Abstract

We describe an ultrafast fiber optical parametric oscillator operating in the 1210 nm to 1340 nm wavelength range. The system consists of a microstucture fiber placed in a Fabry-Perot cavity which is optically pumped with 1030-nm light from an Ytterbium mode-locked fiber laser. The output wavelength is tunable over a 130-nm span by adjusting the position of one cavity mirror. SHG FROG measurements reveal that the output pulse quality varies as a function of pump power and wavelength. Ultrafast sources operating in this range are particularly instrumental for deep-tissue nonlinear biophotonics applications.

© 2010 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Reliable multiple-pulse reconstruction from second-harmonic-generation frequency-resolved optical gating spectrograms

A. Hause, S. Kraft, P. Rohrmann, and F. Mitschke
J. Opt. Soc. Am. B 32(5) 868-877 (2015)

Two-color femtosecond optical parametric oscillator with 1.7 W output pumped by a 7.4 W Yb:KGW laser

Robin Hegenbarth, Andy Steinmann, György Tóth, János Hebling, and Harald Giessen
J. Opt. Soc. Am. B 28(5) 1344-1352 (2011)

Octave-spanning, high-power microstructure-fiber-based optical parametric oscillators

Jay E. Sharping, Mark A. Foster, Alexander L. Gaeta, Jacob Lasri, Ove Lyngnes, and Kurt Vogel
Opt. Express 15(4) 1474-1479 (2007)

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16(1), 42–44 (1991), http://www.opticsinfobase.org/abstract.cfm?URI=ol-16-1-42 .
    [Crossref] [PubMed]
  2. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  3. M. Ebrahimzadeh, “Mid-infrared ultrafast and continuous-wave optical parametric oscillators,” Topics in Applied Physics 89, 179–218 (2003).
    [Crossref]
  4. Y. Silberberg, “Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy,” Annu. Rev. Phys. Chem. 60(1), 277–292 (2009).
    [Crossref]
  5. J. E. Sharping, “Microstructure Fiber Based Optical Parametric Oscillators,” J. Lightwave Technol. 26(14), 2184–2191 (2008), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-26-14-2184 .
    [Crossref]
  6. Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “A Time-Dispersion-Tuned Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
    [Crossref]
  7. Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator,” J. Opt. Soc. Am. B 26(7), 1351–1356 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=josab-26-7-1351 .
    [Crossref]
  8. M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices. New York: Cambridge University Press, 2007.
  9. C. Goulart-Pailo, C. Gu, and J. E. Sharping, “Full Characterization of Femtosecond Pulses at 1225-1350 nm Produced by a High Power Fiber Optical Parametric Oscillator,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFS1. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2009-CFS1
  10. J. E. Sharping, J. R. Sanborn, M. A. Foster, D. Broaddus, and A. L. Gaeta, “Generation of sub-100-fs pulses from a microstructure-fiber-based optical parametric oscillator,” Opt. Express 16(22), 18050–18056 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-22-18050 .
    [Crossref] [PubMed]
  11. E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7(8), 1385–1401 (1990).
    [Crossref]

2009 (3)

Y. Silberberg, “Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy,” Annu. Rev. Phys. Chem. 60(1), 277–292 (2009).
[Crossref]

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “A Time-Dispersion-Tuned Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Y. Q. Xu, S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator,” J. Opt. Soc. Am. B 26(7), 1351–1356 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=josab-26-7-1351 .
[Crossref]

2008 (2)

2003 (2)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

M. Ebrahimzadeh, “Mid-infrared ultrafast and continuous-wave optical parametric oscillators,” Topics in Applied Physics 89, 179–218 (2003).
[Crossref]

1991 (1)

1990 (1)

Broaddus, D.

Cheung, E. C.

Cheung, K. K. Y.

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “A Time-Dispersion-Tuned Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Chui, P. C.

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “A Time-Dispersion-Tuned Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Ebrahimzadeh, M.

M. Ebrahimzadeh, “Mid-infrared ultrafast and continuous-wave optical parametric oscillators,” Topics in Applied Physics 89, 179–218 (2003).
[Crossref]

Foster, M. A.

Gaeta, A. L.

Harvey, J. D.

Kean, P. N.

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Leonhardt, R.

Liu, J. M.

Murdoch, S. G.

Sanborn, J. R.

Sharping, J. E.

Sibbett, W.

Silberberg, Y.

Y. Silberberg, “Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy,” Annu. Rev. Phys. Chem. 60(1), 277–292 (2009).
[Crossref]

Spence, D. E.

Wong, K. K. Y.

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “A Time-Dispersion-Tuned Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Xu, Y. Q.

Yang, S. G.

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “A Time-Dispersion-Tuned Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Zhou, Y.

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “A Time-Dispersion-Tuned Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

Annu. Rev. Phys. Chem. (1)

Y. Silberberg, “Quantum Coherent Control for Nonlinear Spectroscopy and Microscopy,” Annu. Rev. Phys. Chem. 60(1), 277–292 (2009).
[Crossref]

IEEE Photon. Technol. Lett. (1)

Y. Zhou, K. K. Y. Cheung, S. G. Yang, P. C. Chui, and K. K. Y. Wong, “A Time-Dispersion-Tuned Picosecond Fiber-Optical Parametric Oscillator,” IEEE Photon. Technol. Lett. 21(17), 1223–1225 (2009).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Topics in Applied Physics (1)

M. Ebrahimzadeh, “Mid-infrared ultrafast and continuous-wave optical parametric oscillators,” Topics in Applied Physics 89, 179–218 (2003).
[Crossref]

Other (2)

M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices. New York: Cambridge University Press, 2007.

C. Goulart-Pailo, C. Gu, and J. E. Sharping, “Full Characterization of Femtosecond Pulses at 1225-1350 nm Produced by a High Power Fiber Optical Parametric Oscillator,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CFS1. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2009-CFS1

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the FOPO. The output coupler is a short-pass dielectric (SPD) that reflects wavelengths longer than 1100 nm and transmits shorter wavelengths. Reconstructed temporal amplitude and phase profiles (b) error=0.007 and (c) error=0.01 of pump laser pulses recorded on different days.

Fig. 2
Fig. 2

FROG measurements of the output of the FOPO. (a) The spectrogram recorded when the FOPO was aligned for short pulse generation. (b) Temporal amplitude (right, markers) and phase (right, line) retrieved from the measured spectrogram.

Fig. 3
Fig. 3

(a) a composite of optical spectra recorded as the cavity length of the FOPO is varied. (b) FROG spectrograms recorded for several different FOPO output wavelengths. Vertical shifts in wavelength are not shown here because each spectrogram has been re-centered vertically. (c) Reconstructed amplitude and phase obtained from the spectrograms.

Fig. 4
Fig. 4

(a) FROG spectrograms recorded at the output of the FOPO for several different pump power settings. (b) Reconstructed amplitude and phase obtained from the spectrograms.

Metrics