. Okamoto, K. Yoshihara, and M. Tasumi, “Observation of the dephasing of the C.tplbond.N stretching vibration in liquid nitriles by femtosecond time-resolved coherent anti-Stokes Raman scattering,” J. Phys. Chem. 96(21), 8385–8390 (1992).
[CrossRef]

1991 (1)

D. Vanden Bout, L. Muller, and M. Berg, “Ultrafast Raman echoes in liquid acetonitrile,” Phys. Rev. Lett. 67(26), 3700–3703 (1991).
[CrossRef] [PubMed]

1990 (1)

M. Fickenscher and A. Laubereau, “High-Precision Femtosecond CARS of Simple Liquids,” J. Raman Spectrosc. 21(12), 857–861 (1990).
[CrossRef]

1987 (1)

B. Dick, “Response Function-Theory of Time-Resolved CARS and CSRS of Rotating Molecules in Liquids Under General Polarization Conditions,” Chem. Phys. 113(1), 131–147 (1987).
[CrossRef]

1978 (1)

A. Laubereau and W. Kaiser, “Vibrational Dynamics of Liquids and Solids Investigated by Picosecond Light-Pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[CrossRef]

Alexandrou, A.

Ariunbold, G. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Bakker Schut, T. C.

T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, “Real-time tissue characterization on the basis of in vivo Raman spectra,” J. Raman Spectrosc. 33(7), 580–585 (2002).
[CrossRef]

Beaurepaire, E.

Berg, M.

D. Vanden Bout, L. Muller, and M. Berg, “Ultrafast Raman echoes in liquid acetonitrile,” Phys. Rev. Lett. 67(26), 3700–3703 (1991).
[CrossRef] [PubMed]

Berg, M. A.

H. W. Hubble, T. S. Lai, and M. A. Berg, “Raman free-induction-decay measurements in low viscosity and supercooled toluene: Vibrational dephasing by shear fluctuations,” J. Chem. Phys. 114(8), 3662–3673 (2001).
[CrossRef]

Bhattacharjee, D.

D. Bhattacharjee, A. G. Purkayastha, T. N. Misra, and S. K. Nandy, “Raman Spectral Study of Vibrational Relaxation of the CN Stretching Band of Acetonitrile and Benzonitrile,” Journal of Raman Spectroscopy 27(6), 457–461 (1996).
[CrossRef]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

Cao, Q.

Caspers, P. J.

T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, “Real-time tissue characterization on the basis of in vivo Raman spectra,” J. Raman Spectrosc. 33(7), 580–585 (2002).
[CrossRef]

Cicerone, M. T.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002).
[CrossRef]

Deäk, J. C.

J. C. Deäk, L. K. Iwaki, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: Ultrafast IR-Raman spectroscopy of acetonitrile,” J. Phys. Chem. A 102(42), 8193–8201 (1998).
[CrossRef]

Dick, B.

B. Dick, “Response Function-Theory of Time-Resolved CARS and CSRS of Rotating Molecules in Liquids Under General Polarization Conditions,” Chem. Phys. 113(1), 131–147 (1987).
[CrossRef]

Distefano, M. R.

A. Morresi, L. Mariani, M. R. Distefano, and M. G. Giorgini, “Vibrational-Relaxation Processes in Isotropic Molecular Liquids - A Critical Comparison,” J. Raman Spectrosc. 26(3), 179–216 (1995).
[CrossRef]

Dlott, D. D.

J. C. Deäk, L. K. Iwaki, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: Ultrafast IR-Raman spectroscopy of acetonitrile,” J. Phys. Chem. A 102(42), 8193–8201 (1998).
[CrossRef]

Dogariu, A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Dong, L.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002).
[CrossRef]

Fickenscher, M.

M. Fickenscher and A. Laubereau, “High-Precision Femtosecond CARS of Simple Liquids,” J. Raman Spectrosc. 21(12), 857–861 (1990).
[CrossRef]

Foster, M. A.

Fu, L. B.

Gaeta, A. L.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Giorgini, M. G.

A. Morresi, L. Mariani, M. R. Distefano, and M. G. Giorgini, “Vibrational-Relaxation Processes in Isotropic Molecular Liquids - A Critical Comparison,” J. Raman Spectrosc. 26(3), 179–216 (1995).
[CrossRef]

Guild, J. B.

Gustafson, T. L.

H. Hamaguchi and T. L. Gustafson, “Ultrafast Time-Resolved Spontaneous and Coherent Raman-Spectroscopy - the Structure and Dynamics of Photogenerated Transient Species,” Annu. Rev. Phys. Chem. 45(1), 593–622 (1994).
[CrossRef]

Hamaguchi, H.

H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37(1-3), 411–415 (2006).
[CrossRef]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004).
[CrossRef]

H. Hamaguchi and T. L. Gustafson, “Ultrafast Time-Resolved Spontaneous and Coherent Raman-Spectroscopy - the Structure and Dynamics of Photogenerated Transient Species,” Annu. Rev. Phys. Chem. 45(1), 593–622 (1994).
[CrossRef]

Huang, Y.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Hubble, H. W.

H. W. Hubble, T. S. Lai, and M. A. Berg, “Raman free-induction-decay measurements in low viscosity and supercooled toluene: Vibrational dephasing by shear fluctuations,” J. Chem. Phys. 114(8), 3662–3673 (2001).
[CrossRef]

Inaba, R.

H. Okamoto, R. Inaba, K. Yoshihara, and M. Tasumi, “Femtosecond Time-Resolved Polarized Coherent Anti-Stokes Raman Studies on Reorientational Relaxation in Benzonitrile,” Chem. Phys. Lett. 202(1-2), 161–166 (1993).
[CrossRef]

R. Inaba, K. Tominaga, M. Tasumi, K. A. Nelson, and K. Yoshihara, “Observation of Homogeneous Vibrational Dephasing in Benzonitrile by Ultrafast Raman Echoes,” Chem. Phys. Lett. 211(2-3), 183–188 (1993).
[CrossRef]

R. Inaba, H. Okamoto, K. Yoshihara, and M. Tasumi, “Observation of the dephasing of the C.tplbond.N stretching vibration in liquid nitriles by femtosecond time-resolved coherent anti-Stokes Raman scattering,” J. Phys. Chem. 96(21), 8385–8390 (1992).
[CrossRef]

Iwaki, L. K.

J. C. Deäk, L. K. Iwaki, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: Ultrafast IR-Raman spectroscopy of acetonitrile,” J. Phys. Chem. A 102(42), 8193–8201 (1998).
[CrossRef]

Joffre, M.

Kaiser, W.

A. Laubereau and W. Kaiser, “Vibrational Dynamics of Liquids and Solids Investigated by Picosecond Light-Pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[CrossRef]

Kano, H.

H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37(1-3), 411–415 (2006).
[CrossRef]

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004).
[CrossRef]

Kee, T. W.

Keller, U.

Lai, T. S.

H. W. Hubble, T. S. Lai, and M. A. Berg, “Raman free-induction-decay measurements in low viscosity and supercooled toluene: Vibrational dephasing by shear fluctuations,” J. Chem. Phys. 114(8), 3662–3673 (2001).
[CrossRef]

Laubereau, A.

M. Fickenscher and A. Laubereau, “High-Precision Femtosecond CARS of Simple Liquids,” J. Raman Spectrosc. 21(12), 857–861 (1990).
[CrossRef]

A. Laubereau and W. Kaiser, “Vibrational Dynamics of Liquids and Solids Investigated by Picosecond Light-Pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[CrossRef]

Lee, Y. J.

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(4), 041108 (2008).
[CrossRef]

Y. J. Lee, Y. Liu, and M. T. Cicerone, “Characterization of three-color CARS in a two-pulse broadband CARS spectrum,” Opt. Lett. 32(22), 3370–3372 (2007).
[CrossRef] [PubMed]

Li, P.

K. B. Shi, P. Li, and Z. W. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Liu, Y.

Liu, Z. W.

K. B. Shi, P. Li, and Z. W. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Mariani, L.

A. Morresi, L. Mariani, M. R. Distefano, and M. G. Giorgini, “Vibrational-Relaxation Processes in Isotropic Molecular Liquids - A Critical Comparison,” J. Raman Spectrosc. 26(3), 179–216 (1995).
[CrossRef]

Misra, T. N.

D. Bhattacharjee, A. G. Purkayastha, T. N. Misra, and S. K. Nandy, “Raman Spectral Study of Vibrational Relaxation of the CN Stretching Band of Acetonitrile and Benzonitrile,” Journal of Raman Spectroscopy 27(6), 457–461 (1996).
[CrossRef]

Morresi, A.

A. Morresi, L. Mariani, M. R. Distefano, and M. G. Giorgini, “Vibrational-Relaxation Processes in Isotropic Molecular Liquids - A Critical Comparison,” J. Raman Spectrosc. 26(3), 179–216 (1995).
[CrossRef]

Motzkus, M.

B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

Muller, L.

D. Vanden Bout, L. Muller, and M. Berg, “Ultrafast Raman echoes in liquid acetonitrile,” Phys. Rev. Lett. 67(26), 3700–3703 (1991).
[CrossRef] [PubMed]

Murawski, R. K.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Nandy, S. K.

D. Bhattacharjee, A. G. Purkayastha, T. N. Misra, and S. K. Nandy, “Raman Spectral Study of Vibrational Relaxation of the CN Stretching Band of Acetonitrile and Benzonitrile,” Journal of Raman Spectroscopy 27(6), 457–461 (1996).
[CrossRef]

Nelson, K. A.

R. Inaba, K. Tominaga, M. Tasumi, K. A. Nelson, and K. Yoshihara, “Observation of Homogeneous Vibrational Dephasing in Benzonitrile by Ultrafast Raman Echoes,” Chem. Phys. Lett. 211(2-3), 183–188 (1993).
[CrossRef]

Nishizawa, N.

Ogilvie, J. P.

Okamoto, H.

H. Okamoto, R. Inaba, K. Yoshihara, and M. Tasumi, “Femtosecond Time-Resolved Polarized Coherent Anti-Stokes Raman Studies on Reorientational Relaxation in Benzonitrile,” Chem. Phys. Lett. 202(1-2), 161–166 (1993).
[CrossRef]

R. Inaba, H. Okamoto, K. Yoshihara, and M. Tasumi, “Observation of the dephasing of the C.tplbond.N stretching vibration in liquid nitriles by femtosecond time-resolved coherent anti-Stokes Raman scattering,” J. Phys. Chem. 96(21), 8385–8390 (1992).
[CrossRef]

Paschotta, R.

Pestov, D.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Puppels, G. J.

T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, “Real-time tissue characterization on the basis of in vivo Raman spectra,” J. Raman Spectrosc. 33(7), 580–585 (2002).
[CrossRef]

Purkayastha, A. G.

D. Bhattacharjee, A. G. Purkayastha, T. N. Misra, and S. K. Nandy, “Raman Spectral Study of Vibrational Relaxation of the CN Stretching Band of Acetonitrile and Benzonitrile,” Journal of Raman Spectroscopy 27(6), 457–461 (1996).
[CrossRef]

Rostovtsev, Y. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Sautenkov, V. A.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Schenkel, B.

Scully, M. O.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Shi, K. B.

K. B. Shi, P. Li, and Z. W. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Sokolov, A. V.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Takayanagi, J.

Tasumi, M.

R. Inaba, K. Tominaga, M. Tasumi, K. A. Nelson, and K. Yoshihara, “Observation of Homogeneous Vibrational Dephasing in Benzonitrile by Ultrafast Raman Echoes,” Chem. Phys. Lett. 211(2-3), 183–188 (1993).
[CrossRef]

H. Okamoto, R. Inaba, K. Yoshihara, and M. Tasumi, “Femtosecond Time-Resolved Polarized Coherent Anti-Stokes Raman Studies on Reorientational Relaxation in Benzonitrile,” Chem. Phys. Lett. 202(1-2), 161–166 (1993).
[CrossRef]

R. Inaba, H. Okamoto, K. Yoshihara, and M. Tasumi, “Observation of the dephasing of the C.tplbond.N stretching vibration in liquid nitriles by femtosecond time-resolved coherent anti-Stokes Raman scattering,” J. Phys. Chem. 96(21), 8385–8390 (1992).
[CrossRef]

Thomas, B. K.

Tominaga, K.

R. Inaba, K. Tominaga, M. Tasumi, K. A. Nelson, and K. Yoshihara, “Observation of Homogeneous Vibrational Dephasing in Benzonitrile by Ultrafast Raman Echoes,” Chem. Phys. Lett. 211(2-3), 183–188 (1993).
[CrossRef]

Trebino, R.

Vanden Bout, D.

D. Vanden Bout, L. Muller, and M. Berg, “Ultrafast Raman echoes in liquid acetonitrile,” Phys. Rev. Lett. 67(26), 3700–3703 (1991).
[CrossRef] [PubMed]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

von Vacano, B.

B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

Wang, X.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Webb, W. W.

Wolthuis, R.

T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, “Real-time tissue characterization on the basis of in vivo Raman spectra,” J. Raman Spectrosc. 33(7), 580–585 (2002).
[CrossRef]

Xie, X. S.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

Xu, C.

Yoshihara, K.

H. Okamoto, R. Inaba, K. Yoshihara, and M. Tasumi, “Femtosecond Time-Resolved Polarized Coherent Anti-Stokes Raman Studies on Reorientational Relaxation in Benzonitrile,” Chem. Phys. Lett. 202(1-2), 161–166 (1993).
[CrossRef]

R. Inaba, K. Tominaga, M. Tasumi, K. A. Nelson, and K. Yoshihara, “Observation of Homogeneous Vibrational Dephasing in Benzonitrile by Ultrafast Raman Echoes,” Chem. Phys. Lett. 211(2-3), 183–188 (1993).
[CrossRef]

R. Inaba, H. Okamoto, K. Yoshihara, and M. Tasumi, “Observation of the dephasing of the C.tplbond.N stretching vibration in liquid nitriles by femtosecond time-resolved coherent anti-Stokes Raman scattering,” J. Phys. Chem. 96(21), 8385–8390 (1992).
[CrossRef]

Zhi, M. C.

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

H. Hamaguchi and T. L. Gustafson, “Ultrafast Time-Resolved Spontaneous and Coherent Raman-Spectroscopy - the Structure and Dynamics of Photogenerated Transient Species,” Annu. Rev. Phys. Chem. 45(1), 593–622 (1994).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

H. Kano and H. Hamaguchi, “Femtosecond coherent anti-Stokes Raman scattering spectroscopy using supercontinuum generated from a photonic crystal fiber,” Appl. Phys. Lett. 85(19), 4298–4300 (2004).
[CrossRef]

Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broadband coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(4), 041108 (2008).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

K. B. Shi, P. Li, and Z. W. Liu, “Broadband coherent anti-Stokes Raman scattering spectroscopy in supercontinuum optical trap,” Appl. Phys. Lett. 90(14), 141116 (2007).
[CrossRef]

Chem. Phys. (1)

B. Dick, “Response Function-Theory of Time-Resolved CARS and CSRS of Rotating Molecules in Liquids Under General Polarization Conditions,” Chem. Phys. 113(1), 131–147 (1987).
[CrossRef]

Chem. Phys. Lett. (2)

R. Inaba, K. Tominaga, M. Tasumi, K. A. Nelson, and K. Yoshihara, “Observation of Homogeneous Vibrational Dephasing in Benzonitrile by Ultrafast Raman Echoes,” Chem. Phys. Lett. 211(2-3), 183–188 (1993).
[CrossRef]

H. Okamoto, R. Inaba, K. Yoshihara, and M. Tasumi, “Femtosecond Time-Resolved Polarized Coherent Anti-Stokes Raman Studies on Reorientational Relaxation in Benzonitrile,” Chem. Phys. Lett. 202(1-2), 161–166 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002).
[CrossRef]

J. Chem. Phys. (1)

H. W. Hubble, T. S. Lai, and M. A. Berg, “Raman free-induction-decay measurements in low viscosity and supercooled toluene: Vibrational dephasing by shear fluctuations,” J. Chem. Phys. 114(8), 3662–3673 (2001).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. (1)

R. Inaba, H. Okamoto, K. Yoshihara, and M. Tasumi, “Observation of the dephasing of the C.tplbond.N stretching vibration in liquid nitriles by femtosecond time-resolved coherent anti-Stokes Raman scattering,” J. Phys. Chem. 96(21), 8385–8390 (1992).
[CrossRef]

J. Phys. Chem. A (1)

J. C. Deäk, L. K. Iwaki, and D. D. Dlott, “Vibrational energy redistribution in polyatomic liquids: Ultrafast IR-Raman spectroscopy of acetonitrile,” J. Phys. Chem. A 102(42), 8193–8201 (1998).
[CrossRef]

J. Raman Spectrosc. (4)

M. Fickenscher and A. Laubereau, “High-Precision Femtosecond CARS of Simple Liquids,” J. Raman Spectrosc. 21(12), 857–861 (1990).
[CrossRef]

A. Morresi, L. Mariani, M. R. Distefano, and M. G. Giorgini, “Vibrational-Relaxation Processes in Isotropic Molecular Liquids - A Critical Comparison,” J. Raman Spectrosc. 26(3), 179–216 (1995).
[CrossRef]

H. Kano and H. Hamaguchi, “Dispersion-compensated supercontinuum generation for ultrabroadband multiplex coherent anti-Stokes Raman scattering spectroscopy,” J. Raman Spectrosc. 37(1-3), 411–415 (2006).
[CrossRef]

T. C. Bakker Schut, R. Wolthuis, P. J. Caspers, and G. J. Puppels, “Real-time tissue characterization on the basis of in vivo Raman spectra,” J. Raman Spectrosc. 33(7), 580–585 (2002).
[CrossRef]

Journal of Raman Spectroscopy (1)

D. Bhattacharjee, A. G. Purkayastha, T. N. Misra, and S. K. Nandy, “Raman Spectral Study of Vibrational Relaxation of the CN Stretching Band of Acetonitrile and Benzonitrile,” Journal of Raman Spectroscopy 27(6), 457–461 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

B. von Vacano and M. Motzkus, “Time-resolving molecular vibration for microanalytics: single laser beam nonlinear Raman spectroscopy in simulation and experiment,” Phys. Chem. Chem. Phys. 10(5), 681–691 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

D. Vanden Bout, L. Muller, and M. Berg, “Ultrafast Raman echoes in liquid acetonitrile,” Phys. Rev. Lett. 67(26), 3700–3703 (1991).
[CrossRef] [PubMed]

Rev. Mod. Phys. (2)

A. Laubereau and W. Kaiser, “Vibrational Dynamics of Liquids and Solids Investigated by Picosecond Light-Pulses,” Rev. Mod. Phys. 50(3), 607–665 (1978).
[CrossRef]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Science (1)

D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316(5822), 265–268 (2007).
[CrossRef] [PubMed]

Other (2)

Certain equipment is identified in this Letter to specify adequately the experimental details. Such identification does not imply recommendation by the National Institute of Standards and Technology, nor does it imply that the equipment is necessarily the best available for this purpose.

http://nktphotonics.com/files/files/datasheet_fw-800.pdf

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental scheme and energy diagram of the 2-pulse broadband CARS setup for vibrational dephasing time measurement: PCF, photonic crystal fiber; LPF, longpass filter; NF, notch filter; SPF, shortpass filter.

Fig. 2
Fig. 2

Time-resolved CARS spectra generated in a glass coverslip. The continuum pulse is generated from a photonic crystal fiber pumped by a pulse with different group delay dispersion (GDD) of (a) −4000 fs2, (b) −12000 fs2, (c) −18000 fs2, and (d) −21000 fs2, where the uncertainty of GDD is 500 fs2. For each spectrum the phase of the narrowband pulse is optimized to the transform limit at the sample position. The continuum-generating pulse is centered at 830 nm and its average power is 350 mW before the fiber. Average powers of the continuum and narrowband pulses are 2 mW and 24 mW, respectively at the sample position. The exposure time was 100 ms.

Fig. 3
Fig. 3

Time-resolved CARS spectra generated in a glass coverslip by continuum pulses generated by a input pulse with different average powers of (a) 220 mW, (b) 350 mW, (c) 490 mW, and (d) 560 mW. At the sample position, the average powers of the continuum and narrowband pulses were controlled at constant values of 2 mW and 25 mW, respectively. The exposure time was 100 ms. The GDD of the input pulse is −19000 fs2.

Fig. 4
Fig. 4

Time-resolved CARS spectroscopy of neat (a) acetonitrile and (b) benzonitrile. CARS spectra at Δt = 0 and 1 ps are shown for (c) acetonitrile and (d) benzonitrile. Peak intensities at time delay, Δt = 1 ps, are plotted as a function of narrowband pulse power at the sample position for (e) acetonitrile and (f) benzonitrile. Log-log plots of the peak intensities at Δt = 1 ps are fitted to log(I) = slope*log(P) + constant, where I is the intensity, P is the average power of the narrowband pulse. The fitted slopes are all close to unity, confirming that the signal at Δt = 1 ps is generated by the 3-color CARS mechanism. The average power of the continuum pulse was constant at 14 mW, and the average power of the narrowband pulse was 1 mW at the sample position for (a)-(d). For each time scan, the time-independent baseline was measured at Δt = −2 ps and subtracted from the total CARS spectrum data. The baseline was (10 to 20) % of the peak signal. The exposure time was 600 ms.

Fig. 5
Fig. 5

Dephasing time measurements of various Raman modes of neat (a-c) acetonitrile and (d-f) benzonitrile. The dotted lines indicate time profiles of the nonresonant background signal from a glass coverslip at the same Raman shift in each figure. The data of time delay (Δt) later than 1 ps are fitted to a single exponential function, I(t) = exp(−2Δt/T 2), where T 2 is the vibrational dephasing time. The average powers of the continuum and narrowband pulses were 14 mW and 1 mW, respectively, at the sample position. The exposure time was 600 ms.

Tables (1)

Tables Icon

Table 1 Summay of T2/2 values measured in this study and comparison with previously reported values

Metrics