Abstract

We demonstrate an easy-to-implement scheme for fluorescence enhancement and observation volume reduction using photonic crystals (PhCs) as substrates for microscopy. By normal incidence coupling to slow 2D-PhC guided modes, a 65 fold enhancement in the excitation is achieved in the near field region (100 nm deep and 1 µm wide) of the resonant mode. Such large enhancement together with the high spatial resolution makes this device an excellent substrate for fluorescence microscopies.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. K. Jaiswal and S. M. Simon, “Imaging single events at the cell membrane,” Nat. Chem. Biol. 3(2), 92–98 (2007).
    [CrossRef] [PubMed]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  3. H. Rigneault and P. Lenne, “Fluorescence correlation spectroscopy on a mirror,” J. Opt. Soc. Am. B 20(10), 2203 (2003).
    [CrossRef]
  4. M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane,” NanoBiotechnology 1(1), 113–120 (2005).
    [CrossRef]
  5. M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
    [CrossRef] [PubMed]
  6. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
    [CrossRef] [PubMed]
  7. L. C. Estrada, P. F. Aramendía, and O. E. Martínez, “10000 times volume reduction for fluorescence correlation spectroscopy using nano-antennas,” Opt. Express 16(25), 20597–20602 (2008).
    [CrossRef] [PubMed]
  8. I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
    [CrossRef] [PubMed]
  9. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
    [CrossRef]
  10. L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
    [CrossRef]
  11. X. Letartre, J. Mouette, J. L. Leclercq, P. R. Romeo, C. Seassal, and P. Viktorovitch, “Switching Devices With Spatial and Spectral Resolution Combining Photonic Crystal and MOEMS Structures,” J. Lightwave Technol. 21(7), 1691–1699 (2003).
    [CrossRef]

2009 (1)

2008 (1)

2007 (2)

J. K. Jaiswal and S. M. Simon, “Imaging single events at the cell membrane,” Nat. Chem. Biol. 3(2), 92–98 (2007).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

2006 (1)

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[CrossRef]

2005 (2)

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane,” NanoBiotechnology 1(1), 113–120 (2005).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

2003 (3)

1994 (1)

Andreani, L. C.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[CrossRef]

Aramendía, P. F.

Bashir, R.

Block, I. D.

Cambi, A.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane,” NanoBiotechnology 1(1), 113–120 (2005).
[CrossRef]

Chaudhery, V.

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Craighead, H. G.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[CrossRef] [PubMed]

Cunningham, B. T.

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

de Bakker, B. I.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane,” NanoBiotechnology 1(1), 113–120 (2005).
[CrossRef]

de Lange, F.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane,” NanoBiotechnology 1(1), 113–120 (2005).
[CrossRef]

Dorvel, B. R.

Estrada, L. C.

Figdor, C. G.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane,” NanoBiotechnology 1(1), 113–120 (2005).
[CrossRef]

Foquet, M.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[CrossRef] [PubMed]

Ganesh, N.

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

García-Parajó, M. F.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane,” NanoBiotechnology 1(1), 113–120 (2005).
[CrossRef]

Gerace, D.

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[CrossRef]

Hell, S. W.

Jaiswal, J. K.

J. K. Jaiswal and S. M. Simon, “Imaging single events at the cell membrane,” Nat. Chem. Biol. 3(2), 92–98 (2007).
[CrossRef] [PubMed]

Jones, S. I.

Koopman, M.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane,” NanoBiotechnology 1(1), 113–120 (2005).
[CrossRef]

Korlach, J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[CrossRef] [PubMed]

Lakowicz, J. R.

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

Leclercq, J. L.

Lenne, P.

Letartre, X.

Levene, M. J.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[CrossRef] [PubMed]

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Martínez, O. E.

Mathias, P. C.

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Mouette, J.

Rigneault, H.

Romeo, P. R.

Seassal, C.

Simon, S. M.

J. K. Jaiswal and S. M. Simon, “Imaging single events at the cell membrane,” Nat. Chem. Biol. 3(2), 92–98 (2007).
[CrossRef] [PubMed]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Turner, S. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[CrossRef] [PubMed]

van Hulst, N. F.

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane,” NanoBiotechnology 1(1), 113–120 (2005).
[CrossRef]

Viktorovitch, P.

Vodkin, L. O.

Webb, W. W.

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[CrossRef] [PubMed]

Wichmann, J.

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

NanoBiotechnology (1)

M. F. García-Parajó, B. I. de Bakker, M. Koopman, A. Cambi, F. de Lange, C. G. Figdor, and N. F. van Hulst, “Near-Field Fluorescence Microscopy: An optical Nanotool to Study Protein Organization at the Cell Membrane,” NanoBiotechnology 1(1), 113–120 (2005).
[CrossRef]

Nat. Chem. Biol. (1)

J. K. Jaiswal and S. M. Simon, “Imaging single events at the cell membrane,” Nat. Chem. Biol. 3(2), 92–98 (2007).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2(8), 515–520 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

L. C. Andreani and D. Gerace, “Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method,” Phys. Rev. B 73(23), 235114 (2006).
[CrossRef]

Science (1)

M. J. Levene, J. Korlach, S. W. Turner, M. Foquet, H. G. Craighead, and W. W. Webb, “Zero-mode waveguides for single-molecule analysis at high concentrations,” Science 299(5607), 682–686 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Dielectric photonic crystal slab with a water drop on top, illuminated by a tightly focused Gaussian beam in the visible. (b) SEM image of the fabricated SiN-PhC. (c) Band diagram for the fundamental TE guided mode in a graphite PhC in air with a = 377.6 nm and d = 152 nm. Dashed lines: water on top and inside the holes. Blue and red lines: dipole modes. (d) Hz (left) and energy density normalized to the one on the homogeneous slab (right) at the PhC/water interface, calculated with 3D-FDTD simulations of the periodic lattice under x-polarized plane wave injection at resonance. (e) Band calculation for both TE and TM fundamental guides modes (red dots) and for TE modes only (black circles) in air, along the ΓK direction. Only finite Q modes at the Γ point are highlighted with a text box.

Fig. 2
Fig. 2

Contour plot of F(k) = δωd/δωc in water for (a) the first dipole band and (b) second dipole band, showing efficient (F<1, red) and inefficient (F>1, dark) coupling regions. x (y) corresponds to ΓK (ΓM). (c) Transmission spectrum of the periodic graphite lattice calculated with FTDT simulations. (d) Intensity at x = 0 and y = 0 as a function of the vertical coordinate (z), showing the 100 nm-evanescent tail (blue region is water).

Fig. 3
Fig. 3

(a)-(e) Transmission spectra for PhC structures with different holes diameters measured with (red line) and without (black line) water on the top: 133 nm (a), 139 nm (b), 148 nm (c), 152 nm (d) and 156 nm (e). Green line: the illumination wavelength in confocal experiments. (f)-(m) Transmission (left) and fluorescence (right) images recorded by raster-scanning over the PhC.

Fig. 4
Fig. 4

(a) Sketch of a confocal microscope. The excitation light is focused onto the PhC. The focal spot is imaged onto the detector via a pinhole. DM: dichroic mirror, M: mirror, L: lens, PH: pinhole, F: filter, PMT: photomultiplier. Inset: R6G/water absorption and emission spectra, showing that the R6G absorbs the excitation laser. Single raster-scan lineouts for transmission (b) and fluorescence (d) confocal images recorded simultaneously by raster scanning a solution of 1.5 μM R6G/water over the PhC. The emission of molecules is enhanced due to the PhC-resonant excitation. (c), (e) Intensity profiles as a function of position along dashed lines in (b) and (d). (f) Fluorescence intensity for a drop of Rhodamine 6G/water solution over a PhC when a single point is irradiated with 70 µW. On the PhC surface (black) and off the PhC surface (red).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

δ ω d < δ ω c
S o u t ( t ) = I 0 A σ a b s [ ρ ( t ) + C ( t ) ​   δ / 2 ]
S i n ( t ) = η I 0 A σ a b s [ ρ ( t ) + C ( t ) δ ] + T I 0 A σ a b s C ( t ) δ / 2

Metrics