Abstract

An enhanced dielectric environment response is observed in a kind of metallic nanohole arrays which are prepared by metal deposition on a sacrificial two dimensional colloidal crystal template. The periodic metallic structures are composed of interlinked metallic half-shells supported on a planar dielectric substrate. When putting in dielectric matrix of different refractive index, the measured sensitivity of the quasi-three-dimensional metallic nanohole array can reach a value of 1192 nm per refractive index unit which shows a five-fold increase as compared with the metallic structures supported on the template. The observed boost in sensitivity is found to originate from a substantially reduced substrate effect, resulting in a pronounced surface plasmon coupling of which its strength is independent of the dielectric environment, a characteristics absent in conventional planar metallic subwavelength hole arrays. These findings are analyzed theoretically and confirmed by numerical simulations.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  3. T. H. Reilly, S.-H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
    [CrossRef]
  4. A. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. Kavanagh, “Nanohole-Enhanced Raman Scattering,” Nano Lett. 4(10), 2015–2018 (2004).
    [CrossRef]
  5. Y. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Opt. Lett. 28(7), 507–509 (2003).
    [CrossRef] [PubMed]
  6. A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc. 127(42), 14936–14941 (2005).
    [CrossRef] [PubMed]
  7. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface Plasmons Enhance Optical Transmission Through Subwavelengths Holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [CrossRef]
  8. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [CrossRef] [PubMed]
  9. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
    [CrossRef] [PubMed]
  10. S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
    [CrossRef]
  11. Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
    [CrossRef] [PubMed]
  12. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
    [CrossRef]
  13. Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology 15(9), 1368–1374 (2004).
    [CrossRef]
  14. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
    [CrossRef] [PubMed]
  15. A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
    [CrossRef] [PubMed]
  16. L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
    [CrossRef]
  17. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st ed. (Springer-Verlag, Berlin, 1988).
  18. A. Lesuffeur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
    [CrossRef]
  19. M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
    [CrossRef] [PubMed]
  20. H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett. 94(7), 073117 (2009).
    [CrossRef]
  21. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  22. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
    [CrossRef] [PubMed]
  23. M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
    [CrossRef]
  24. J.-C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
    [CrossRef] [PubMed]
  25. L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, and D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
    [CrossRef]
  26. P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
    [CrossRef]
  27. Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on two-dimensional colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
    [CrossRef]
  28. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
    [CrossRef]
  29. J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters,” Nano Lett. 2(8), 891–894 (2002).
    [CrossRef]
  30. T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
    [CrossRef]
  31. F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid Monolayers as Versatile Lithographic Masks,” Langmuir 13(11), 2983–2987 (1997).
    [CrossRef]
  32. M. Himmelhaus and H. Takei, “Cap shaped gold nanoparticles for an optical biosensor,” Sens. Actuators B Chem. 63(1-2), 24–30 (2000).
    [CrossRef]
  33. F. Tam, C. Moran, and N. J. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
    [CrossRef]
  34. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
    [CrossRef] [PubMed]
  35. E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
    [CrossRef] [PubMed]
  36. R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7(5), 1113–1118 (2007).
    [CrossRef] [PubMed]
  37. L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
    [CrossRef] [PubMed]
  38. H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomed. 1(2), 201–208 (2006).
    [CrossRef]
  39. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1120 (1983).
    [CrossRef] [PubMed]
  40. A. Taflove, and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  41. A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12(2), 234–248 (2004).
    [CrossRef] [PubMed]
  42. T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
    [CrossRef] [PubMed]
  43. T. V. Teperik, V. V. Popov, F. J. García de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14(25), 11964–11971 (2006).
    [CrossRef] [PubMed]

2009

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett. 94(7), 073117 (2009).
[CrossRef]

2008

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on two-dimensional colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

J.-C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

2007

T. H. Reilly, S.-H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7(5), 1113–1118 (2007).
[CrossRef] [PubMed]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

A. Lesuffeur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomed. 1(2), 201–208 (2006).
[CrossRef]

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

T. V. Teperik, V. V. Popov, F. J. García de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14(25), 11964–11971 (2006).
[CrossRef] [PubMed]

2005

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc. 127(42), 14936–14941 (2005).
[CrossRef] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[CrossRef] [PubMed]

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, and D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

2004

A. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. Kavanagh, “Nanohole-Enhanced Raman Scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[CrossRef]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology 15(9), 1368–1374 (2004).
[CrossRef]

F. Tam, C. Moran, and N. J. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

A. Lavrinenko, P. I. Borel, L. H. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12(2), 234–248 (2004).
[CrossRef] [PubMed]

2003

Y. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Opt. Lett. 28(7), 507–509 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters,” Nano Lett. 2(8), 891–894 (2002).
[CrossRef]

2001

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

2000

M. Himmelhaus and H. Takei, “Cap shaped gold nanoparticles for an optical biosensor,” Sens. Actuators B Chem. 63(1-2), 24–30 (2000).
[CrossRef]

1999

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface Plasmons Enhance Optical Transmission Through Subwavelengths Holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

1997

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid Monolayers as Versatile Lithographic Masks,” Langmuir 13(11), 2983–2987 (1997).
[CrossRef]

1983

Abdelsalam, M.

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[CrossRef] [PubMed]

Abdelsalem, M.

Alegret, J.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Alexander Jr, R. W.

Arctander, E.

A. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. Kavanagh, “Nanohole-Enhanced Raman Scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[CrossRef]

Bao, Y. J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartlett, P. N.

T. V. Teperik, V. V. Popov, F. J. García de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14(25), 11964–11971 (2006).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[CrossRef] [PubMed]

Bäuerle, D.

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, and D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Baumberg, J. J.

T. V. Teperik, V. V. Popov, F. J. García de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14(25), 11964–11971 (2006).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bishop, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology 15(9), 1368–1374 (2004).
[CrossRef]

Blair, S.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology 15(9), 1368–1374 (2004).
[CrossRef]

Y. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Opt. Lett. 28(7), 507–509 (2003).
[CrossRef] [PubMed]

Böhmisch, M.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid Monolayers as Versatile Lithographic Masks,” Langmuir 13(11), 2983–2987 (1997).
[CrossRef]

Boneberg, J.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid Monolayers as Versatile Lithographic Masks,” Langmuir 13(11), 2983–2987 (1997).
[CrossRef]

Borel, P. I.

Brandl, D. W.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Brodoceanu, D.

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, and D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Brolo, A.

A. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. Kavanagh, “Nanohole-Enhanced Raman Scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[CrossRef]

Brolo, A. G.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc. 127(42), 14936–14941 (2005).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Bukasov, R.

R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7(5), 1113–1118 (2007).
[CrossRef] [PubMed]

Burmeister, F.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid Monolayers as Versatile Lithographic Masks,” Langmuir 13(11), 2983–2987 (1997).
[CrossRef]

Cao, Z. S.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on two-dimensional colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

Chang, S.-H.

T. H. Reilly, S.-H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Chen, H. M.

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett. 94(7), 073117 (2009).
[CrossRef]

Chen, S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Chong, H.

Corbman, J. D.

T. H. Reilly, S.-H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

de Dood, M. J. A.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

de Lange, V.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

De Leebeeck, A.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dmitriev, A.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Dong, H.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Driessen, E. F. C.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface Plasmons Enhance Optical Transmission Through Subwavelengths Holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Enoch, S.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Fainman, Y.

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett. 94(7), 073117 (2009).
[CrossRef]

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

Frandsen, L. H.

Fredriksson, H.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

García de Abajo, F. J.

García-Vidal, F. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Gates, B. D.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters,” Nano Lett. 2(8), 891–894 (2002).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Ghaemi, H. F.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface Plasmons Enhance Optical Transmission Through Subwavelengths Holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Gordon, R.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc. 127(42), 14936–14941 (2005).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

A. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. Kavanagh, “Nanohole-Enhanced Raman Scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[CrossRef]

Gray, S. K.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface Plasmons Enhance Optical Transmission Through Subwavelengths Holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Hafner, J. H.

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomed. 1(2), 201–208 (2006).
[CrossRef]

Hägglund, C.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Halas, N. J.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

F. Tam, C. Moran, and N. J. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[CrossRef]

Harpøth, A.

Herron, J.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology 15(9), 1368–1374 (2004).
[CrossRef]

Himmelhaus, M.

M. Himmelhaus and H. Takei, “Cap shaped gold nanoparticles for an optical biosensor,” Sens. Actuators B Chem. 63(1-2), 24–30 (2000).
[CrossRef]

Hogle, J. M.

J.-C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

Hwang, G. M.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Im, H.

A. Lesuffeur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Jensen, T. R.

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[CrossRef]

Ji, J.

J.-C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

Käll, M.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Kavanagh, K.

A. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. Kavanagh, “Nanohole-Enhanced Raman Scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[CrossRef]

Kavanagh, K. L.

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc. 127(42), 14936–14941 (2005).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Kelf, T. A.

T. V. Teperik, V. V. Popov, F. J. García de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14(25), 11964–11971 (2006).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[CrossRef] [PubMed]

Kher, A.

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett. 94(7), 073117 (2009).
[CrossRef]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Koerkamp, K. J.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Kristensen, M.

Kuipers, L.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Kumar, L. K. S.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Kwok, S. C.

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc. 127(42), 14936–14941 (2005).
[CrossRef] [PubMed]

Landström, L.

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, and D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Langer, G.

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, and D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Larson, D. N.

J.-C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

Larsson, E. M.

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Lavrinenko, A.

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Leathem, B.

A. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. Kavanagh, “Nanohole-Enhanced Raman Scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[CrossRef]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Lee, T. W.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Leiderer, P.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid Monolayers as Versatile Lithographic Masks,” Langmuir 13(11), 2983–2987 (1997).
[CrossRef]

Lesuffeur, A.

A. Lesuffeur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Lezec, H. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface Plasmons Enhance Optical Transmission Through Subwavelengths Holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Li, J. Q.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Li, Y. Y.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on two-dimensional colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

Liao, H.

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomed. 1(2), 201–208 (2006).
[CrossRef]

Lindquist, N. C.

A. Lesuffeur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Liu, S. Q.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Liu, Y.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology 15(9), 1368–1374 (2004).
[CrossRef]

Y. Liu and S. Blair, “Fluorescence enhancement from an array of subwavelength metal apertures,” Opt. Lett. 28(7), 507–509 (2003).
[CrossRef] [PubMed]

Long, L. L.

Love, J. C.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters,” Nano Lett. 2(8), 891–894 (2002).
[CrossRef]

Lu, W.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Lu, X.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Mack, N. H.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Malyarchuk, V.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Martín-Moreno, L.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Matthes, T.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid Monolayers as Versatile Lithographic Masks,” Langmuir 13(11), 2983–2987 (1997).
[CrossRef]

Ming, N. B.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Moffitt, M. G.

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc. 127(42), 14936–14941 (2005).
[CrossRef] [PubMed]

Moran, C.

F. Tam, C. Moran, and N. J. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[CrossRef]

Nehl, C. L.

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomed. 1(2), 201–208 (2006).
[CrossRef]

Niemi, T.

Nordlander, P.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Nuzzo, R. G.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Oh, S.-H.

A. Lesuffeur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

Ordal, M. A.

Pakizeh, T.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Pang, L.

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett. 94(7), 073117 (2009).
[CrossRef]

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
[CrossRef] [PubMed]

Paul, K. E.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters,” Nano Lett. 2(8), 891–894 (2002).
[CrossRef]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Peng, R. W.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Piglmayer, K.

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, and D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

Popov, V. V.

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Reilly, T. H.

T. H. Reilly, S.-H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

Riordon, J.

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc. 127(42), 14936–14941 (2005).
[CrossRef] [PubMed]

Rogers, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Rowlen, K. L.

T. H. Reilly, S.-H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Schäfle, C.

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid Monolayers as Versatile Lithographic Masks,” Langmuir 13(11), 2983–2987 (1997).
[CrossRef]

Schatz, G. C.

T. H. Reilly, S.-H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[CrossRef]

Segerink, F. B.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Shao, J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Sherry, L. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Shu, D. J.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Shumaker-Parry, J. S.

R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7(5), 1113–1118 (2007).
[CrossRef] [PubMed]

Sinton, D.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Slutsky, B.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

Soares, J. A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Stewart, M. E.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Stolwijk, D.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

Sugawara, Y.

T. V. Teperik, V. V. Popov, F. J. García de Abajo, T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalem, and P. N. Bartlett, “Mie plasmon enhanced diffraction of light from nanoporous metal surfaces,” Opt. Express 14(25), 11964–11971 (2006).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[CrossRef] [PubMed]

Sun, J.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on two-dimensional colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Sutherland, D. S.

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

Takei, H.

M. Himmelhaus and H. Takei, “Cap shaped gold nanoparticles for an optical biosensor,” Sens. Actuators B Chem. 63(1-2), 24–30 (2000).
[CrossRef]

Tam, F.

F. Tam, C. Moran, and N. J. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[CrossRef]

Teperik, T. V.

Tetz, K. A.

Thio, T.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface Plasmons Enhance Optical Transmission Through Subwavelengths Holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Thorhauge, M.

Van Duyne, R. P.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[CrossRef]

van Exter, M. P.

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

van Hulst, N. F.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Wang, H. T.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Wang, L.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on two-dimensional colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

Wang, M.

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

Wang, Q. J.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Wang, Z. L.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on two-dimensional colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Ward, C. A.

Whitesides, G. M.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters,” Nano Lett. 2(8), 891–894 (2002).
[CrossRef]

Wiley, B. J.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Williams, L.

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology 15(9), 1368–1374 (2004).
[CrossRef]

Wolfe, D. B.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters,” Nano Lett. 2(8), 891–894 (2002).
[CrossRef]

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Wu, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Wu, S.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Xia, Y. N.

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

Yang, J.-C.

J.-C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

Yin, X. G.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Zhan, P.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on two-dimensional colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Zhu, D.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Zhu, S. N.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Zhu, Y. Y.

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Zi, J.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Adv. Mater.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, J. Wu, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. 18(12), 1612–1616 (2006).
[CrossRef]

Anal. Chem.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

L. Pang, G. M. Hwang, B. Slutsky, and Y. Fainman, “Spectral sensitivity of two-dimensional nanohole array surface plasmon polariton resonance sensor,” Appl. Phys. Lett. 91(12), 123112 (2007).
[CrossRef]

A. Lesuffeur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett. 90(24), 243110 (2007).
[CrossRef]

H. M. Chen, L. Pang, A. Kher, and Y. Fainman, “Three-dimensional composite metallodielectric nanostructure for enhanced surface plasmon resonance sensing,” Appl. Phys. Lett. 94(7), 073117 (2009).
[CrossRef]

S. Wu, Q. J. Wang, X. G. Yin, J. Q. Li, D. Zhu, S. Q. Liu, and Y. Y. Zhu, “Enhanced optical transmission: Role of the localized surface plasmon,” Appl. Phys. Lett. 93(10), 101113 (2008).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

Y. Y. Li, J. Sun, L. Wang, P. Zhan, Z. S. Cao, and Z. L. Wang, “Surface plasmon sensor with gold film deposited on two-dimensional colloidal crystals,” Appl. Phys., A Mater. Sci. Process. 92(2), 291–294 (2008).
[CrossRef]

L. Landström, D. Brodoceanu, K. Piglmayer, G. Langer, and D. Bäuerle, “Infrared transmission through metal-coated lattices of microspheres,” Appl. Phys., A Mater. Sci. Process. 81(1), 15–16 (2005).
[CrossRef]

J. Am. Chem. Soc.

A. G. Brolo, S. C. Kwok, M. G. Moffitt, R. Gordon, J. Riordon, and K. L. Kavanagh, “Enhanced fluorescence from arrays of nanoholes in a gold film,” J. Am. Chem. Soc. 127(42), 14936–14941 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. B

T. R. Jensen, G. C. Schatz, and R. P. Van Duyne, “Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling,” J. Phys. Chem. B 103(13), 2394–2401 (1999).
[CrossRef]

F. Tam, C. Moran, and N. J. Halas, “Geometrical Parameters Controlling Sensitivity of Nanoshell Plasmon Resonances to Changes in Dielectric Environment,” J. Phys. Chem. B 108(45), 17290–17294 (2004).
[CrossRef]

J. Phys. Chem. C

T. H. Reilly, S.-H. Chang, J. D. Corbman, G. C. Schatz, and K. L. Rowlen, “Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays,” J. Phys. Chem. C 111(4), 1689–1694 (2007).
[CrossRef]

Langmuir

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

F. Burmeister, C. Schäfle, T. Matthes, M. Böhmisch, J. Boneberg, and P. Leiderer, “Colloid Monolayers as Versatile Lithographic Masks,” Langmuir 13(11), 2983–2987 (1997).
[CrossRef]

Nano Lett.

A. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. Kavanagh, “Nanohole-Enhanced Raman Scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[CrossRef]

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters,” Nano Lett. 2(8), 891–894 (2002).
[CrossRef]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

E. M. Larsson, J. Alegret, M. Käll, and D. S. Sutherland, “Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors,” Nano Lett. 7(5), 1256–1263 (2007).
[CrossRef] [PubMed]

R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7(5), 1113–1118 (2007).
[CrossRef] [PubMed]

L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, “Localized surface plasmon resonance spectroscopy of single silver nanocubes,” Nano Lett. 5(10), 2034–2038 (2005).
[CrossRef] [PubMed]

J.-C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[CrossRef] [PubMed]

A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, “Enhanced nanoplasmonic optical sensors with reduced substrate effect,” Nano Lett. 8(11), 3893–3898 (2008).
[CrossRef] [PubMed]

Nanomed.

H. Liao, C. L. Nehl, and J. H. Hafner, “Biomedical applications of plasmon resonant metal nanoparticles,” Nanomed. 1(2), 201–208 (2006).
[CrossRef]

Nanotechnology

Y. Liu, J. Bishop, L. Williams, S. Blair, and J. Herron, “Biosensing based upon molecular confinement in metallic nanocavity arrays,” Nanotechnology 15(9), 1368–1374 (2004).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martín-Moreno, and F. J. García-Vidal, “Evanescently couples resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

M. J. A. de Dood, E. F. C. Driessen, D. Stolwijk, and M. P. van Exter, “Observation of coupling between surface plasmons in index-matched hole arrays,” Phys. Rev. B 77(11), 115437 (2008).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface Plasmons Enhance Optical Transmission Through Subwavelengths Holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[CrossRef]

Phys. Rev. Lett.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[CrossRef] [PubMed]

Y. J. Bao, R. W. Peng, D. J. Shu, M. Wang, X. Lu, J. Shao, W. Lu, and N. B. Ming, “Role of interference between localized and propagating surface waves on the extraordinary optical transmission through a subwavelength-aperture array,” Phys. Rev. Lett. 101(8), 087401 (2008).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, J. J. Baumberg, M. Abdelsalam, and P. N. Bartlett, “Plasmonic band gaps and trapped plasmons on nanostructured metal surfaces,” Phys. Rev. Lett. 95(11), 116802 (2005).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A.

M. E. Stewart, N. H. Mack, V. Malyarchuk, J. A. Soares, T. W. Lee, S. K. Gray, R. G. Nuzzo, and J. A. Rogers, “Quantitative multispectral biosensing and 1D imaging using quasi-3D plasmonic crystals,” Proc. Natl. Acad. Sci. U.S.A. 103(46), 17143–17148 (2006).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

M. Himmelhaus and H. Takei, “Cap shaped gold nanoparticles for an optical biosensor,” Sens. Actuators B Chem. 63(1-2), 24–30 (2000).
[CrossRef]

Other

A. Taflove, and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, 1st ed. (Springer-Verlag, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(Color online) Schematic for fabricating a quasi-3D metallic nanohole array.

Fig. 2
Fig. 2

SEM images (tilted view). (a) Au covered silica CC self-assembled on a quartz substrate and (b) the templated quasi-3D Au nanohole array composed of ordered interconnected Au half-shells array on a clean quartz substrate. The silica spheres used have a diameter of 1.58 μm and the Au film has a nominal thickness ~50 nm. The inset in (b) shows an edge of the quasi-3D structure that had been cut in part, from which the notches at the half-shell rim are evident, indicating that the half-shells are interconnected via short segmented Au nanotubes.

Fig. 3
Fig. 3

(Color online) Measured transmission spectra for the quasi-3D Au nanohole array (a) and the as-prepared plasmonic structure (b) immersed in different liquid environments: air (solid line, n = 1.0), CCl4 (dash line, n = 1.46), and CS2 (short dash line, n = 1.63). (c) Plot of the main peak shift versus RI of the dielectric matrix for the quasi-3D Au nanohole array (red squares) and the as-prepared plasmonic structure (blue triangles).

Fig. 4
Fig. 4

(Color online) Transmission spectra of the quasi-3D Au nanohole array on a quartz substrate (red line) and the as-prepared plasmonic structure containing the silica template (blue line). Both structures are in air. The vertical lines indicate the spectral positions of the (1, 0) SP resonances predicted for the interfaces of a planar Au film with air (A) and silica (S), using the resonant grating coupling condition.

Fig. 5
Fig. 5

(Color online) Numerical calculation results. (a) The models used in the numerical simulations: Au network (left) before and (right) after removal of the 2D CC. (b) Calculated transmission spectra of the quasi-3D Au film on a 2D silica CC supported on a quartz substrate (blue line) and directly on a quartz substrate (red line). (c) Calculated |E| distributions along xz plane at the main transmission resonance for the two structures. Structural parameters are given in the text.

Fig. 6
Fig. 6

(Color online) Measured transmission spectra for the quasi-3D subwavelength hole array (same as in Fig. 2. but oriented with the half-shell bases touching the supporting quartz chip, see the inset), immersed in different environments: air (solid line, n = 1.0), CCl4 (dash line, n = 1.46), and CS2 (short dash line, n = 1.63).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ = 3 a 2 ( i 2 + j 2 + ij ) 1 / 2 ε d ε m ε d + ε m ,
ε A u = 1 ω p 2 [ ω ( ω + i ω c ) ] 1

Metrics