Abstract

High-speed cameras are reliable alternatives for the direct characterization of optical trap force and particle motion in optical tweezers setups, replacing indirect motion measurements often performed by quadrant detectors. In the present approach, subpixel motion data of the trapped particle is retrieved from a high-speed low-resolution video sequence. Due to the richness structure of motion diversity of microscopic trapped particles, which are subjected to a Brownian motion, we propose to also use the obtained motion information for tackling the inherent lack of resolution by applying superresolution algorithms on the low-resolution image sequence. The obtained results both for trapping calibration beads and for living bacteria show that the proposed approach allows the proper characterization of the optical tweezers by obtaining the real particle motion directly from the image domain, while still providing high resolution imaging.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
    [CrossRef] [PubMed]
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef]
  3. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
    [CrossRef] [PubMed]
  4. S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S264–S266 (2007).
    [CrossRef]
  5. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16(19), 14561–14570 (2008).
    [CrossRef] [PubMed]
  6. C. D. Kuglin, and D. C. Hines, “The phase correlation image alignment method,” in Proc. Int. Conference on Cybernetics and Society, 1975, 163–165 (1975).
  7. H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Trans. Image Process. 11(3), 188–200 (2002).
    [CrossRef]
  8. S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
    [CrossRef]
  9. B. S. Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Trans. Image Process. 5(8), 1266–1271 (1996).
    [CrossRef] [PubMed]
  10. U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021910 (2008).
    [CrossRef] [PubMed]
  11. R. M. Berry and H. C. Berg, “Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14433–14437 (1997).
    [CrossRef]
  12. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
    [CrossRef] [PubMed]
  13. S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
    [CrossRef] [PubMed]
  14. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
    [CrossRef] [PubMed]
  15. Y. Tu, “The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell’s demons,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11737–11741 (2008).
    [CrossRef] [PubMed]
  16. C. Bustamante, J. Liphardt, and F. Ritort, “The non equilibrium thermodynamics of small systems,” Phys. Today 58(7), 43–48 (2005).
    [CrossRef]
  17. F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17(15), 13071–13079 (2009).
    [CrossRef] [PubMed]
  18. F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92(1), 95–99 (2009).
    [CrossRef]

2009

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17(15), 13071–13079 (2009).
[CrossRef] [PubMed]

F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92(1), 95–99 (2009).
[CrossRef]

2008

Y. Tu, “The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell’s demons,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11737–11741 (2008).
[CrossRef] [PubMed]

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021910 (2008).
[CrossRef] [PubMed]

M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).
[CrossRef] [PubMed]

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

2007

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S264–S266 (2007).
[CrossRef]

2005

C. Bustamante, J. Liphardt, and F. Ritort, “The non equilibrium thermodynamics of small systems,” Phys. Today 58(7), 43–48 (2005).
[CrossRef]

2004

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[CrossRef] [PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

2003

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

2002

H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Trans. Image Process. 11(3), 188–200 (2002).
[CrossRef]

1999

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

1997

R. M. Berry and H. C. Berg, “Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14433–14437 (1997).
[CrossRef]

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

1996

B. S. Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Trans. Image Process. 5(8), 1266–1271 (1996).
[CrossRef] [PubMed]

Amato-Grill, J.

Ashkin, A.

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

Berg, H. C.

R. M. Berry and H. C. Berg, “Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14433–14437 (1997).
[CrossRef]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Berry, R. M.

R. M. Berry and H. C. Berg, “Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14433–14437 (1997).
[CrossRef]

Berthod, M.

H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Trans. Image Process. 11(3), 188–200 (2002).
[CrossRef]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

C. Bustamante, J. Liphardt, and F. Ritort, “The non equilibrium thermodynamics of small systems,” Phys. Today 58(7), 43–48 (2005).
[CrossRef]

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Chatterji, B. N.

B. S. Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Trans. Image Process. 5(8), 1266–1271 (1996).
[CrossRef] [PubMed]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Cheong, F. C.

F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92(1), 95–99 (2009).
[CrossRef]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17(15), 13071–13079 (2009).
[CrossRef] [PubMed]

Dixon, L.

Dreyfus, R.

Elad, M.

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[CrossRef] [PubMed]

Farsiu, S.

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[CrossRef] [PubMed]

Fienup, J. R.

Foroosh, H.

H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Trans. Image Process. 11(3), 188–200 (2002).
[CrossRef]

Gibson, G.

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S264–S266 (2007).
[CrossRef]

Gibson, G. M.

Grier, D. G.

F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92(1), 95–99 (2009).
[CrossRef]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17(15), 13071–13079 (2009).
[CrossRef] [PubMed]

Guizar-Sicairos, M.

Kang, M. G.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Keen, S.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S264–S266 (2007).
[CrossRef]

Leach, J.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S264–S266 (2007).
[CrossRef]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Liphardt, J.

C. Bustamante, J. Liphardt, and F. Ritort, “The non equilibrium thermodynamics of small systems,” Phys. Today 58(7), 43–48 (2005).
[CrossRef]

Matsudaira, P.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021910 (2008).
[CrossRef] [PubMed]

Milanfar, P.

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[CrossRef] [PubMed]

Mir, M.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021910 (2008).
[CrossRef] [PubMed]

Mirsaidov, U.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021910 (2008).
[CrossRef] [PubMed]

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

Padgett, M. J.

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16(19), 14561–14570 (2008).
[CrossRef] [PubMed]

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S264–S266 (2007).
[CrossRef]

Park, M. K.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Park, S. C.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Reddy, B. S.

B. S. Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Trans. Image Process. 5(8), 1266–1271 (1996).
[CrossRef] [PubMed]

Ritort, F.

C. Bustamante, J. Liphardt, and F. Ritort, “The non equilibrium thermodynamics of small systems,” Phys. Today 58(7), 43–48 (2005).
[CrossRef]

Robinson, M. D.

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[CrossRef] [PubMed]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Sun, B.

Thurman, S. T.

Timp, G.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021910 (2008).
[CrossRef] [PubMed]

Timp, K.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021910 (2008).
[CrossRef] [PubMed]

Timp, W.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021910 (2008).
[CrossRef] [PubMed]

Tu, Y.

Y. Tu, “The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell’s demons,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11737–11741 (2008).
[CrossRef] [PubMed]

Wright, A. J.

Xiao, K.

F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92(1), 95–99 (2009).
[CrossRef]

F. C. Cheong, B. Sun, R. Dreyfus, J. Amato-Grill, K. Xiao, L. Dixon, and D. G. Grier, “Flow visualization and flow cytometry with holographic video microscopy,” Opt. Express 17(15), 13071–13079 (2009).
[CrossRef] [PubMed]

Zerubia, J. B.

H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Trans. Image Process. 11(3), 188–200 (2002).
[CrossRef]

Annu. Rev. Biochem.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77(1), 205–228 (2008).
[CrossRef] [PubMed]

Biophys. J.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77(5), 2856–2863 (1999).
[CrossRef] [PubMed]

IEEE Signal Process. Mag.

S. C. Park, M. K. Park, and M. G. Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

IEEE Trans. Image Process.

B. S. Reddy and B. N. Chatterji, “An FFT-based technique for translation, rotation, and scale-invariant image registration,” IEEE Trans. Image Process. 5(8), 1266–1271 (1996).
[CrossRef] [PubMed]

H. Foroosh, J. B. Zerubia, and M. Berthod, “Extension of phase correlation to subpixel registration,” IEEE Trans. Image Process. 11(3), 188–200 (2002).
[CrossRef]

S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).
[CrossRef] [PubMed]

J. Dairy Sci.

F. C. Cheong, K. Xiao, and D. G. Grier, “Technical note: characterizing individual milk fat globules with holographic video microscopy,” J. Dairy Sci. 92(1), 95–99 (2009).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

S. Keen, J. Leach, G. Gibson, and M. J. Padgett, “Comparison of a high-speed camera and a quadrant detector for measuring displacements in optical tweezers,” J. Opt. A, Pure Appl. Opt. 9(8), S264–S266 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

U. Mirsaidov, W. Timp, K. Timp, M. Mir, P. Matsudaira, and G. Timp, “Optimal optical trap for bacterial viability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(2), 021910 (2008).
[CrossRef] [PubMed]

Phys. Today

C. Bustamante, J. Liphardt, and F. Ritort, “The non equilibrium thermodynamics of small systems,” Phys. Today 58(7), 43–48 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

R. M. Berry and H. C. Berg, “Absence of a barrier to backwards rotation of the bacterial flagellar motor demonstrated with optical tweezers,” Proc. Natl. Acad. Sci. U.S.A. 94(26), 14433–14437 (1997).
[CrossRef]

A. Ashkin, “Optical trapping and manipulation of neutral particles using lasers,” Proc. Natl. Acad. Sci. U.S.A. 94(10), 4853–4860 (1997).
[CrossRef] [PubMed]

Y. Tu, “The nonequilibrium mechanism for ultrasensitivity in a biological switch: sensing by Maxwell’s demons,” Proc. Natl. Acad. Sci. U.S.A. 105(33), 11737–11741 (2008).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Other

C. D. Kuglin, and D. C. Hines, “The phase correlation image alignment method,” in Proc. Int. Conference on Cybernetics and Society, 1975, 163–165 (1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: trap imaging and calibration is performed by using the CMOS camera. An infrared trapping laser is used for handling living objects, such as the zoomed Bacillus Subtilis bacteria shown. Lower inset: real system snapshot.

Fig. 2
Fig. 2

y-axis subpixel displacement estimates (up) and its related Power Spectral Density (bottom) for different laser power: (a) 33 mW, motion standard deviation of 0.65 pixels, bandwidth of 2.6 Hz; (b) 186 mW, motion standard deviation of 0.31 pixels, and bandwidth of 5.8 Hz.

Fig. 3
Fig. 3

Images of a 2 um polystyrene calibration bead. (a) Sample 64x64 low resolution image; (b) 4X nearest neighbor interpolation; (c) 4X bicubic interpolation; (d) 4X multiframe superresolution; (e) Comparison plot of vertical line 1; (f) Comparison plot of vertical line 120.

Fig. 4
Fig. 4

Motion estimation of a trapped Bacillus Subtilis. (a) Rotation estimation from the original video sequence (see the inset sample frames) by using the Fourier-Mellin transform; (b) Subpixel translation estimation from the rotation compensated image sequence (see the inset sample frames).

Fig. 5
Fig. 5

Images of a trapped Bacillus Subtilis. (a) Sample 128x128 low resolution image; (b) 4X nearest neighbor interpolation; (c) 4X multiframe superresolution.

Metrics