Abstract

Photophysical mechanisms of collagen photomodification (CFP) by the use of a 80 MHz, 780 nm femtosecond titanium-sapphire laser were investigated. Our observation that the decrease in collagen second harmonic generation and increase in two-photon autofluorescence intensity occurred primarily at sites where photoproducts were present suggested that the photoproducts may act to facilitate the CFP process. Laser power study of CFP indicated that the efficiency of the process depended on the sixth power of the laser intensity. Furthermore, it was demonstrated that CFP can be used for bending and cutting of collagen fibers and creating 3D patterns within collagen matrix with high precision (~2 μm).

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech. Eng. 113(2), 143–151 (1991).
    [CrossRef] [PubMed]
  2. S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Eng. 7(6), 679–689 (2001).
    [CrossRef] [PubMed]
  3. J. J. Klawitter and S. F. Hulbert, “Application of porous ceramics for the attachment of load bearing internal orthopedic applications,” Biomed. Mater. Symp. 5(6), 161–229 (1971).
    [CrossRef]
  4. S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4(7), 518–524 (2005).
    [CrossRef] [PubMed]
  5. C. H. Lee, A. Singla, and Y. Lee, “Biomedical applications of collagen,” Int. J. Pharm. 221(1-2), 1–22 (2001).
    [CrossRef] [PubMed]
  6. J. M. Pachence, “Collagen-based devices for soft tissue repair,” J. Biomed. Mater. Res. 33(1), 35–40 (1996).
    [CrossRef] [PubMed]
  7. V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
    [CrossRef] [PubMed]
  8. T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5(4), 902–910 (1999).
    [CrossRef]
  9. K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
    [PubMed]
  10. Y. Liu, Sh. Sun, S. Singha, M. R. Cho, and R. J. Gordon, “3D femtosecond laser patterning of collagen for directed cell attachment,” Biomaterials 26(22), 4597–4605 (2005).
    [CrossRef] [PubMed]
  11. J. Bunte, S. Barcikowski, T. Puester, T. Burmester, M. Brose, and T. Ludwig, “Secondary hazards: Particle and X-ray emission,” In: Femtosecond Technology for Technical and Medical Applications. Topics Appl Phys96, F. Dausinger, F. Lichtner, H. Lubatschowski, editors (Springer, Berlin, 2004), p. 309–321.
  12. M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
    [CrossRef] [PubMed]
  13. M. Oujja, S. Pérez, E. Fadeeva, J. Koch, B. N. Chichkov, and M. Castillejo, “Three dimensional microstructuring of biopolymers by femtosecond laser irradiation,” Appl. Phys. Lett. 95(26), 263703 (2009).
    [CrossRef]
  14. L. P. Cunningham, M. P. Veilleux, and P. J. Campagnola, “Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express 14(19), 8613–8621 (2006).
    [CrossRef] [PubMed]
  15. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
    [CrossRef]
  16. A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  17. V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
    [CrossRef] [PubMed]
  18. V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Non-ablative processing of biofibers by femtosecond IR laser,” Proc. SPIE-OSA 7373, 73731X1–7 (2009).
  19. M. Wisniewski, A. Sionkowskaa, H. Kaczmarek, S. Lazare, V. Tokarev, and C. Belin, “Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films,” J. Photochem. Photobiol., A 188(2-3), 192–199 (2007).
    [CrossRef]
  20. E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
    [CrossRef] [PubMed]
  21. V. A. Hovhannisyan, P. -J. Su, and C. -Y. Dong, “Quantifying thermodynamics of collagen thermal denaturation by second harmonic generation imaging,” Appl. Phys. Lett. 94(23), 233902 (2009).
    [CrossRef]
  22. C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
    [CrossRef] [PubMed]
  23. N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, and D. Ogden, “The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals,” Eur. Biophys. J. 30(8), 588–604 (2002).
    [CrossRef] [PubMed]
  24. R. A. Meldrum, S. W. Botchway, C. W. Wharton, and G. J. Hirst, “Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption,” EMBO Rep. 4(12), 1144–1149 (2003).
    [CrossRef] [PubMed]
  25. A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
    [CrossRef]
  26. D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to corneal collagen,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1107–1115 (1999).
    [CrossRef]
  27. S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
    [CrossRef] [PubMed]
  28. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
    [CrossRef] [PubMed]

2009

M. Oujja, S. Pérez, E. Fadeeva, J. Koch, B. N. Chichkov, and M. Castillejo, “Three dimensional microstructuring of biopolymers by femtosecond laser irradiation,” Appl. Phys. Lett. 95(26), 263703 (2009).
[CrossRef]

V. A. Hovhannisyan, P. -J. Su, and C. -Y. Dong, “Quantifying thermodynamics of collagen thermal denaturation by second harmonic generation imaging,” Appl. Phys. Lett. 94(23), 233902 (2009).
[CrossRef]

2008

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[CrossRef] [PubMed]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[CrossRef]

V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
[CrossRef] [PubMed]

2007

M. Wisniewski, A. Sionkowskaa, H. Kaczmarek, S. Lazare, V. Tokarev, and C. Belin, “Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films,” J. Photochem. Photobiol., A 188(2-3), 192–199 (2007).
[CrossRef]

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

2006

L. P. Cunningham, M. P. Veilleux, and P. J. Campagnola, “Freeform multiphoton excited microfabrication for biological applications using a rapid prototyping CAD-based approach,” Opt. Express 14(19), 8613–8621 (2006).
[CrossRef] [PubMed]

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

2005

Y. Liu, Sh. Sun, S. Singha, M. R. Cho, and R. J. Gordon, “3D femtosecond laser patterning of collagen for directed cell attachment,” Biomaterials 26(22), 4597–4605 (2005).
[CrossRef] [PubMed]

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4(7), 518–524 (2005).
[CrossRef] [PubMed]

2003

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[CrossRef] [PubMed]

R. A. Meldrum, S. W. Botchway, C. W. Wharton, and G. J. Hirst, “Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption,” EMBO Rep. 4(12), 1144–1149 (2003).
[CrossRef] [PubMed]

2002

N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, and D. Ogden, “The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals,” Eur. Biophys. J. 30(8), 588–604 (2002).
[CrossRef] [PubMed]

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

K. Koenig, O. Krauss, and I. Riemann, “Intratissue surgery with 80 MHz nanojoule femtosecond laser pulses in the near infrared,” Opt. Express 10(3), 171–176 (2002).
[PubMed]

2001

C. H. Lee, A. Singla, and Y. Lee, “Biomedical applications of collagen,” Int. J. Pharm. 221(1-2), 1–22 (2001).
[CrossRef] [PubMed]

S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Eng. 7(6), 679–689 (2001).
[CrossRef] [PubMed]

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

1999

D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to corneal collagen,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1107–1115 (1999).
[CrossRef]

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5(4), 902–910 (1999).
[CrossRef]

1996

J. M. Pachence, “Collagen-based devices for soft tissue repair,” J. Biomed. Mater. Res. 33(1), 35–40 (1996).
[CrossRef] [PubMed]

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

1991

L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech. Eng. 113(2), 143–151 (1991).
[CrossRef] [PubMed]

1971

J. J. Klawitter and S. F. Hulbert, “Application of porous ceramics for the attachment of load bearing internal orthopedic applications,” Biomed. Mater. Symp. 5(6), 161–229 (1971).
[CrossRef]

Belin, C.

M. Wisniewski, A. Sionkowskaa, H. Kaczmarek, S. Lazare, V. Tokarev, and C. Belin, “Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films,” J. Photochem. Photobiol., A 188(2-3), 192–199 (2007).
[CrossRef]

Bille, J. F.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5(4), 902–910 (1999).
[CrossRef]

Botchway, S. W.

R. A. Meldrum, S. W. Botchway, C. W. Wharton, and G. J. Hirst, “Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption,” EMBO Rep. 4(12), 1144–1149 (2003).
[CrossRef] [PubMed]

Boucher, Y.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[CrossRef] [PubMed]

Brown, E.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[CrossRef] [PubMed]

Campagnola, P. J.

Castillejo, M.

M. Oujja, S. Pérez, E. Fadeeva, J. Koch, B. N. Chichkov, and M. Castillejo, “Three dimensional microstructuring of biopolymers by femtosecond laser irradiation,” Appl. Phys. Lett. 95(26), 263703 (2009).
[CrossRef]

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[CrossRef] [PubMed]

Chen, S. J.

Chen, W. L.

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Chichkov, B. N.

M. Oujja, S. Pérez, E. Fadeeva, J. Koch, B. N. Chichkov, and M. Castillejo, “Three dimensional microstructuring of biopolymers by femtosecond laser irradiation,” Appl. Phys. Lett. 95(26), 263703 (2009).
[CrossRef]

Chillingworth, R.

N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, and D. Ogden, “The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals,” Eur. Biophys. J. 30(8), 588–604 (2002).
[CrossRef] [PubMed]

Cho, M. R.

Y. Liu, Sh. Sun, S. Singha, M. R. Cho, and R. J. Gordon, “3D femtosecond laser patterning of collagen for directed cell attachment,” Biomaterials 26(22), 4597–4605 (2005).
[CrossRef] [PubMed]

Chua, C. K.

S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Eng. 7(6), 679–689 (2001).
[CrossRef] [PubMed]

Cima, L. G.

L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech. Eng. 113(2), 143–151 (1991).
[CrossRef] [PubMed]

Cunningham, L. P.

Da Silva, D. B.

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

diTomaso, E.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[CrossRef] [PubMed]

Dong, C. Y.

V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
[CrossRef] [PubMed]

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Dong, C. -Y.

V. A. Hovhannisyan, P. -J. Su, and C. -Y. Dong, “Quantifying thermodynamics of collagen thermal denaturation by second harmonic generation imaging,” Appl. Phys. Lett. 94(23), 233902 (2009).
[CrossRef]

Du, Z.

S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Eng. 7(6), 679–689 (2001).
[CrossRef] [PubMed]

Fadeeva, E.

M. Oujja, S. Pérez, E. Fadeeva, J. Koch, B. N. Chichkov, and M. Castillejo, “Three dimensional microstructuring of biopolymers by femtosecond laser irradiation,” Appl. Phys. Lett. 95(26), 263703 (2009).
[CrossRef]

Feit, M. D.

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

Forster, M.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[CrossRef] [PubMed]

Fourkas, J. T.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[CrossRef]

Gaspard, S.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[CrossRef] [PubMed]

Glinsky, M. E.

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

Gordon, R. J.

Y. Liu, Sh. Sun, S. Singha, M. R. Cho, and R. J. Gordon, “3D femtosecond laser patterning of collagen for directed cell attachment,” Biomaterials 26(22), 4597–4605 (2005).
[CrossRef] [PubMed]

Gorner, H.

D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to corneal collagen,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1107–1115 (1999).
[CrossRef]

Guerra, A.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

Hirst, G. J.

R. A. Meldrum, S. W. Botchway, C. W. Wharton, and G. J. Hirst, “Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption,” EMBO Rep. 4(12), 1144–1149 (2003).
[CrossRef] [PubMed]

Hollister, S. J.

S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4(7), 518–524 (2005).
[CrossRef] [PubMed]

Hopt, A.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

Horvath, C.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5(4), 902–910 (1999).
[CrossRef]

Hovhannisyan, V.

Hovhannisyan, V. A.

V. A. Hovhannisyan, P. -J. Su, and C. -Y. Dong, “Quantifying thermodynamics of collagen thermal denaturation by second harmonic generation imaging,” Appl. Phys. Lett. 94(23), 233902 (2009).
[CrossRef]

Hsiao, C. Y.

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Hu, C.

Huber, C.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[CrossRef] [PubMed]

Hulbert, S. F.

J. J. Klawitter and S. F. Hulbert, “Application of porous ceramics for the attachment of load bearing internal orthopedic applications,” Biomed. Mater. Symp. 5(6), 161–229 (1971).
[CrossRef]

Hutson, M. S.

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

Huttman, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Ingber, D.

L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech. Eng. 113(2), 143–151 (1991).
[CrossRef] [PubMed]

Jain, R. K.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[CrossRef] [PubMed]

Jan, G. J.

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Jee, S. H.

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Juhasz, T.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5(4), 902–910 (1999).
[CrossRef]

Kaczmarek, H.

M. Wisniewski, A. Sionkowskaa, H. Kaczmarek, S. Lazare, V. Tokarev, and C. Belin, “Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films,” J. Photochem. Photobiol., A 188(2-3), 192–199 (2007).
[CrossRef]

Kautek, W.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[CrossRef] [PubMed]

Kiskin, N. I.

N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, and D. Ogden, “The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals,” Eur. Biophys. J. 30(8), 588–604 (2002).
[CrossRef] [PubMed]

Klawitter, J. J.

J. J. Klawitter and S. F. Hulbert, “Application of porous ceramics for the attachment of load bearing internal orthopedic applications,” Biomed. Mater. Symp. 5(6), 161–229 (1971).
[CrossRef]

Koch, J.

M. Oujja, S. Pérez, E. Fadeeva, J. Koch, B. N. Chichkov, and M. Castillejo, “Three dimensional microstructuring of biopolymers by femtosecond laser irradiation,” Appl. Phys. Lett. 95(26), 263703 (2009).
[CrossRef]

Koenig, K.

Krauss, O.

Kurtz, R. M.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5(4), 902–910 (1999).
[CrossRef]

Langer, R.

L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech. Eng. 113(2), 143–151 (1991).
[CrossRef] [PubMed]

Lazare, S.

M. Wisniewski, A. Sionkowskaa, H. Kaczmarek, S. Lazare, V. Tokarev, and C. Belin, “Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films,” J. Photochem. Photobiol., A 188(2-3), 192–199 (2007).
[CrossRef]

Lee, C. H.

C. H. Lee, A. Singla, and Y. Lee, “Biomedical applications of collagen,” Int. J. Pharm. 221(1-2), 1–22 (2001).
[CrossRef] [PubMed]

Lee, Y.

C. H. Lee, A. Singla, and Y. Lee, “Biomedical applications of collagen,” Int. J. Pharm. 221(1-2), 1–22 (2001).
[CrossRef] [PubMed]

Leong, K. F.

S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Eng. 7(6), 679–689 (2001).
[CrossRef] [PubMed]

Lin, S. J.

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Liu, Y.

Y. Liu, Sh. Sun, S. Singha, M. R. Cho, and R. J. Gordon, “3D femtosecond laser patterning of collagen for directed cell attachment,” Biomaterials 26(22), 4597–4605 (2005).
[CrossRef] [PubMed]

Lo, W.

V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Dynamics of femtosecond laser photo-modification of collagen fibers,” Opt. Express 16(11), 7958–7968 (2008).
[CrossRef] [PubMed]

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Loesel, F. H.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5(4), 902–910 (1999).
[CrossRef]

Ma, X.

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

Mammini, B. M.

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

Maruo, S.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[CrossRef]

McCray, J. A.

N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, and D. Ogden, “The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals,” Eur. Biophys. J. 30(8), 588–604 (2002).
[CrossRef] [PubMed]

McKee, T.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[CrossRef] [PubMed]

Meldrum, R. A.

R. A. Meldrum, S. W. Botchway, C. W. Wharton, and G. J. Hirst, “Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption,” EMBO Rep. 4(12), 1144–1149 (2003).
[CrossRef] [PubMed]

Mooney, D.

L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech. Eng. 113(2), 143–151 (1991).
[CrossRef] [PubMed]

Mourou, G.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5(4), 902–910 (1999).
[CrossRef]

Nahen, K.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

Neher, E.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

Nikogosyan, D. N.

D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to corneal collagen,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1107–1115 (1999).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Ogden, D.

N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, and D. Ogden, “The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals,” Eur. Biophys. J. 30(8), 588–604 (2002).
[CrossRef] [PubMed]

Oraevsky, A. A.

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

Oujja, M.

M. Oujja, S. Pérez, E. Fadeeva, J. Koch, B. N. Chichkov, and M. Castillejo, “Three dimensional microstructuring of biopolymers by femtosecond laser irradiation,” Appl. Phys. Lett. 95(26), 263703 (2009).
[CrossRef]

Pachence, J. M.

J. M. Pachence, “Collagen-based devices for soft tissue repair,” J. Biomed. Mater. Res. 33(1), 35–40 (1996).
[CrossRef] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Pérez, S.

M. Oujja, S. Pérez, E. Fadeeva, J. Koch, B. N. Chichkov, and M. Castillejo, “Three dimensional microstructuring of biopolymers by femtosecond laser irradiation,” Appl. Phys. Lett. 95(26), 263703 (2009).
[CrossRef]

Perry, M. D.

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

Piston, D.

N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, and D. Ogden, “The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals,” Eur. Biophys. J. 30(8), 588–604 (2002).
[CrossRef] [PubMed]

Pluen, A.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[CrossRef] [PubMed]

Riemann, I.

Rubenchik, A. M.

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

Seed, B.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[CrossRef] [PubMed]

Singha, S.

Y. Liu, Sh. Sun, S. Singha, M. R. Cho, and R. J. Gordon, “3D femtosecond laser patterning of collagen for directed cell attachment,” Biomaterials 26(22), 4597–4605 (2005).
[CrossRef] [PubMed]

Singla, A.

C. H. Lee, A. Singla, and Y. Lee, “Biomedical applications of collagen,” Int. J. Pharm. 221(1-2), 1–22 (2001).
[CrossRef] [PubMed]

Sionkowskaa, A.

M. Wisniewski, A. Sionkowskaa, H. Kaczmarek, S. Lazare, V. Tokarev, and C. Belin, “Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films,” J. Photochem. Photobiol., A 188(2-3), 192–199 (2007).
[CrossRef]

Small, W.

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

Stuart, B. C.

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

Su, J. W.

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Su, P. -J.

V. A. Hovhannisyan, P. -J. Su, and C. -Y. Dong, “Quantifying thermodynamics of collagen thermal denaturation by second harmonic generation imaging,” Appl. Phys. Lett. 94(23), 233902 (2009).
[CrossRef]

Sun, Sh.

Y. Liu, Sh. Sun, S. Singha, M. R. Cho, and R. J. Gordon, “3D femtosecond laser patterning of collagen for directed cell attachment,” Biomaterials 26(22), 4597–4605 (2005).
[CrossRef] [PubMed]

Sun, Y.

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Tokarev, V.

M. Wisniewski, A. Sionkowskaa, H. Kaczmarek, S. Lazare, V. Tokarev, and C. Belin, “Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films,” J. Photochem. Photobiol., A 188(2-3), 192–199 (2007).
[CrossRef]

Trettenhahn, G.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[CrossRef] [PubMed]

Tung, C. K.

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Vacanti, C.

L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech. Eng. 113(2), 143–151 (1991).
[CrossRef] [PubMed]

Vacanti, J. P.

L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech. Eng. 113(2), 143–151 (1991).
[CrossRef] [PubMed]

Veilleux, M. P.

Venugopalan, V.

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

Wharton, C. W.

R. A. Meldrum, S. W. Botchway, C. W. Wharton, and G. J. Hirst, “Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption,” EMBO Rep. 4(12), 1144–1149 (2003).
[CrossRef] [PubMed]

Wisniewski, M.

M. Wisniewski, A. Sionkowskaa, H. Kaczmarek, S. Lazare, V. Tokarev, and C. Belin, “Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films,” J. Photochem. Photobiol., A 188(2-3), 192–199 (2007).
[CrossRef]

Yang, S.

S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Eng. 7(6), 679–689 (2001).
[CrossRef] [PubMed]

Zafiu, C.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[CrossRef] [PubMed]

Appl. Phys. B

A. Vogel, J. Noack, G. Huttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett.

M. Oujja, S. Pérez, E. Fadeeva, J. Koch, B. N. Chichkov, and M. Castillejo, “Three dimensional microstructuring of biopolymers by femtosecond laser irradiation,” Appl. Phys. Lett. 95(26), 263703 (2009).
[CrossRef]

V. A. Hovhannisyan, P. -J. Su, and C. -Y. Dong, “Quantifying thermodynamics of collagen thermal denaturation by second harmonic generation imaging,” Appl. Phys. Lett. 94(23), 233902 (2009).
[CrossRef]

Biomaterials

Y. Liu, Sh. Sun, S. Singha, M. R. Cho, and R. J. Gordon, “3D femtosecond laser patterning of collagen for directed cell attachment,” Biomaterials 26(22), 4597–4605 (2005).
[CrossRef] [PubMed]

Biomed. Mater. Symp.

J. J. Klawitter and S. F. Hulbert, “Application of porous ceramics for the attachment of load bearing internal orthopedic applications,” Biomed. Mater. Symp. 5(6), 161–229 (1971).
[CrossRef]

Biophys. J.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

EMBO Rep.

R. A. Meldrum, S. W. Botchway, C. W. Wharton, and G. J. Hirst, “Nanoscale spatial induction of ultraviolet photoproducts in cellular DNA by three-photon near-infrared absorption,” EMBO Rep. 4(12), 1144–1149 (2003).
[CrossRef] [PubMed]

Eur. Biophys. J.

N. I. Kiskin, R. Chillingworth, J. A. McCray, D. Piston, and D. Ogden, “The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals,” Eur. Biophys. J. 30(8), 588–604 (2002).
[CrossRef] [PubMed]

IEEE J. Quantum Electron.

T. Juhasz, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, “Corneal refractive surgery with femtosecond lasers,” IEEE J. Quantum Electron. 5(4), 902–910 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. A. Oraevsky, D. B. Da Silva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, “Plasma mediated ablation of biological tissues with nanosecond-to femtosecond laser pulses: relative role of linear and nonlinear absorption,” IEEE J. Sel. Top. Quantum Electron. 2(4), 801–809 (1996).
[CrossRef]

D. N. Nikogosyan and H. Gorner, “Laser-induced photodecomposition of amino acids and peptides: extrapolation to corneal collagen,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1107–1115 (1999).
[CrossRef]

Int. J. Pharm.

C. H. Lee, A. Singla, and Y. Lee, “Biomedical applications of collagen,” Int. J. Pharm. 221(1-2), 1–22 (2001).
[CrossRef] [PubMed]

J. Biomech. Eng.

L. G. Cima, J. P. Vacanti, C. Vacanti, D. Ingber, D. Mooney, and R. Langer, “Tissue engineering by cell transplantation using degradable polymer substrates,” J. Biomech. Eng. 113(2), 143–151 (1991).
[CrossRef] [PubMed]

J. Biomed. Mater. Res.

J. M. Pachence, “Collagen-based devices for soft tissue repair,” J. Biomed. Mater. Res. 33(1), 35–40 (1996).
[CrossRef] [PubMed]

J. Photochem. Photobiol., A

M. Wisniewski, A. Sionkowskaa, H. Kaczmarek, S. Lazare, V. Tokarev, and C. Belin, “Spectroscopic study of a KrF excimer laser treated surface of the thin collagen films,” J. Photochem. Photobiol., A 188(2-3), 192–199 (2007).
[CrossRef]

Laser Photonics Rev.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Laser Photonics Rev. 2(1-2), 100–111 (2008).
[CrossRef]

Microsc. Res. Tech.

C. Y. Hsiao, Y. Sun, W. L. Chen, C. K. Tung, W. Lo, J. W. Su, S. J. Lin, S. H. Jee, G. J. Jan, and C. Y. Dong, “Effects of different immersion media in multiphoton imaging of the epithelium and dermis of human skin,” Microsc. Res. Tech. 69(12), 992–997 (2006).
[CrossRef] [PubMed]

Nat. Mater.

S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat. Mater. 4(7), 518–524 (2005).
[CrossRef] [PubMed]

Nat. Med.

E. Brown, T. McKee, E. diTomaso, A. Pluen, B. Seed, Y. Boucher, and R. K. Jain, “Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation,” Nat. Med. 9(6), 796–801 (2003).
[CrossRef] [PubMed]

Opt. Express

Phys. Chem. Chem. Phys.

S. Gaspard, M. Forster, C. Huber, C. Zafiu, G. Trettenhahn, W. Kautek, and M. Castillejo, “Femtosecond laser processing of biopolymers at high repetition rate,” Phys. Chem. Chem. Phys. 10(40), 6174–6181 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett.

M. S. Hutson and X. Ma, “Plasma and cavitation dynamics during pulsed laser microsurgery in vivo,” Phys. Rev. Lett. 99(15), 158104 (2007).
[CrossRef] [PubMed]

V. Venugopalan, A. Guerra, K. Nahen, and A. Vogel, “Role of laser-induced plasma formation in pulsed cellular microsurgery and micromanipulation,” Phys. Rev. Lett. 88(7), 078103 (2002).
[CrossRef] [PubMed]

Tissue Eng.

S. Yang, K. F. Leong, Z. Du, and C. K. Chua, “The design of scaffolds for use in tissue engineering. Part I. Traditional factors,” Tissue Eng. 7(6), 679–689 (2001).
[CrossRef] [PubMed]

Other

V. Hovhannisyan, W. Lo, C. Hu, S. J. Chen, and C. Y. Dong, “Non-ablative processing of biofibers by femtosecond IR laser,” Proc. SPIE-OSA 7373, 73731X1–7 (2009).

J. Bunte, S. Barcikowski, T. Puester, T. Burmester, M. Brose, and T. Ludwig, “Secondary hazards: Particle and X-ray emission,” In: Femtosecond Technology for Technical and Medical Applications. Topics Appl Phys96, F. Dausinger, F. Lichtner, H. Lubatschowski, editors (Springer, Berlin, 2004), p. 309–321.

Supplementary Material (3)

» Media 1: MOV (1675 KB)     
» Media 2: MOV (3423 KB)     
» Media 3: MOV (3170 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Time-lapsed multiphoton imaging of collagen femtosecond photo-modification. A. Illumination of a single RTT fiber at P = 16 mW. B. (Media 1) Illumination of BAT at P = 30 mW. Objective: 20x/NA 0.5. Green: TPA (435-700 nm) and red: SHG (380-400 nm).

Fig. 2
Fig. 2

A. (Media 2) Time-lapsed MPI of dried bovine leg tendon photomodification at the laser power P = 30 mW. Red: SHG. Green: TPA. 20x/NA 0.5 objective was used. B. Kinetics of SHG (1-3) and TPA (1’-3′) signals from fs laser illumination at P = 34.5 mW (1, 1’), 28 mW (2, 2’) and 24 mW (3, 3′). 1”-3” are derivative curves of 1-3 series.

Fig. 3
Fig. 3

Kinetics of SHG (1) and TPA (2) signals of bovine leg tendon during CFP. 1” and 2” are averaged derivative curves of the SHG data. P = 29 mW and 20x/NA 0.5 objective was used. Scanned areas for 1 and 2 are 11.5 × 11.5 μm2 and 16.5 × 16.5 μm2 respectively.

Fig. 4
Fig. 4

Effect of the time-lapses on fs photomodification of collagen fibers. A. Qualitatively, no significant change in SHG and TPA of chicken leg tendon was observed when the laser was blocked at the time points t1 = 276 sec (for 15 sec) and t2 = 296 sec (for 10 sec). P = 26 mW. B. Time course of SHG and TPA showing that the SHG and TPA signals remained unchanged when the laser was off.

Fig. 5
Fig. 5

Kinetic analysis of the CFP process in bovine leg tendon A. Plots of SHG intensity ISHG(t) (1), TPA intensity ITPA(t) (2), and exponential fit of ITPA(t) (3) as a function of time. B. Plot of ΔISHG(t) = ISHG (max)-ISHG(t) vs. ΔITPF(t) = I TPF (t)-ITPF (min) for 0-2.5 min period. Objective: 20x/NA 0.5 objective, P = 30 mW.

Fig. 6
Fig. 6

Dependences of ln(k) and ln(k/D) on lnP for bovine leg dry tendon.

Fig. 7
Fig. 7

MPI of two sites in wet chicken skin dermis before (A, B) and after (A’, B’) 50 mW fs laser illumination of the selected regions of interest indicated by the white rectangles. A’ is an image of the blue squared region marked in A after 20 sec of fs laser illumination. B’ is the image of B after 30 sec illumination. Two-photon autofluorescence of the generated photoproduct that was seen after the short time illumination (A’), vanished after longer fs laser illumination (B’).

Fig. 8
Fig. 8

Bending of collagen fibers from femtosecond laser illumination of dry RTT (A, A’), dry BAT (B, B’), and dry chicken leg tendon (C, C’). A, B, and C correspond to MPI of collagen fibers before photomodification and A’, B’ and C’ are the images after laser illumination of rectangular regions (4 × 10 μm2) for 6, 8, and 10 sec. respectively. Laser powers were 20, 20 and 40 mW for A, B, and C, respectively. The photomodification regions (one site in A and two sites in B and C) are indicated by arrows. A, A’, B and B’ are z-stack projection (side view) of the processed fibers and vertically downward direction represents the direction of gravity. C and C’ are x-y MPI (top view) of the collagen fiber.

Fig. 9
Fig. 9

A crossed pattern was engraved at the depth of 6 μm in chicken leg bone cartilage tissue by the scanning of two perpendicular rectangles 1 × 23 μm2 in size using 40 sec of focused illumination at P = 30 mW. The objective used was an oil immersion objective Fluar 40x/NA 1.3. A. SHG image illustrates photomodification of collagen fibers inside the illuminated area. B. TPA image illustrates the formation of photoproducts. C. Combined SHG (red) and TPA) (green) image.

Fig. 11
Fig. 11

3D engraving of cross patterns in chicken leg bone cartilage matrix by fs laser using the oil immersion objective Fluar 40x/NA 1.3. Two cross patterns were engraved at the depths of 7.8 μm (P = 20 mW) and 20 μm (P = 60 mW), and the third cross pattern oriented at 45° relative to the first 2 patterns, was engraved at the depth of 15 μm (P = 40 mW). A. (Media 3) 3D MPI of the photomodified tissue. Scan volume 26 × 26 × 27 μm3, and optical sections were acquired at the intervals of 0.3 μm. B. Axial profiles of SHG intensity in two regions (white rectangles in Fig. 11A). Profile 1 passed through the two engraved patterns “+” and the profile 2 passed through the engraved sign “×”. C. 3D SHG image of the photomodified tissue. Black color indicates the photomodified sites.

Fig. 10
Fig. 10

A. MPI of cartilage tissue dipped in rhodamine B (RB) solution after P = 30 mW of 1 min illumination in creating a rectangular (1 × 40 μm2) pattern. RB solution flowed into the cavity engraved by fs laser at the depth of 8 μm. Green is detected two-photon fluorescence (TPF) of RB and red is collagen SHG signals. B. Intensity profiles of TPF (1) and SHG (2) along the 1-1’, and TPF (3) along the 2- 2’ bars (see Fig. 10A).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d C ( t ) d t = k C ( t ) A ( t ) , A ( t ) = N C ( t ) ,
C ( t ) = N / ( 1 + exp ( N k t + ln ( A 0 ( N A 0 ) ) ) ) .

Metrics